Fermented Milk by *Bifidobacterium angulatum* and Infection Induced by *Escherichia coli* O157:H7, in Mice

Mohaddeseh Namjoo, S. Ali Taheri and Fatemeh Taheri

1Department of Paramedicine, Golestan University of Medical Sciences, 2University of Medical Sciences, 3Department of Chemical Engineering, Gorgan, Iran

Abstract: *Escherichia coli* is the most important species in the *Escherichia* genus. In the recent years, haemorrhagic colitis has been associated with a strain called *E. coli* O157:H7. This strain is known as causative agent of bloody diarrhea and predominant cause of Haemolytic Uremic Syndrome (HUS). The aim of this study was to determine the effect of milk fermented by *Bifidobacterium angulatum* as a probiotic on infection induced by *E. coli* O157:H7 in mice. In this study, 45 mice of 6-8 weeks age were randomly divided into 5 groups, each containing 9 mice. These groups consisted of control group A, infected group B, non-infected group fed by probiotic C, pre-infected group fed by probiotic D and post-infected group fed by probiotic E. Each mouse in groups B, D and E received 1.5×10³cfu mL⁻¹ of *E. coli* O157:H7 through intra gastric tube (gavage). Group C mice fed with 0.5 mL of *B. angulatum* fermented milk daily for 14 days, group D mice fed with 0.5 mL of *B. angulatum* fermented milk daily for 7 days post-infection and group E mice fed as mentioned earlier for 7 days prior to infection. Mice stools were studied for *E. coli* O157:H7 before getting infected and on days 2, 4 and 7 after infection. MacConkey sorbitol agar was used to identify *E. coli* O157:H7 and specific antiserum against *E. coli* O157 was used for confirmation. Alive *E. coli* O157:H7 was not isolated in mice of control group A and non-infected group fed with the probiotic C. Statistical analysis showed significant differences between group C, B and D (p<0.01). Results showed that consumption of milk fermented by *B. angulatum* could shorten the duration and reduce the severity of the illness caused by *B. angulatum*. Further studies are needed on humans.

Key words: *Escherichia coli* O157:H7, *Bifidobacterium angulatum*, fermented milk, mouse, Iran

INTRODUCTION

In the recent years, *Haemorrhagic colitis* has been associated with a strain called *E. coli* O157:H7 which is known as causative agent of bloody diarrhea and predominant cause of Haemolytic Uremic Syndrome (HUS) (Asahara et al., 2004). So far, no acceptable evidence regarding use of antimicrobial agents for the treatment of disease by *E. coli* O157:H7 has been confirmed and it is believed that antibiotics may cause kidney failure (Asahara et al., 2004, Bomba et al., 2002).

Probiotics are microbial cell productions or parts of microbial cells with effects on human health and wellness. According to *in vitro* and *in vivo* studies of human populations and laboratory animals, several valuable properties have been reported from probiotics productions such as: resistance to intestinal pathogens, treatment and prevention of viral and bacterial diarrhea, inhibitory effect on colon cancer, preventive effect on bladder cancer, strengthen the immune system, inhibition of bacterial growth in small intestine, treatment of urinary tract and genital infections, treatment of infections caused by helicobacter pylori improvement of lactose intolerance, reduce blood cholesterol and so on (Fioramonti et al., 2003; Fooks and Gibson, 2003; Gagnon et al., 2004, 2006; Hajela et al., 2012).

Recent reports and studies concentrate on investigation of the probiotic necessary amounts in the host health. Taking probiotics such as bifidobacterium can related to survival and balance of intestine natural microflora and prevent the intestinal infections. Growth inhibition of intestinal pathogens by commercial bifidobacteria (probiotics) is shown in laboratories (Holzapfel et al., 2001; Isolauri et al., 2002; Kim et al., 2001).

The aim of this study was to determine the effect of milk fermented by *Bifidobacterium angulatum* as a high consumption probiotic on infections induced by different doses of *Escherichia coli* O157:H7 in mice.

Corresponding Author: S. Ali Taheri, University of Medical Sciences, Gorgan, Iran
MATERIALS AND METHODS

In this experimental study, the effect of fermented milk on infection induced by three different doses of Escherichia coli O\textsubscript{157}:H\textsubscript{7} in mice has been determined.

Mice regementation: Firstly, 45 mice of 6-8 weeks age prepared from mouse laboratory, Tabriz University of Medical Sciences and get used to new environment for 7 days, under 12 h of light and 12 h dark with routine diet and free access to water and then were randomly divided into 5 groups.

Control group A: Not been exposed to the bacterium E. coli O\textsubscript{157}:H\textsubscript{7} and water and food did not contain Bifidobacterium angulatum probiotic.

Infected group B: Mice infected with E. coli O\textsubscript{157}:H\textsubscript{7} but did not receive probiotic.

Group C: Non-infected group fed by probiotic on days 0-7.

Group D: Fed with probiotic on days 0-7 and were infected with E. coli O\textsubscript{157}:H\textsubscript{7} on day 7.

Group E: After exposure to E. coli O\textsubscript{157}:H\textsubscript{7}, on day 7, received probiotic Bifidobacterium angulatum from days 7-14.

After statistical analysis of the 1st stage results, 18 mice were used to ambient under normal conditions in 2nd and 3rd stage and were randomly divided into 2 groups: treated and control.

The 1st and 2nd group of mice were exposed using esophageal catheter, 3×105 cfu g-1 and 6×106 cfu mL-1 Escherichia coli O\textsubscript{157}:H\textsubscript{7} on day 0, respectively.

According to the 1st stage, fermented milk by Bifidobacterium angulatum was added to the drinking water of treated mice but not to the control group.

Preparation of bacteria: Escherichia coli O\textsubscript{157}:H\textsubscript{7} was obtained from the Microbiology Laboratory of Veterinary Faculty of Tehran University and was amplified on nutrient agar medium for 24 h at 37 °C and was confirmed by IMVIC cultures and O\textsubscript{157} antiserum. Then according to the method of Mc Farland nephelometry from formed colonies, 0.5 diluted solution containing 1.5×108 cfu mL-1 were prepared.

The 0.5 mL diluted solution was given to the mice in group B on day 0 and groups D and E on day 7 using an esophageal tube gavage.

Lyophilized Bifidobacterium angulatum PTCC is equal to 1366 was prepared by Scientific and Research Organization of Iran and as ordered by the manufacturer, first was activated in the peptonated water environment (Merck factory) for 48 h at 37°C then 5 mL of this medium was inoculated in 250 mL of sterilized milk. And the resulting milk was incubated at 37°C until the pH reaches about 80° dornik.

This fermented milk was transported to the laboratory and during the study period was used as culture inoculums. To prepare the fermented milk with required Bifidobacterium angulatum, 2% of the initial culture inoculums were inoculated into sterilized milk and according to the schedule time outlined, some of resulting fermented milk was added to the drinking water of groups C, D and E daily and each mouse should receive approximately 0.5 mL of fermented milk.

Counting the number of Escherichia coli O\textsubscript{157}:H\textsubscript{7} shed in mouse feces: On days 1, 3, 5, 7 and 9 before the infection, mice stool samples were prepared and tested. After physical bonding with animal's abdomen downside, fecal samples were taken and placed in sterile containers with a certain weight.

From the taken stool samples in peptonated water environment, 101 to 106 dilutions were prepared and surface cultures were prepared in MacConkey sorbitol agarand incubated for 24 h at 37°C.

Then, the numbers of sorbitol-negative colonies were counted and the square of them were confirmed with O\textsubscript{157} antiserum and the number of Escherichia coli O\textsubscript{157}:H\textsubscript{7} excretion in mice faeces was counted using the following equation:

\[N = \text{Proportion of positive colonies with antiserum} \times \frac{10}{\text{reverse of the dilution}} \times \text{No. of suspected colonies} \]

In addition to the above experiment, the amount of water and food consumption were measured and calculated by subtracting the residual value from the amount of available meals given to each group. At the beginning and end of the experiment, mouse body weights were measured and recorded in each group daily.

RESULTS

The results of the 3 stages of the study are shown in Fig. 1-4.

A: The results of the E. coli O\textsubscript{157}:H\textsubscript{7} counts and the numbers of excretion days in the first test in each group of mice, being infected with 1.5×108 cfu mL-1 doses, was
shown in Fig. 1 and 2. Groups A and C are not shown in Fig. 1 as no isolation of *E. coli O157:H7* were reported in them.

As was shown in Fig. 1, the number of *E. coli O157:H7* shedding decreased from the inoculation time up to the ninth day. The mean (±SD) of *Escherichia coli O157:H7* was 11.53±2.81×10⁶ cfu mL⁻¹ in group B, 2.67±0.65×10⁶ cfu mL⁻¹ in group D and 1.47±0.57×10⁶ cfu mL⁻¹ in group E, during 9 days. One-way variance analysis and Tukey test showed a significantly lower rate in groups D and E compared to B (p<0.01).

B: As shown in Fig. 2, the mean number of *E. coli O157:H7* shedding days in mice feces was estimated 4.6±1.1, 5.4±1.32 and 8.33±0.95 in groups B, D and E, respectively. One-way variance analysis and Tukey test showed significantly lower days in group E compared to the other 2 groups (p<0.01).

C: Results of the 2nd stage (groups had been infected with a dose of 3×10⁶ cfu mL⁻¹) are shown in Fig. 3.

As shown in Fig. 3, the number of *E. coli O157:H7* shedding by treated and control groups of infected mice with a dose of 3×10⁶ cfu mL⁻¹ has been decreased up to the 5th day. Mean±SD of *Escherichia coli O157:H7* shedding during 5 days of treatment and control groups, respectively was 13.11±1.55×10⁵ cfu g⁻¹ and 20.78±3.29×10⁵ cfu g⁻¹. Using t-test, this mean in the treatment group was estimated significantly lower than the control group (p<0.05).

D: The result of the 3rd stage test (mice infected with a dose of 6×10⁶ cfu mL⁻¹) is shown in Fig. 4. The number of *E. coli O157:H7* shedding by treated and control groups of mice infected with a dose of 6×10⁶ cfu mL⁻¹ has been
compounds such as bacteriocins are the mechanisms of lactobacilli and bifidobacteria inhibitory effect on pathogen bacteria (Lema et al., 2001).

Holzapfel et al. (2001) suggested that although the probiotic strains are able to produce bacteriocins but their role in inhibiting growth of pathogens in vivo would be limited because bacteriocins only had the inhibitory effect on very close strains (Mirzaei et al., 2010).

Melanie studied inhibitory effect of some strains of bifidobacter on E. coli O157:H7, and results showed that preventing the binding of Escherichia coli to Caco-2 cells by bifidobacteria was the main inhibitory factor on escherichia (Molbak et al., 2002).

Lema et al. (2001) showed that food supply of lambs infected by Streptococcus faecium or a mixture of S. faecium, L. acidophilus, L. casei, L. fermenteum and L. lantaro in diet could reduce the overall amount of O157:H7. E. coli fecal excretion and also could improve performance and meat production processes in animals (Ouveland et al., 2002).

Shu and Gill (2001) reported that feeding with the probiotic L. rhamnous can reduce the survival of the E. coli O157:H7 contamination in mice and suggested that this decrease can be associated with increased homorolal and cellular immune responses (Kim et al., 2001).

Fioramonti reported that probiotics have little effects on digestive tract physiology and the main function of probiotics can be summarized as strengthening and renewal of the intestinal mucosal barrier against harmful agents (Qi et al., 2011).

Gagnon reported that isolated bifidobacterium from fresh feces could be beneficial in improving probiotic formulation regards to their protection against E. coli O157:H7-contamination (Molbak et al., 2002).

Gagnon stated that the severity of E. coli O157:H7 infection can reduce with pasture of mice with probiotic B. thermacophilum RBL 71 and this probiotic had suggested as a selected and a suitable candidate for the prevention of intestinal infection in humans (Shu and Gill, 2001).

DISCUSSION

Results showed that consumption of milk fermented by Bifidobacterium angulatum, either before or after infection could significantly reduce the number of E. coli O157:H7 shedding in the feces of mice infected with a dose of 1.5×10⁶ cfu mL⁻¹ compared with control group (p<0.01).

Using this type of fermented milk during the infection was shown more efficient than using probiotics pre-contamination (before), non-significantly.

As results of this study showed consumption of fermented milk before and concurrently with infection, decreased the number of days shedding E. coli O157:H7, significantly. Fermented milk with Bifidobacterium angulatum, reduced the mean number of bacteria excretion in mice infected with doses of 3×10⁶ and 6×10³ cfu mL⁻¹ E. coli O157:H7, significantly.

It has been reported that pH reduction of intestinal environment by the production of short chain volatile fatty acids, consumption of nutrients and requirement for bacteria and production of specific antimicrobial

REFERENCES

