Preventing Ventilator Associated Pneumonia (VAP) in a Pediatric Intensive Care Unit Using a Modified Ventilator Associated Pneumonia Bundle: Pre-Interventional and Post-Interventional Trial

Alaa Obeid, Amal Naous, Zeina Naja, Ahmad Salaheddine Naja, Bassem Abou Merhi and Mariam Rajab
Department of Pediatrics, Makassed General Hospital, Beirut, Lebanon

Abstract: Ventilator associated pneumonia increases in hospital stay, morbidity and mortality of ventilated pediatric patients. It prolongs time spent on the ventilator and length of Pediatric Intensive Care Unit (PICU) stay. This is a pre-interventional and post-interventional trial of 57 and 50 pediatric patients, respectively which started in March 2011 to decrease the rate of ventilator associated pneumonia in Pediatric Intensive Care Unit after initiation of a modified pediatric VAP bundle compared with the ventilator associated pneumonia rate for the preceding 12 months. The study was conducted at Makassed General Hospital in Beirut, Lebanon. It included pediatric patients that were on mechanical ventilation from March 2010 to 2012. An interdisciplinary performance improvement team was formed who implemented a modified pediatric VAP bundle. The implementation of the pediatric VAP bundle resulted in the reduction of ventilator associated pneumonia rates from 52% (March 2010 to 2011) to 6% (March 2011 to 2012) (p<0.001). Patients who had VAP had longer stay on mechanical ventilation with a mean of 11.42 ventilator days than those who didn’t develop ventilator associated pneumonia with a mean of 5.18 ventilator days (p<0.0001). Implementing the modified pediatric VAP bundle significantly reduced the ventilator associated pneumonia rate, time on mechanical ventilation and hospital length stay with potential decrease in cost.

Key words: Ventilator Associated Pneumonia (VAP), VAP prevention bundle, modified pediatric VAP bundle, pediatric intensive care unit, PICU

INTRODUCTION

Ventilator Associated Pneumonia (VAP) is defined by the Centers for Disease Control and Prevention (CDC) as an episode of pneumonia in a patient who requires a device to assist or control respiration through a tracheostomy or endotracheal tube within 48 h before the onset of the infection (CDC, 2005). Health care-associated infections have a large impact on pediatric morbidity, survival, hospital costs and length of stay (Payne et al., 2004; Stoll et al., 2004). VAP is a common cause and accounts for 6.8-50% of health care-acquired infections among pediatric patients (Van der Zwiets et al., 2005; Gaynes et al., 1996; Drews et al., 1995; Petechia, 2004).

Ventilator Associated Pneumonia (VAP) is a potentially lethal and common problem among mechanically-ventilated patients in intensive care units. In addition to its high mortality rate compared to other nosocomial infections, VAP is associated with prolonged hospitalization and considerable medical costs (Vincent et al., 1995). Many factors predispose to acquiring VAP; infants mechanically ventilated in the Pediatric Intensive Care Unit (PICU) are at a particularly high risk of developing VAP because of poor host factors, severe underlying diseases, prolonged use of mechanical ventilation, inadequate pulmonary toilet and extensive use of invasive devices and procedures; gram-negative and gram-positive bacteria are the most common causative organisms (Groshkopf et al., 2002).

Few data exist regarding the strategies that hospitals use to prevent VAP. Moreover, little is known about what factors influence the use of these strategies (IHI, 2008). Recently, interest has focused on practice care bundles, sets of practices implemented together (Youngquist et al., 2007).

Care bundle is a cohesive set of evidence-based, well-established clinical practices that when implemented together, achieve better patient outcomes than when implemented individually. Each element on its own should have strong scientific support (IHI, 2008).

In adult, the Centers for Disease Control and Prevention (CDC) and American Thoracic Society have published guidelines for the prevention of ventilator associated pneumonia by using adult VAP bundles (CDC, 2004; American Thoracic Society, 2005). Several studies have shown a reduction in VAP after the
guidelines were implemented into a bundle of interventions that were implemented as a single intervention (Kollef, 2004; Resar et al., 2005; Lorente et al., 2007; Omran et al., 2007; Gastmeier and Geffers, 2007).

VAP bundle is scarce in the pediatric literature. Since, there is evidence that implementing a VAP bundle can result in significant, sustained reductions in VAP rates, hospital length of stay and costs, researchers implemented a modified pediatric VAP bundle, adapted from adult VAP bundle, applicable in Pediatric Intensive Care Unit (PICU).

Therefore, researchers undertook this study in the beginning of March 2011 to decrease the rate of VAP in PICU after initiation of this modified pediatric VAP bundle compared with the VAP rate for the preceding 12 months (2010).

Objective of the study: Adoption and modification of an adult VAP bundle applicable in Pediatric Intensive Care Unit and implementation of this bundle for VAP prevention among ventilated pediatric patients.

MATERIALS AND METHODS

A pre-interventional and post-interventional study was conducted in the Pediatric Intensive Care Unit (PICU) at Makassed General Hospital, Beirut, Lebanon between March 2010 and March 2012.

Design: In this pre-interventional and post-interventional study that included 57 and 50 patients, respectively researchers compared the rates of VAP from March 2010 to March 2011 for a 1 year period before the initiation of the modified pediatric VAP prevention bundle. This rate was compared with the VAP rates after intervention from March 2011 to March 2012 (1 year period).

Intervention: In addition to routine infection control protocols, a modified pediatric VAP bundle, applicable in PICU was adapted from adults for the study. The adult VAP bundle components, adapted from the Institute for Healthcare Improvement (IHI) include the following:

- Hand hygiene
- Close suction system and subglottic suctioning
- Peptic ulcer disease prophylaxis
- Maintain cuff pressures and endotracheal tube maintenance
- Head of bed elevation
- Sedation vacation and readiness to wean assessment
- Deep venous thrombosis prophylaxis (IHI, 2009)

From the earlier adult care bundle, researchers adapted the modified VAP bundle which is composed of the following:

- Hand hygiene and sterile gloves when in contact with secretions and IV intervention
- Close suction system
- Peptic ulcer prophylaxis
- Oro-gastric tube for residual volumes before feeding
- The 15-30° head of bed elevation
- Oral hygiene with antiseptic solution
- Readiness to wean and extubate assessment (Fig. 1)

Inclusion: All pediatric patients, admitted to Pediatric Intensive Care Unit (PICU) between March 2010 and March 2012 and required mechanical ventilation for longer than 48 h were included in the study.

Exclusion: Pediatric patients who were ventilated and had pneumonia upon PICU admission, ventilated ≤48 h, non-invasively ventilated or who died within 48 h of ventilation were excluded from the study.

Measures: Two sets of measures were monitored: process and outcome measures. The process measure reflected the rate of adherence to the ventilator bundle. The outcome measure included the rate of VAP, duration of intubation and the organism responsible for VAP. The definition of VAP was based on the CDC’s National Nosocomial Infection Surveillance definitions (CDC, 2005).

Implementation process: Multiple steps were taken to implement the ventilator bundle and include staff education, development of an audit tool, data collection and tracking of the measures. A team approach to drive and maintain the initiative was developed and included the following: infection control professional, critical care nursing, chief residents, chairman of the infection control committee and chairman of pediatric department.

Staff education was accomplished by multiple presentations on VAP, the importance of the VAP bundle and discussion on the VAP elements. After the initial educational session, a working group worked on the development of the VAP bundle checklist. The compliance with the bundle elements was recorded on daily basis using a checklist during rounds (Fig. 1). Feedback was provided by chief residents on compliance with these processes to the PICU team.

Surveillance: Active VAP surveillance continued throughout the study including full blood counts and if indicated, chest X-ray, sputum samples and blood cultures with temperatures ≥38.5°C or <36.0°C. The
Fig. 1: Pediatric VAP bundle

A bedside nurse was responsible for collecting VAP data over the 12-month period until 24 h post extubation, discharge, or death.

VAP definition: VAP was defined as pneumonia occurring >48 h after intubation diagnosed by specific Chest Radiograph (CXR) changes with at least three clinical or laboratory findings. Diagnosis was based on radiological, clinical, and laboratory criteria from the CDC's National Nosocomial Infection Surveillance System (CDC, 2005) (Table 1).

Radiological: VAP was suggested by new or progressive pulmonary infiltrates, consolidation or cavitation on at least two serial CXRs with gradual resolution (rapid resolution suggests non-infective etiology, e.g., pulmonary edema or atelectasis) (CDC, 2005).

Table 1: Diagnostic criteria for VAP

<table>
<thead>
<tr>
<th>Radiological</th>
<th>Clinical/Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>New or progressive pulmonary infiltrates, consolidation or cavitation on chest radiograph (two or more serial chest X-rays)</td>
<td>Core temperature >38.5°C or <36°C (no other recognized cause)</td>
</tr>
<tr>
<td>0 day to 1 week >34×10⁶ L</td>
<td>Leukopenia or leukocytosis (by age)</td>
</tr>
<tr>
<td>1 week to 1 month >19.5 or <5×10⁶ L</td>
<td>2-5 years >7,5 or <6×10⁶ L</td>
</tr>
<tr>
<td>6-12 years >15.5 or <4.5×10⁶ L</td>
<td>10 to 18 years >11 or <4.5×10⁶ L</td>
</tr>
<tr>
<td>Significant positive culture from respiratory secretions</td>
<td>Relevant culture from alternative site of infection</td>
</tr>
</tbody>
</table>

(CDC, 2005).
Clinical: Core temperature >38.5°C or <36°C hyper/hypothermia was defined as at least two consecutive abnormal readings using standard measurement techniques in a 24 h period not clearly attributable to extra-pulmonary infection, the environment or blood/drug reactions (CDC, 2005).

Laboratory: Leucopenia or leukocytosis was defined by age according to the International Consensus Conference on Pediatric Sepsis statement (Goldstein et al., 2005). Significant culture of respiratory secretions: microbial growth from endotracheal secretions was reported. Sensitivities were performed on any potential respiratory pathogen. Relevant cultures from alternative site of infection: positive blood cultures of likely respiratory tract pathogens, unrelated to another source of infection were considered in the diagnosis of VAP.

RESULTS AND DISCUSSION

A total of 107 pediatric patients were enrolled into the study. The pre-interventional group was 57 patients and the post-interventional group was 50 patients. Baseline demographic information between both groups showed no difference in sex (Table 2). In the pre-interventional group, VAP occurred in 30 patients out of 57, a VAP rate of 52.6 cases per 100 mechanically ventilated patients, compared to 3 out of 50, a VAP rate of 6 cases per 100 mechanically ventilated patients, after implementation of VAP bundle. Thus, there was a statistically significant difference in the rate of VAP between the pre-interventional and post-interventional groups (p<0.0001) (Table 3).

Pediatric patients with VAP had longer duration on ventilation with mean duration of 11.42 ventilator days, compared to 5.18 ventilator days in patients who did not have VAP with statistically significant difference (p<0.0001) (Table 4). In the pre-interventional group, the Deep Tracheal Aspirates (DTA) cultures of 33 cases of VAP revealed as follows: 12 cases of Staphylococcus aureus, 7 cases of Pseudomonas aeruginosa, 1 case of E. coli, 1 case of Acinetobacter sp. and 9 cases with no growth results. In the post-interventional group, the Deep Tracheal Aspirate (DTA) cultures of 3 cases of VAP revealed 2 cases of Pseudomonas aeruginosa and 1 case with no growth result (Table 5).

Few data are available on VAP rates in the PICU and reported rates vary for each study, Stover et al. (2001) reported an overall rate of 0.9 per 1000 ventilator days in infants (Stover et al., 2001). Cordero et al. (2002) found an overall rate of 18.9% among low birth weight infants. The study showed VAP rate of 52% among ventilated pediatric patients before implementation of the modified pediatric VAP bundle.

There was a strong correlation between VAP and duration of ventilator use (Gaynes et al., 1996; Drews et al., 1995). In the study, patients who had VAP had longer stay on mechanical ventilation with a mean of 11.42 ventilator days than those who didn't develop VAP with a mean of 5.18 ventilator days. Other potential risk factors for VAP have been examined in several large studies; the results have differed between study populations (Cook et al., 1998; Elward et al., 2002).

Clinical interventions for monitoring and therapeutic purposes can increase infants' risk of VAP. Placement of the nasogastric tube might enhance nasopharyngeal and gastric colonization with gram-negative bacilli that could be aspirated into the lower airway, initiating VAP (Pingleton et al., 1986) while intravenous catheterization induced colonization as well as bloodstream dissemination of organisms (Gaynes et al., 1996; Drews et al., 1995; Stover et al., 2001). Infants who underwent prolonged use of mechanical ventilatory support have potentiated exposure to contaminated respiratory equipment and contact with contaminated or colonized hands of healthcare workers in the PICU (Craven et al., 1990).

Table 2: Baseline demographic information of patients with and without VAP

<table>
<thead>
<tr>
<th>Variables</th>
<th>Before VAP bundle</th>
<th>After VAP bundle</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>57</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>33 (57.9%)</td>
<td>28 (56%)</td>
<td>-</td>
</tr>
<tr>
<td>Female</td>
<td>24 (42.1%)</td>
<td>22 (44%)</td>
<td>0.843</td>
</tr>
</tbody>
</table>

Data is presented as mean Standard Deviation (SD) or percentage (%) as appropriate

Table 3: Rates of VAP before and after implementation of pediatric VAP bundle

<table>
<thead>
<tr>
<th>Variables</th>
<th>Before VAP bundle</th>
<th>After VAP bundle</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>57</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>VAP</td>
<td>30 (52.6%)</td>
<td>3 (6%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>No VAP</td>
<td>27 (47.4%)</td>
<td>47 (94%)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Data is presented as mean (SD)

Table 4: Duration of ventilator days between patients with and without VAP

<table>
<thead>
<tr>
<th>Variables</th>
<th>VAP</th>
<th>Non-VAP</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>33.00</td>
<td>74.00</td>
<td>-</td>
</tr>
<tr>
<td>Ventilator days</td>
<td>11.42</td>
<td>5.18</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Data is presented as mean (SD)

Table 5: Microorganisms from DTA cultures in patients with VAP

<table>
<thead>
<tr>
<th>Organisms</th>
<th>DTA culture</th>
<th>Before VAP bundle</th>
<th>After VAP bundle</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. organism</td>
<td>10 (30.30%)</td>
<td>9 (30.00%)</td>
<td>1 (33.33%)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>12 (36.36%)</td>
<td>12 (40.00%)</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>9 (27.27%)</td>
<td>7 (23.33%)</td>
<td>2 (66.66%)</td>
</tr>
<tr>
<td>E. coli</td>
<td>1 (3.03%)</td>
<td>1 (3.33%)</td>
<td>0</td>
</tr>
<tr>
<td>Acinetobacter sp.</td>
<td>1 (3.03%)</td>
<td>1 (3.33%)</td>
<td>0</td>
</tr>
</tbody>
</table>
There was a limitation in the sampling procedures used to obtain microbiologic specimens from the small respiratory tract in the study in that invasive techniques to distinguish infection from colonization are not practical or feasible and may be harmful in small infants. They can impair blood gas exchange, delay treatment, and lead to sepsis. The role of the Broncho Alveolar Lavage (BAL) in devising a therapeutic strategy superior to one based only on clinical evaluation has not been evaluated in infants (Chastre and Fagon, 2002; Niederman et al., 1994; Sanchez-Nieto et al., 1998). Percutaneous transthoracic aspiration is a definitive diagnostic procedure but is not commonly performed (Doree et al., 1995). Endotracheal aspiration is the simplest means of obtaining respiratory secretions from infants receiving mechanical ventilation (Papazian et al., 1996).

Gram-negative bacilli comprised nearly the whole isolates from cultures of specimens obtained from endotracheal aspirate and blood. Aerobic gram-negative bacilli are implicated in a wide spectrum of nosocomial infections in the ICU. Their emergence as significant pathogens seems to be related partly to the widespread use of broad-spectrum antibiotics and partly to their ability to develop resistance rapidly to the major groups of antibiotics (Treuille et al., 1998; Waterer and Wunderink, 2001; Schaberg et al., 1991). Coagulase-negative staphylococci was the only gram-positive organism that accounted for the etiology of VAP and was associated with central intravenous catheters (Gaynes et al., 1996; Avila-Figueroa et al., 1998). Multi-resistant strains of Acinetobacter, Klebsiella and Pseudomonas are difficult to treat and are implicated in a wide spectrum of nosocomial infections, predominantly in the ICU (Towner, 1997).

VAP was the most common nosocomial infection contributing to death (Fagon et al., 1996). Mortality depended on duration on ventilator and virulence of pathogen those with longer duration on ventilator were at higher risk. VAP caused by Pseudomonas aeruginosa had a higher rate of mortality (Cunha, 2001). Fagon et al. (1996) suggesting that in addition to the severity of underlying medical conditions and nosocomial bacteremia, VAP independently contributes to ICU patient mortality.

Since, some clinical interventions increase the development of VAP, clinical guidelines for the prevention of VAP should be developed (Ibrahim et al., 2001). Pediatricians should understand its epidemiology and participates in control measures by reducing the risk of cross-contamination during mechanical ventilation, preventing colonization and aspiration and caring for enteral tubes and central catheters in sick infants.

In the current study, researchers created a modified VAP bundle applicable to PICU and that resulted in a significant decrease in the VAP rate and maintained such a reduction over 12 months. In Lebanon, no studies were conducted to evaluate the rate of VAP in PICU or to decrease its rate. In this study, researchers observed a high rate of VAP before implementation of VAP bundle reaching 52% of ventilated patients and a significant reduction of VAP rate after implementing VAP bundle down to 6% of ventilated patients. Researchers also observed reduction in the duration of mechanical ventilation that resulted in decrease of hospital length stay in PICU with potential cost avoidance and this in turn improved the outcome and decreased the pediatric morbidity and mortality related to VAP.

CONCLUSION

Researchers adopted a modified pediatric VAP bundle resulting in a marked reduction of the VAP rate. Thus, such measures are effective and require staff training and a multidisciplinary program. A well-developed and supported program will enhance the success rate of such interventions, especially if coupled with data feedback.

REFERENCES

CDC, 2005. Criteria for defining nosocomial pneumonia. NHSN v.1.0, 01-01-05, Centers for Disease Control and Prevention (CDC), Atlanta, GA., USA.

IHI, 2009. Implement the IHI ventilator bundle. Institute for Healthcare Improvement (IHI), Cambridge, MA., USA.

