An Overview of Urban Transport in Malaysia

Aldukali Salem I. Almselati, Riza Atiq O.K. Rahmat and Othman Jaafar
Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment,
University of Kebangsaan Malaysia (UKM), Malaysia

Abstract: Economic development and prosperity of countries depend on cities. The urbanization and urban
cities gets life from the transportation sector. Malaysian urban transportation has developed in a rapid pace
but still needs to meet certain demands of the growing economy and population. This study aims to focus on
some of those issues like rise in private vehicle ownerships, motorcycle related concerns, traffic congestion,
demand of more public transport, parking, road safety and air pollution. All or some of these factors are
dependent on each other. So, rectifying one by one will alleviate the major concerns of traffic congestion and
other environmental hazards. When each of these factors is addressed the effective contribution can make
successful urban development.

Key words: Urban transportation, roads, car, motorcycle, parking, Malaysia

INTRODUCTION

Urban cities in developing countries have several
factors that creates problem to sustainable transport
system. The population growth, high income and rapid
growth of cities and urbanization has led increase in travel
demand. The service of transport sector has always not
been up to the mark in developing countries. Most
transport facilities fail due to lack of proper planning and
design. Besides, the pedestrians and non-motorized
vehicle users are less considered when planning urban
transport system that creates mixture of traffic in the roads
and further complications. Malaysian economy is
developing so fast that most of the people afford to have
private vehicles and hence the vehicle population has
also boomed. Extremely congested roads with all types of
vehicles and passengers, traveling at different speed are
the present situation of Malaysian roads. This is further
worsened by lack of public transport facilities and parking
space. Air pollution and other environmental hazards are
also yet another concern. This study aims to examine the
current status of Malaysian transport sector.

URBAN TRANSPORTATION AND MALAYSIA

Urban economy and development is well dependent
and influenced by transportation (Hill, 1965). Owing to the
interdependency of various other factors like industries,
livelihood of growing population and the environment
that affects the socio-economic status, cautiously planned and incorporated transport facilities are very
much necessary for the urban world. Malaysian economy is
growing rapidly at the present time. The private
vehicle number is rising in an escalating manner. Like
most of the other British colonized countries, Malaysia
also had its urbanization process started by the
colonialism.

The basic infrastructures for almost everything were
created at this time (Quan, 2001). After the Malaysian
independence in the 1957, the pace of urbanization was
rather tedious. This took a swifter pace after the 1970. The
rapid urbanization and motorization seen in Malaysia at
present is mainly due to the expanding economy since
1987 (Morikawa et al., 2001). There was an increase of
50.7% in the proportion of urban population in Malaysia
from 1991-2000 (Ho, 2008).

As per the global competitiveness index, Malaysia is
under the stage 2 and ranks 21st in the global
competitiveness index and is in the middle stage of
development. The road infrastructure ranks 17th among
the world countries (Porter and Schwab, 2008). From
1986-2005, the 20% of development expenditure was
distributed in transport sector by the Malaysian
government (CPPS, 2008). The capital city of Kuala
Lumpur has the maximum rate and the urban development
and globalization of Kuala Lumpur has been studied
by Bunnell et al. (2002). The urbanization and
motorization was prominent especially in the Klang
Valley (Bunnell et al., 2002). The most important
feature about the urban development in Malaysia is the
urban population itself (Fig. 1). The highway
infrastructure is also outstanding. It contains federal
roads, state roads and roads (Bughrara, 2008). There are
also Light Rail Transit (LRT), commuters and
monorails to serve transport needs for the moving
population (Schwartz, 2003). However, traffic congestion,
traffic accidents, limited parking space, environmental pollution all remains concern. In the study of Morikawa et al. (2001), they have stated that population aged 45 and above mostly prefer car or public paratransit transportation rather than bus service.

URBAN POPULATION IN MALAYSIA

Urban population growth determines the progress of transport sector in the concerned region (East Asia and Pacific Region, 2006). The bigger the city or its growth, thus is the growth of transport infrastructure. Moreover, the income growth makes people prone to travel much more (Bhat, 1998).

In the developing nations, employment is more concentrated on cities and towns. Both in developed and developing countries, traffic congestion is a major problem in many urban regions (Dissanayake and Morikawa, 2002). Traffic congestion occurs when the road supply does not meet the demand. It is a barrier for the free movement and business in the urban regions.

The population in Malaysia has a steady increase as observed from Fig. 2 and 3. The urban population of Malaysia is about 49.9% as per the World Bank statistics by 2008. About 78% of the urban population has improved sanitation facilities and 132 persons per 1000 people have access to car (World Bank, 2008). According to National Physical Plan Malaysia, in 2020, the urban population percentage will reach to 68.2% that is about 18.8 million people. But as evident from Fig. 2, by 2010 itself, the population crossed 20 million. This suggests that the urban population will increase far more than the estimate. Peninsular Malaysia is more urbanized than Sabah and Sarawak, both consisting <50% of urban
population. More than 78% of the urban population have access to basic needs and have well-planned infrastructures including roads (Ho, 2008).

TRANSPORT SYSTEM

The public transport system in Malaysia is very poor and hence, the private transport flourished that about 24% increase was observed in private transport usage between the years 1985-2005 (Lynn and Boyle, 2008). The concerns of pedestrians, bicycle users and bus users are less considered in Malaysia. The available public transport system including buses, trains and cabs are provided by the government. The public transportation facility is modern but lacks service quality. Even in the capital city Kuala Lumpur, the buses arrive late. One of the studies on modeling of transport behavior in Kulala Lumpur suggests the need of efficient public transport system to attract car owners (Nurdden et al., 2007a).

Nothing different is not the case with trains (Zakaria et al., 2010). The rail public transport system introduced in 1980s could not reduce the popularity of private vehicles. Among most of the Asian countries, it is Malaysia that has low rate of public transport usage. The increase in car ownership has created the road network insufficient at the present scenario.

Constructing roads to meet the demand is not so easy especially in Kuala Lumpur (Morikawa et al., 2001). Besides the factors like travel time and travel cost, distance from home to public transport and distance from home to work are the contributing factors that influence the modal shift from car to public transport in Malaysia (Nurdden et al., 2007b).

Most people prefer cars because of the degree of freedom, accessibility, passion for car and driving, comfort or at times, negative perception on public transport (Steg, 2005; Beirao and Cabral, 2007). Furthermore, use of public transport may put them in between traffic and thus waste their time (Beirao and Cabral, 2007). We found in two different case studies on choice of modal shift conducted in Malaysia that travel time and travel costs are the characteristics that favor car ownership (Kamba et al., 2007; Nurdden et al., 2008). Urban cities like Kuala Lumpur, Penang, Johor Bahru, Kuching and Kota have an increased car population rate. More than 35% of the nation's oil consumption is by transportation sector (Kari and Raisiah, 2008). As far the nations own automotive company is concerned, the first automotive company, Proton was started in 1981. The other national car, Perodua was established in 1993. In 1998, the percentage of the national cars sold was 90%. Non-motorized transport has been constrained in cities like Kuala Lumpur (Replogle, 1991). Generally, non-motorized transport means to walk or use bicycles (Ryley, 2006). Normally as the country develops, less will be the non-motorized transport users. In Malaysia, the people are less concerned or unaware of the impacts of motorized transport and hence non-motorized transport is not so, common means for travel.

Just like the car numbers, motorcycles increased in Malaysia and are among first place in the world to have extremely large number of motorcycles in the cities. Motorcycle is also popular in Malaysia (Table 1) and is more prone to fatalities and causalities (Ooi et al., 2005). Motorcycle users are more vulnerable to fatalities and injuries (Beck et al., 2007; Adams and Hillman, 2001). When the country develops, the number of motorcycles gradually reduces. However in Malaysia, motorcycles is not only a mode of transportation but are used more for leisure activities (Alt and Munsor, 2006). The motorcycles in Malaysia are under 250 cc and are very expensive (Vien et al., 2006). In Malaysia, the motorcycles are allowed in highways whereas in some other countries, it is not so. However, safety measures like compulsory wearing of helmet and exclusive motorcycle lane are prevalent in Malaysia (Hsu et al., 2003). More than half of total traffic fatalities are death related to motorcycle accidents (Kulanthayan et al., 2000; Rahman et al., 2007). A study conducted in January 2005 alone revealed that 68.8% of the road traffic accidents involved motorcycle riders (Moe, 2008). Motorcycle users tend to violate traffic rules like riding along wrong side, not caring for the traffic signals, not wearing helmets, etc. (Rahman et al., 2007).

Table 1: Increase in Motorcycle registration from 2005-2009

<table>
<thead>
<tr>
<th>Years</th>
<th>Motorcycles registered</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>422255</td>
</tr>
<tr>
<td>2006</td>
<td>448751</td>
</tr>
<tr>
<td>2007</td>
<td>485998</td>
</tr>
<tr>
<td>2008</td>
<td>543122</td>
</tr>
<tr>
<td>2009</td>
<td>441545</td>
</tr>
</tbody>
</table>

ROAD AND RAIL SYSTEMS

The country has >80% paved roads. However the neighboring country, Singapore has 100% paved roads (World Bank, 2008). Among the Asian cities, only the Klang Valley has high level of expressway length per person (68 m/1000 people) having spatial density those in North American cities and is as good as those in some of the European cities (Barter et al., 2003).

The Malaysian Highway Authority (MHA) otherwise called as Lembaga Lebuhraya Malaysia (LLM) is a government agency established in 1980 under the Laws of Malaysia Act 231. Initially, this was setup to build the
Table 2: Various highways in Malaysia and related details

<table>
<thead>
<tr>
<th>Highway</th>
<th>Length (km)</th>
<th>Date built</th>
<th>Concession</th>
</tr>
</thead>
<tbody>
<tr>
<td>North South expressway (E1 and E2)</td>
<td>825.00</td>
<td>15-May-1986</td>
<td>North South Expressway Project Limited</td>
</tr>
<tr>
<td>Seremban-Port Dickson (E29)</td>
<td>22.70</td>
<td>06-Aug-1993</td>
<td>Plus Expressways Berhad</td>
</tr>
<tr>
<td>The Malaysian Highway Route-Singapore (E3)</td>
<td>4.70</td>
<td>31-Aug-1994</td>
<td>Linkedua (M) Sdn. Bhd. (LINKEDUA) (Lkeduua)</td>
</tr>
<tr>
<td>Lebuhraya Shah Alam (E5)</td>
<td>34.50</td>
<td>31-Jan-1993</td>
<td>Konsortium Expressway Shah Alam Selangor Sdn. Bhd. (KESAS SDN BHD)</td>
</tr>
<tr>
<td>Kajang SILK Highway (E18)</td>
<td>37.00</td>
<td>20-Dec-1995</td>
<td>Ring-Kajang Highway System Sdn. Bhd. (SILK) Bhd. (SILK)</td>
</tr>
<tr>
<td>Lebuhraya Butterworth-Kulim (E15)</td>
<td>17.00</td>
<td>01-Dec-1994</td>
<td>Konsortium Lebuhraya Butterworth-Kulim Sdn Bhd. (KBK SBN BHD)</td>
</tr>
<tr>
<td>Lebuhraya Damansara-Puchong (E11)</td>
<td>40.00</td>
<td>26-Apr-1996</td>
<td>Transkota Circle Holdings. (LITRAK) (LITRAK)</td>
</tr>
<tr>
<td>New Pantaian Expressway (E10)</td>
<td>19.60</td>
<td>01-Jan-1999</td>
<td>New Pantaian Expressway Sdn Bhd.</td>
</tr>
<tr>
<td>Senai-Desaru Expressway (E20)</td>
<td>77.00</td>
<td>18-Jul-2005</td>
<td>Senai-Desaru Expressway Berhad</td>
</tr>
<tr>
<td>KL-Tutup (Karawang) Expressway (E20)</td>
<td>26.00</td>
<td>06-Dec-2004</td>
<td>Maju Expressway (MEX) Sdn Bhd.</td>
</tr>
<tr>
<td>SMART Tunnel (E38)</td>
<td>3.00</td>
<td>02-Jun-2004</td>
<td>Stormwater Management Companies and Tunnel Sdn Bhd. Bhd.</td>
</tr>
<tr>
<td>North South Expressway (Open)</td>
<td>500.00</td>
<td>15-Jun-2001</td>
<td>North South Expressway Bhd Project. (PLUS) (PLUS)</td>
</tr>
<tr>
<td>East Coast Expressway (Phase 1) (E8)</td>
<td>169.00</td>
<td>30-Aug-2000</td>
<td>MTD Prima Sdn. Bhd.</td>
</tr>
</tbody>
</table>

North-South Expressway but now it monitors and implements the design, construction, operation and maintenance of highways and expressways in Malaysia (LLM, 2010; Wikipedia, 2010). Table 2 shows the highways in Malaysia. At present, there are three highways under construction: East Coast Expressway (phase 2), 79 km; Johor Bahru Eastern Dispersal Link (EDL), 8.1 km and Linking Project Kiarara Interchange North of the Shah Alam Expressway to Old Klang Road, 0.50 km.

The history of rail based transit system began in 1995 in Kuala Lumpur with the introduction of Keretapi Tanah Melayu Berhad’s (KTM3) Komuter. This serves Rawang in the north, Seremban in the south, Sentul in the east and Port Klang in the west (Bachok et al., 2004). Star LRT and Putra LRT also started in the 1990s which are operated by private sector (Bunnell et al., 2002). The Putra LRT system is propelled by a linear induction motor and is automated driving with no driver. It is linked with other transport systems and is facilitated with bus stops and interchanges. In addition to these the Kuala Lumpur has monorail system of 8.6 km built over an elevated track (Bunnell et al., 2002).

PARKING

The number of newly registered vehicles has increased immensely in Malaysia (Table 3). In 2009, alone around 536905 vehicles were registered in Malaysia of which 486342 were passenger cars. Within June 2010 itself, the total number of vehicle registration figured 301077. From 2005, the number of new cars began to rise at kept almost a steady pace until 2009. This will certainly continue in the following years. Parking is a basic need for transportation. It is a common problem in almost all cities in the world. As the number of vehicles increase, the need for parking facilities too proportionately increases. Especially in a country like Malaysia, the space is very limited in shopping malls (Ahmed et al., 2007). Parking is really a headache to the parking patrons with cost and frustration (Idris et al., 2009). Parking management and policies are very much important to avoid traffic congestion, traffic accidents, pollution and unwanted fuel use. Increased car ownership, changes in traffic arrangements and densification of land creates a diminished supply of parking facility (Prabwono and Idris, 2008).
It is the building and shop owners who have parking as their chief concern especially during peak shopping periods and weekends (Prabu wono and Idris, 2008). The customers dislike moving in search of parking space and trekking from one mall to another (Ahmed et al., 2007). In 2005, Malaysian Highway Authority, Malaysian Public Works Department and Ministry of Transport in Malaysia together set up a traffic management system called as Integrated Transport Information System (ITIS). This system was set up to monitor traffic, accident, construction and other situations that occur on the roads and highways in Kuala Lumpur and Klang Valley. This system consists of 2 main components as Advance Traffic Management System (ATMS) and Advance Travellers Information System (ATIS). All of these use technology to provide better transport services (Wikipedia, 2010).

There are also systems or technologies that could deliver information about availability and location of parking space. The use of Intelligent Parking Systems (IPS) can provide better information on parking availability. It also reduces parking time and frustration due to congestion (Teodorovic and Lucic, 2006). In addition, it can also congestion, illegal parking and air pollution (Vianna et al., 2004; Barth and Todd, 2002).

Some of the problems that parking customers face is the lack of knowledge of parking space location, operating hours and cost of parking and most prominently, the availability of parking upon their arrival (Andre, 1991). The parking of a car correlates to lot of other factors like user behavior, space utilization, design of parking zone, safety and security etc. (Litman, 2006). The common type of parking system seen in Malaysia is shared-parking turn-time system (Iman and Hamid, 2006). This type of parking creates less supply when compared to demand. However, they have proved in their study that there are zones where additional parking space could be provided and meet the demand. The smart parking system was initially started in Europe, United States, United Kingdom and Japan (Chinrunrueng et al., 2007). This type of parking system is ideal for both parking operators and patrons in addition to environmental conservation (Chinrunrueng et al., 2007). This helps the parking operators to plan for the future policies and developments with the gathered parking information. This prevents the excess travel by vehicles and thus less air contamination. The patrons on the other hand are benefited by the safer, efficient, minimal time parking facility in addition to avoiding traffic congestion and illegal parking. They are able to point out the vacant parking lots (Chinrunrueng et al., 2007).

Touch'n Go cards in Malaysia are used for parking payments and payment for bus and trains. The Touch'n Go cards were initially intended to be used in toll booths in Malaysian Highways (Ramasamy et al., 2006). Touch'n Go was launched in 1997 at Metramac Highway and PLUS Expressways. It is a pre-paid e-payment card and has the credit that is the only Electronic Toll Collection (ETC) operator in Malaysian highways (Touchngo, 2010). The service provider of Touch'n Go, Touch'n Go Sdn. Bhd also provides a device called Smart TAG which is an on-board unit that allows the Touch'n Go card user to pay toll with drive-through convenience. This device enables the detection of the installed vehicle within a span of 40 milli sec and 4 times speeder than cash lane (Touchngo, 2010).

ROAD SAFETY

Road safety is a major issue in urban transportation throughout the world (Soderlund and Zwi, 1995). The road traffic injury is labeled as the 9th leading cause of disability in the world (Langley and Brenner, 2004). Owing to the rapid motorization in urbanization, the rate of road fatalities is rising at a faster pace. The working population and children are the majority of the victims of road traffic collisions (Nantulya and Reich, 2002). The growth in urban population, industrialization, motorization, economic development all contributes to the road accident rate in cities. As far as Malaysia is concerned, all these factors have increased over time since independence. The Malaysian government has also set up Malaysian Institute of Road Safety (MIROS) in the year 2007 to carry out research and development on road safety. They design the road safety standards, audits and database for safe vehicles etc. (CPPS, 2008).

In Malaysia, there was an increase in road fatalities over time. The fatal accident crossing 6,000 numbers in 2009 which was <5,500 until 2002 (Table 4). Even though, there is a decreasing trend in the road fatalities over the 7 years, the reasons for the existing fatalities...
are to be addressed (Mustafa, 2005). Among all road traffic fatalities, it is the motorcycle crashes that are more fatal above all others. In the year 2000, there was a total of 79,816 crashes involving motorcycles which is almost 3 times the number of crashes occurred in 1990 and 3,000 individuals lost their lives in the crashes (CPGS, 2008). In 2002, the percentage of death due to motorcycle was 58.21% but by 2009, it has reached about 60.3% (Table 5). The second largest cause of traffic fatalities is cars that accounts to about 20.83% in 2009.

The least numbers are shown by bus which may be attributed to the low rate of bus service in the country. Many motorcyclists do not follow traffic signals and are red light runners (Porter and England, 2000) and about 6% of motorcycle accidents in Malaysia has occurred at traffic signal site (Law et al., 2003). Most of the motorcycle accidents are found to be with other vehicles (Yen et al., 1999). This is similar to the findings of Whitaker (1980). The traffic density is very high that it is also a contributor of road traffic accidents.

The year wise account for the traffic injuries for every 10,000 vehicle and 100,000 population can be shown in Table 6. Other factor for accidents is festive seasons which make the road filled with vehicles and 5% of road fatalities occurred at festive seasons (Mustafa, 2005). There have been actions from government to reduce the incidence of accident. As part of this, RM 200 million was allocated in 9th Malaysia Plan for improvement of roads to reduce the accident rate at 5 dangerous spots (The Economic Planning Unit, 2006).

Table 4: Road fatality statistics of Malaysia (type of injury)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Years</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident injury type</td>
<td></td>
</tr>
<tr>
<td>Fatal accident</td>
<td></td>
<td>5,440</td>
<td>5,230</td>
<td>5,378</td>
<td>5,634</td>
<td>5,674</td>
<td>5,604</td>
<td>5,711</td>
<td>5,672</td>
<td>5,952</td>
<td>6,218</td>
</tr>
<tr>
<td>Serious injury</td>
<td></td>
<td>8,067</td>
<td>6,942</td>
<td>6,696</td>
<td>7,163</td>
<td>7,444</td>
<td>7,600</td>
<td>7,375</td>
<td>7,384</td>
<td>7,020</td>
<td>6,978</td>
</tr>
<tr>
<td>Minor injury</td>
<td></td>
<td>28,778</td>
<td>30,668</td>
<td>30,259</td>
<td>31,357</td>
<td>33,413</td>
<td>25,928</td>
<td>15,596</td>
<td>13,979</td>
<td>12,893</td>
<td>12,072</td>
</tr>
<tr>
<td>Total accident injury</td>
<td></td>
<td>42,285</td>
<td>42,856</td>
<td>42,333</td>
<td>44,154</td>
<td>46,531</td>
<td>39,132</td>
<td>28,682</td>
<td>27,055</td>
<td>25,865</td>
<td>25,268</td>
</tr>
<tr>
<td>Total accident without injury</td>
<td></td>
<td>208,144</td>
<td>222,319</td>
<td>237,578</td>
<td>254,499</td>
<td>280,288</td>
<td>289,136</td>
<td>312,550</td>
<td>336,284</td>
<td>347,182</td>
<td>371,926</td>
</tr>
<tr>
<td>Total accident</td>
<td></td>
<td>250,429</td>
<td>265,175</td>
<td>279,711</td>
<td>298,653</td>
<td>326,814</td>
<td>328,268</td>
<td>341,232</td>
<td>363,319</td>
<td>375,047</td>
<td>397,194</td>
</tr>
</tbody>
</table>

Injury type

Fatal											
	6,035	5,854	5,891	6,286	6,228	6,188	6,287	6,282	6,527	6,745	
Serious injury	9,700	8,689	8,425	9,010	9,229	9,397	9,254	9,273	8,866	8,849	
Minor injury	34,375	35,974	35,236	37,415	38,631	31,429	19,884	18,444	16,901	15,823	
Total injury	50,200	50,517	49,552	52,741	54,088	47,014	35,425	33,999	32,294	31,417	

Table 5: Fatality report: mode of vehicle

<table>
<thead>
<tr>
<th>Road user</th>
<th>2002 (%)</th>
<th>2008 (%)</th>
<th>2009 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorcycle</td>
<td>58.21</td>
<td>59.72</td>
<td>60.30</td>
</tr>
<tr>
<td>Car</td>
<td>17.87</td>
<td>20.45</td>
<td>20.83</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>11.03</td>
<td>9.16</td>
<td>8.73</td>
</tr>
<tr>
<td>Bicycle</td>
<td>4.43</td>
<td>3.11</td>
<td>3.32</td>
</tr>
<tr>
<td>Van</td>
<td>2.65</td>
<td>1.47</td>
<td>1.35</td>
</tr>
<tr>
<td>Bus</td>
<td>0.76</td>
<td>0.75</td>
<td>0.46</td>
</tr>
<tr>
<td>Lorry</td>
<td>1.26</td>
<td>1.62</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Table 6: Road fatality statistics of Malaysia in relation vehicle and population

<table>
<thead>
<tr>
<th>Years</th>
<th>Every 10,000 vehicle</th>
<th>Every 100,000 population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>4.88</td>
<td>25.3</td>
</tr>
<tr>
<td>2003</td>
<td>4.90</td>
<td>25.1</td>
</tr>
<tr>
<td>2004</td>
<td>4.15</td>
<td>24.3</td>
</tr>
<tr>
<td>2005</td>
<td>4.21</td>
<td>23.7</td>
</tr>
<tr>
<td>2006</td>
<td>3.58</td>
<td>23.6</td>
</tr>
<tr>
<td>2007</td>
<td>3.74</td>
<td>23.1</td>
</tr>
<tr>
<td>2008</td>
<td>3.70</td>
<td>23.5</td>
</tr>
<tr>
<td>2009</td>
<td>3.55</td>
<td>23.8</td>
</tr>
</tbody>
</table>

MIRSR (2010)

URBAN AIR POLLUTION

Urban air pollution has both short term and long term ill effects on human health and increases mortality rate (Beelen et al., 2008; Brunekreef and Holgate, 2002). Motorcycle are larger contributors to air pollution in Malaysia. The hydrocarbon, lead and nitrogen oxide etc., causes severe health problems. Diseases like asthma, chronic lung diseases and neurological defects etc., occurs due to this air pollution (Kampa and Castanas, 2008). The brisk increase of CO₂ emission from the large number of vehicles on road is real concern for policy makers and the scientific community is much worried on the resultant global warming. About 1% increase in the population increases 1.42% of CO₂ emissions on average (Shi, 2003). Reducing the green house gases is a challenging task for a developing country like Malaysia.

The rise in income level and private vehicles creates more CO₂ emissions. In the year 2000 itself, the per capita CO₂ emission of Malaysia is 5.4 metric ton which is more than the global average (3.9 metric ton per capita) and Asian average (2.2 metric ton per capita) (World Resource Institute, 2007). The data from World Resource Institute (Table 7) shows that the CO₂ emission is increasing in Malaysia. The CO₂ emission in Malaysia can be reduced by reducing the motor vehicle numbers, reducing the travel distance by motor vehicles making proper land use planning etc. (Ho and Fong, 2007).
CONCLUSION

Even though, congestion cannot be eradicated completely, transport policy makers should implement strategies to enable cost effective management of congestion without giving much burden on urban travelers. Especially in the festive seasons and holidays, special services should be provided to alleviate traffic congestion; for example, providing predictable travel times.

They should also consider proper land use pattern together with sufficient public transport facilities accessible to more people and locations. Parking management can also support the traffic congestion. Implementing smart technologies could diminish the travel time and cost.

For example, we designed a smart traffic controller system and experimented it for a year in busiest junctions in Malaysia which had a positive outcome of reducing the total vehicle queuing time up to 30% than the other traffic controller systems (Purnomo et al., 2009).

Public transport enables mobility of bulk of people than individuals using private vehicles like car. Improving public transportation means is a fundamental traffic management strategy which Malaysia needs to follow from other developing countries.

Actions should be taken to promote the shift of private transportation to public transportation. The current situation of public transport can be addressed by improving accessibility, ease and comfort of traveling. In addition, it should enhance reliability, safety and security. Promoting the public transportation can reduce the oil and gas use by transportation sector. Public transportation factices when improved can automatically reduce the car ownerships at least to a small extend. Deliberate and strict policies should be brought into reduce the car ownership which otherwise will make the car ownership a great concern that will be impossible to be addressed in the future.

Existing infrastructure should be modified or new infrastructures should be constructed taking into consideration the motorcycle users which are the maximum travelers and the pedestrians. Growing population of vehicles in roads causes serious consequences of road fatalities.

Especially in Malaysia, the large population of motorcycle is the sole contributor of severe road fatalities and has always been on top for several years. The heavy traffic mixture with poor road management and infrastructures should be carefully planned and addressed. Road safety issues must be addressed by implementing better policies like enforcement of child restraint seats and seat belts for all passengers. Malaysian people should be made aware of air pollution and its hazards to reduce air pollution. The large number of vehicle, particularly motorcycles, traffic congestion and lack of parking space adds to the air pollution.

A shift towards public transportation can reduce the emission of CO₂. Energy efficient technologies should be introduced and adopted by automobile industry as major energy consumption of Malaysia is done by the transport sector.

A well organized and planned strategy can dwindle the travel distance and congestion in addition to less fuel consumption.

Finally, there is need to organize and plan various factors mentioned above involved in development and improvement of urban transportation sector in Malaysia. It is crucial for Malaysia to resolve all the mentioned problems and make transportation in Malaysian cities better.

REFERENCES

MIRSR, 2010. Fatalities by Mode of Transport. Malaysian Institute of Road Safety Research, Malaysian

Intelligent transportation systems and parking
management: Implementation potential in a Brazilian
Modelling motorcycle ownership in Malaysia: gas
study of pulau pinang. http://eprints.usm.my/10482/1/
Modelling_Motorcycle_Ownership_In_Malaysia.pdf.
NTIS, Springfield, VA.
Wikipedia, 2010. Integrated Transport Information
System. Wikimedia Foundation, Inc., USA.
World Bank, 2008. World Development Indicators. The
World Bank, Washington, DC USA.
World Resource Institute, 2007. Air pollution: Carbon
searchable.db/index.php?theme=3&variable_ID=814&action=select_countries.
Yen, P.T., R.S.Z.R. Umai, A.A. Aziz, H. Singh and
S.A. Wahid et al., 1999. Fatal injuries in Malaysian
Zakaria, Z., Z.H. Hussin, M.F.A. Batau and Z. Zakaria,
2010. Service quality of Malaysian public transports:
A case study in Malaysia. Cross-Cultural Commun.,