Effects of Citric Acid, Antibiotic Growth Promoter and Probiotics on Growth Performance of Broiler

M.A. Asgar, M.S.I. Khan, M.R. Haque, A.S.M.G. Kibria and M.R. Begum

1Department of Physiology, Biochemistry and Pharmacology, Faculty of Animal Science and Veterinary Medicine, PSTU, Duki, Patuakhali, Bangladesh
2Department of Food Microbiology, 3Department of Biochemistry and Food Analysis, Faculty of Nutrition and Food Science, PSTU, Duki, Patuakhali, Bangladesh
4Department of Anatomy and Histology, 5Department of Agricultural Economics and Social Science, Faculty of Veterinary Science, CVASU, Chittagong, Bangladesh

Abstract: The experiment was conducted in Chittagong for 35 days long period to find out the performance of broilers fed with different feed additives by using 240 days old COBB-500 broiler chicks. The experimental chicks were reared with proper management including brooding, feeding, watering, housing and maintaining bio-security and data regarding performance were recorded weekly. The cumulative feed intake was the highest for citric acid group (3028.0±1.5 g/bird) which varied significantly (p<0.05) among control (2940.50±5.1 g/bird), antibiotic (3004.75±2.9 g/bird) and probiotics group (3015.50±4.8 g/bird) for whole experimental period. Significantly (p<0.05) highest values were found with citric acid in live weight (1791.0±2.1 g/bird) and weight gain (1740.50±3.1 g/bird), followed by (1723.75±3.0 g/bird) and (1673.50±4.1 g/bird) in probiotics, respectively. The best Feed Conversion Ratio (FCR) was found in citric acid group (1.74±0.0) followed by probiotics (1.80±0.0), antibiotic (1.82±0.0) and control group (1.90±0.0). It may be concluded from the experiment that citric acid can be used as a better alternative growth promoter to antibiotics in poultry production.

Key words: Broilers, performance, antibiotic, probiotic, citric acid

INTRODUCTION

In Bangladesh, an agro-based, densely populated developing country (SBPP, 2008) 22.9% employment is provided by agriculture, forestry and fisheries. In GDP, agricultural contribution is close to 19.61% and livestock sub-sector 3.1% (BBS, 2006). Poultry sector, especially commercial poultry farming has been developing intensively every part and corner in the country in recent times. The development of the industry is associated with several areas such as nutrition, genetics, management to maximize the efficiency of growth performance and meat yield. Several constraints like disease, poor husbandry, low productivity, storage of feed affect the optimum performance of this industry. Enhanced bio-security of poultry farm (Tablan & et al., 2002), genetic selection of poultry resistant to diseases (Gross et al., 2002) and vaccination against pathogenic microbes (Williams, 2002) have successfully protected poultry production from disease loss. Recently modern poultry scientists have been suggesting several feed supplements and feed additives such as antibiotic growth promoter, probiotics, prebiotics, various organic acids (citric acid, acetic acid and ascorbic acid) and so on to minimize these constraints.

Growth promoters are being used extensively in animal feed and water all over the world, especially in poultry industries to improve performance for therapeutic and prophylactic purpose by stabilizing intestinal microbial flora and to prevent some specific intestinal pathogens (Waldroup et al., 1995). There are several antibiotics which are allowed to be used in poultry production (Jones and Ricke, 2003) as growth promoters. Beneficial effects of antibiotic growth promoter on broiler performance were reported by several researchers (Aarestrup et al., 2000; Esteve-Gracia et al., 1997; JETACAR, 1999).

In poultry, growth promoters such as avilamycin, flavophospholipol, virginiamycin and avoparcin control Clostridium perfringens infection in addition to
improving feed conversion efficiency (JETACAR, 1999). Avilamycin is also used in broiler for higher improvement of performance and feed efficiency. However, using antibiotics to establish a beneficial condition in GIT has some disadvantage as well. The use of antibiotic growth promoters becomes a health hazard problem (antibiotic resistance, allergy, toxicity, etc.). Linton (1977) stated that human exposure to animal products containing significant level of antibiotic residues may produce immunological response in susceptible individuals and cause disorder of intestinal flora. Chew (2009) also mentioned toxicity of nitrofurans and chloramphenicol. Recent evidences from scientists around the world show that the link between the use of antibiotic growth promoters in food animals and antimicrobial resistance is increasing (Van de Bogaard and Stobberingh, 2000; Caprioli et al., 2000).

Moreover, this poultry industry has focused on addressing public health concern, environmental well being as well as food safety. Considering the above mentioned facts, the European Union banned the feeding of all antibiotics and related drugs to livestock for growth promotion purposes on January 1, 2006 (UCS, 2009).

Hence, poultry producers are trying to find out better alternate to antibiotic growth promoters for their well being. Several ways have been suggested as strategies to limit the antibiotic usage, notably, use of prebiotics, probiotics, organic acids, etc. By consequence, probiotics and organic acids became other alternatives of antibiotic in poultry production. Kim et al. (1988) observed that supplementation of a commercial probiotic (Lactobacillus sporogenes) increased the weight gain of chicken. Enkogan (1999) stated that the probiotics treated groups were higher in live weight gains, feed consumption and feed efficiency. Probiotic (Fuller, 1989) with defined bacteria and prebiotic with ability to aid growth of beneficial bacteria have been reported to enhance poultry growth (Jernigan et al., 1985; Fernandez et al., 2002). Organic acids, enzymes and mycotoxin binding agents also have positive effects on poultry growth (Chaveenach et al., 2004; Raju and Devegowda, 2000). Among these compounds, organic acids are promising alternatives (Hyden, 2000).

Addition of dietary organic acids (citric, acetic and lactic acids) improved the live body weight and body weight gain of broilers as compared to those of un-supplemented diet (Abdel-Fattah et al., 2008). Mairoka et al. (2004) found that the mixture of organic acids namely fumaric, lactic, citric and ascorbic acids improved the broilers performance even in the absence of antibiotics. In addition, lowering the pH by organic acids reduces the pathogenic microbes from GIT and improves nutrient absorption (Boling-Frankenbach et al., 2001).

Organic acids (genex 0.2%) treatments was found to significantly decrease total bacterial count, especially gram negative bacteria in broiler than those fed only basal diet (Gunal et al., 2006).

While probiotics and organic acids are being used as alternatives to antibiotic growth promoters in poultry feed in Bangladesh, their effects on production performance is yet to evaluate extensively. Therefore, the present study was aimed to observe and compare feed intake, live weight, weight gain, feed conversion ratio with different dietary supplementations.

MATERIALS AND METHODS

The experiment was carried out in a trial farm managed on rent basis from July 2009 to October 2009. A total of 240 days old COBB-500 broiler chicks were procured from a reputed hatchery in Chittagong. All chicks were reared in the farm maintaining similar environment and with litter system.

Citic acid (crystal), Sunmax (avilamycin), a product of Elanco animal health, USA and Protexin (a probiotic) manufactured by Probiotic International, Ltd. UK were purchased from a local shop. Each 1 kg Sunmax contained 100 g avilamycin. The probiotic (Protexin) contained 7 species of bacteria, 1 species of mold and 1 species of yeast. To conduct the experiment in a Completely Randomized Design (CRD) the chicks were divided into 4 treatment groups with 60 birds in each group (group A, B, C and D). Again each group (Table 1) was subdivided into 4 subgroups considering four replicates having 15 birds each. Group A was fed with basal diet, group B with 0.001% avilamycin supplemented diet, group C with 0.5% citric acid supplemented diet and group D with probiotic supplemented diet at the rate of 1 g/1 L water.

Experimental diet contained DM 88.46%, CP 22.71%, CF 4.23%, ether extract 2.48%, nitrogen free extract 48.45%, ash 10.59%, calcium 0.98%, total phosphate 0.74% and ME (kcal kg⁻¹) 3278.63. Standard management practice, proper light, temperature (1st week 95°F, 2nd week 90°F, 3rd week 85°F, 4th week 80°F and 5th week 75°F) and ventilation were maintained. Feeds and water were offered ad lib to the experimental chicks. All the experimental chicks were vaccinated against Infectious

<table>
<thead>
<tr>
<th>Table 1: Grouping of experimental chicks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary treatment group</td>
</tr>
<tr>
<td>Replication</td>
</tr>
<tr>
<td>R1</td>
</tr>
<tr>
<td>R2</td>
</tr>
<tr>
<td>R3</td>
</tr>
<tr>
<td>R4</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Bursal Disease (IBD) and New Castle Disease (ND) as per recommendation of manufacturer (Table 2). Strict bio-security program was maintained during whole experimental period. Feed consumption (g/chick), live weight gain (g/bird) and Feed Conversion Ratio (FCR) was calculated at the age of 7, 14, 21, 28 and 35 days. Final body weight gain was also calculated. Data were analyzed by using SPSS (11.5) Statistical Program.

RESULTS AND DISCUSSION

Feed intake: The result for feed intake (Table 3) of different dietary groups varied significantly (p<0.05) till 2nd week of age. Citric acid group consumed significantly higher (p<0.05) amount of feed than all other groups up to 14 days. The cumulative feed intake was significantly (p<0.05) higher in citric acid group (3028.00±1.47 g/bird), probiotic group and antibiotic group compared to control group for 35 days from beginning to end of the experiment. This is in line with finding of Chowdhury et al. (2009), Moghadam et al. (2006) and with Atapattu and Nelligaswatta (2005) who demonstrated significant variation in feed consumption between citric acid and control and insignificant variation between citric acid and avilamycin group. This may be due to the fact that mild doses of citric acid enhances the palatability of feed leading to increase feed intake that is congruent with Rahman and Speer (2005). Citric acid or weak acid has a low tendency to free H+ and so tend to have a strong taste associated with them. But this result disagrees with several researchers. Nezhad et al. (2007) did not find any significant effect of citric acid on feed intake. Soltan (2008) reported feed intake of laying hen was not affected by organic acid added with feed. Yessilbag and Colpan (2006) indicated that dietary organic acid in laying hen did not significantly affect feed intake. But Paul et al. (2007) noticed that use of single organic acid salt (Ammonium formate or calcium propionate) in broiler diet lowered feed intake with control. Antibiotic growth promoter and probiotic had significant effect on feed intake compared to control. This finding is supported by Alwan et al. (1997) who reported that flavomycin significantly increased feed intake at 4 weeks. Erdogan (1999) supported the present finding that the probiotic group had higher feed intake. However, Ashayerizadeh et al. (2009) reported no effect on feed intake by probiotic and antibiotic as well as prebiotics.

Live weight and weight gain: The final live weight was the significantly (p<0.05) highest in broilers having citric acid supplemented diet, intermediate in probiotic and antibiotic supplemented groups and lowest in control group (Table 4). Significant difference in weight gain was also observed among the groups. The highest weight gain was found in citric acid group, followed by probiotic, antibiotic group and lowest in control group. This finding is in agreement with Abdel-Fattah et al. (2008), Nezhad et al. (2007) and Ivanov (2005) who reported significantly (p<0.05) improved live body weight, weight gain of broilers with supplemental citric acid, acid and lactic acid compared to control. This may be due to decreasing pH in gastrointestinal tract with organic acid and growth inhibition of potential pathogen bacteria, e.g., E. coli and Salmonella sp. in the feed and in gastrointestinal tract is of benefit with respect to animal health (Iba and Berchieri, 1995; Berchieri and Barrow, 1996; Thompson and Hinton, 1997). The improved final live weight, weight gain with antibiotic (avilamycin) is consistent with the findings by Onifade (1997) who reported feed additives (antibiotic and dried yeast) enhanced the nutritional value and/or utilization of feeds leading to improved performance. Better live weight of broiler due to citric acid supplementation observed by Moghadam et al. (2006) and Mairaoka et al. (2004) is congruous with current findings. However, this finding is not in the agreement with Atapattu and Nelligaswatta (2005). They did not find any difference of growth performance sequel to citric acid supplementation. Probiotic group had better live weight and weight gain of broilers over control group. These present results are also in harmony with findings by Ham et al. (1999), Kim et al. (1988) and Erdogan (1999). Erdogan (1999) and Chowdhury et al. (2009) found highest live weight and weight gain with citric acid supplementation than all other groups. Report of Gama et al. (2000) and Soltan (2008) revealed that dietary organic acid modify live body weight.
Table 4: Live weight (g/bird) and weight gain (g/bird) of broilers having different dietary treatments

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>Control</th>
<th>Antibiotic</th>
<th>Citric acid</th>
<th>Probiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>50.25±0.85</td>
<td>50.75±0.63</td>
<td>50.59±1.19</td>
<td>50.75±1.25</td>
</tr>
<tr>
<td>1st</td>
<td>120.50±1.29</td>
<td>138.00±2.58</td>
<td>161.05±1.32</td>
<td>151.50±1.32</td>
</tr>
<tr>
<td>2nd</td>
<td>421.25±11.1</td>
<td>426.50±17.1</td>
<td>455.25±9.3</td>
<td>438.50±23.5</td>
</tr>
<tr>
<td>3rd</td>
<td>774.01±1.29</td>
<td>785.25±2.12</td>
<td>813.25±2.06</td>
<td>797.50±1.17</td>
</tr>
<tr>
<td>4th</td>
<td>1130.25±2.35</td>
<td>1155.75±1.50</td>
<td>1202.25±1.75</td>
<td>1175.75±2.65</td>
</tr>
<tr>
<td>5th</td>
<td>1594.25±5.14</td>
<td>1698.75±1.75</td>
<td>1791.00±2.08</td>
<td>1723.75±2.95</td>
</tr>
<tr>
<td>Wt. gain (Initial 5th week)</td>
<td>1544.00±5.43</td>
<td>1648.00±2.04</td>
<td>1740.50±3.12</td>
<td>1673.50±1.12</td>
</tr>
</tbody>
</table>

Table 5: FCR and FCQR of broilers having different dietary treatments

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>Control</th>
<th>Antibiotic</th>
<th>Citric acid</th>
<th>Probiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>902.30±11.23</td>
<td>791.45±9.2000</td>
<td>776.39±8.010</td>
<td>775.28±11.040</td>
</tr>
<tr>
<td>3rd</td>
<td>620.26±4.480</td>
<td>616.38±4.8000</td>
<td>604.25±6.260</td>
<td>603.54±1.740</td>
</tr>
<tr>
<td>4th</td>
<td>452.66±2.440</td>
<td>470.64±2.9800</td>
<td>498.73±8.140</td>
<td>488.83±5.160</td>
</tr>
<tr>
<td>5th</td>
<td>418.29±5.510</td>
<td>480.30±1.7200</td>
<td>521.76±2.500</td>
<td>486.57±6.600</td>
</tr>
<tr>
<td>Initial 5th week</td>
<td>525.08±1.740</td>
<td>548.46±2.4300</td>
<td>574.80±2.880</td>
<td>554.97±3.320</td>
</tr>
<tr>
<td>FCR</td>
<td>1.50±0.1100</td>
<td>1.82±0.00152</td>
<td>1.74±0.0000</td>
<td>1.80±0.0100</td>
</tr>
</tbody>
</table>

Means with different superscripts in the same row differ significantly at p<0.05. Mean±SE represents the ±values.

compared to control supporting present findings and Taranakov et al. (1999) reported increased body weight of broilers with probiotic supplementation.

Feed Conversion Ratio (FCR): The feed conversion ratio (feed intake in g/weight gain in g) of broilers having different dietary treatments is shown in Table 5. There was significant (p<0.05) variation in feed conversion efficiency (weight gain in g/food intake in g) and conversion ratio (feed intake in g/weight gain in g) of broilers having different dietary treatments. The highest feed conversion efficiency was observed in citric acid than control, avilamycin and probiotic. This finding is in agreement with Chowdhury et al. (2009), Abdel-Fattah et al. (2008) and Nezhad et al. (2007) who observed profound effect of citric acid on feed conversion efficiency. Ashayerizadeh et al. (2009) reported that the FCR was significantly improved in flavomycin in comparison to control. Rahmati and Speer (2005) found that and natural product had significant effect on FCR. Adding probiotic and symbiotics to the ration has been effective in FCR (Zulki pli et al., 2000; Cavitt, 2004). Soltan (2008) showed significant improvement in FCR on laying hen with dietary organic acid compared to control fed with basal diet. The improvement of feed efficiency has already been demonstrated in broiler and quail chicken by Patten and Waldroup (1988), Denli et al. (2003) and Versteegh and Jongbloed (1999).

REFERENCES

http://www.bbs.gov.bd

