Effects of the Leaf Extract of *Vernonia amygdalina* on the Pharmacokinetics of Dihydroartemisinin in Rat

Eseyin A. Olorunfemi, Igboasoji C. Arnold, Igbo Chinenye, Igboasoji Adaora, Ekarika Johnson and Dooka Barido
Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Uyo, Nigeria
Department of Clinical Pharmacy and Management, Faculty of Pharmaceutical Sciences, University of Port Harcourt, Nigeria

Abstract: Objective: The aim of this study was to evaluate the effect of the leaf of *Vernonia amygdalina* on the pharmacokinetics of dihydroartemisinin in rat. Artemisinin based drugs are the drugs currently used in malaria therapy. *V. amygdalina* is consumed as a vegetable and medicinal herb in Nigeria. Therefore, it is possible for a malaria patient on artemisinin based drug therapy to consume *V. amygdalina*. **Materials and Methods:** Albino rats were divided into five groups, each of which received 2 mg kg⁻¹ of dihydroartemisinin orally. In addition, groups A and B were given 250 and 500 mg kg⁻¹ of the extract (single dose and simultaneously with dihydroartemisinin), respectively. Groups C and D received 250 and 500 mg kg⁻¹ of the extract, respectively once daily for seven days (sub-acute dose) before co-administration with dihydroartemisinin on the seventh day. Group E (control) received only dihydroartemisinin. **Results:** UV absorbance of serum of blood collected from the rats through cardiac puncture at 0, 0.25, 0.50, 0.75, 1.0, 2.0 and 5 h, after drug administration, was measured at 230 nm in a UV spectrophotometer. Both single and sub-acute treatments at the two dose levels reduced the bioavailability (F), absorption constant (Kₐ), peak concentration (Cₘₕ) and increased apparent volume of distribution (Vₖ) of the drug significantly. Single dose treatments of 250 and 500 mg kg⁻¹ decreased the Area Under the Curve (AUC) and elevated elimination constant (Kₑ). **Conclusion:** These results show that the leaf of *V. amygdalina* is capable of affecting the effectiveness of dihydroartemisinin. Therefore, patients on artemisinin-based therapy should consume the leaf of *V. amygdalina* with caution.

Key words: Pharmacokinetics, *V. amygdalina*, dihydroartemisinin, malaria, medicinal herb

INTRODUCTION

Food-drug interactions can lead to changes in some pharmacokinetic parameters of some drugs. These interactions may have clinical implications (Singh, 1999). Diet is one of the factors that can affect the pharmacokinetics of dihydroartemisinin (Ali et al., 2002). *Vernonia amygdalina* is commonly used in traditional medicine. The leaf decoctions are used to treat diabetes, fever, malaria, diarrhea, dysentery, hepatitis and cough, as a laxative and fertility inducer. It is also used as medicine for scabies, headache and stomach-ache and joint pain associated with AIDS, gingivitis and toothache due to its proven antimicrobial activity (Akah and Okafor, 1992; Alabi et al., 2005; De Boer et al., 2005; Iwu, 1993; Fasuyi, 2006; Innocent and Deogracius, 2006). In Ethiopian local medicines the leaves are used against menstruation pain, wound dressing, urinary tract inflammation and other sexually transmitted diseases (Farombi, 2003; Fasuyi, 2006). The bitter sesquiterpene lactones component of *V. amygdalina* extracts may help suppress, delay or kill cancerous cells (Jisaka et al., 1993; Kupchan et al., 1969; Sweeny et al., 2005). It may also provide antioxidant activity (Igile et al., 1994; Erasto et al., 2007) and strengthen the immune system through many cytokines regulation (Sweeny et al., 2005). *Vernonia amygdalina* (Bitter leaf) is used as condiments in human diet or as supplementary feed to livestock (Akah and Okafor, 1992). It has a hepatoprotective property (Fasuyi, 2006). *Vernonia amygdalina* leaf contains protein, fat, carbohydrate, crude fibre, energy and minerals such as calcium, phosphorus, iron and ascorbic acid. Its leaf extract has been found to reduce the rate of gastric emptying in rats. These effects of *V. amygdalina* may be important in influencing the bioavailability of drugs taken immediately before or after a meal containing
this vegetable (Amufuro and Igboechi, 1986; Ayodele, 2000). Igboasoyi et al. (2008) reported that V. amygdalina affected the pharmacokinetics of Chloroquine in rat. Hence, there is need to investigate the effect of Vernonia amygdalina on the pharmacokinetics of Dihydroartemisinin. This study is designed to evaluate the effect of Vernonia amygdalina leaf extracts on certain pharmacokinetic parameters of Dihydroartemisinin in rats. The pharmacokinetic parameters include: Area under the plasma concentration curve (AUC), absorption rate constant (Ka), maximum concentration (Cmax), elimination rate constant (Kel), time of peak plasma concentration (tmax), half life of the drug (t1/2), volume of distribution (Vd), clearance (CI) and bioavailability (F).

MATERIALS AND METHODS

Plant collection and identification: Fresh leaves of Vernonia amygdalina (Compositae) were bought in December 2009 in Akpan Andem market, Uyo, Akwa Ibom State. They were authenticated by Dr. (Mrs.) Margaret Bassey of the department of Botany and Ecological Studies, Faculty of Natural and Applied Sciences, University of Uyo, Nigeria.

Preparation of extract: The fresh leaf of V. amygdalina collected was washed thoroughly under tap to remove traces of sand and set aside to drain off. They were then cut into small pieces, weighed and macerated with 5 L of 96% ethanol for 72 h. The extract obtained was filtered, evaporated and concentrated using a rotary evaporator. The concentrated leaf extract obtained was dried to a constant weight of 48 g in a desiccator with silica gel as the absorbent. The extract was suspended in Tween 80 before being administered.

Administration of dihydroartemisinin and plant extract to animals: A total of one hundred and seventy five albino rats of either sex weighing between 182 and 212 kg were obtained and housed under standard conditions of light and temperature in University of Uyo animal house. They had access to water and feed ad libitum. They were divided into five equal groups (35 rats) and were treated as follows:

- **Group A**: It was given 250 mg kg⁻¹ of the extract and 2 mg kg⁻¹ of the drug simultaneously (single dose administration)
- **Group B**: It was given 500 mg kg⁻¹ of the extract and 2 mg kg⁻¹ of the drug simultaneously (single dose administration)
- **Group C**: It was given 250 mg kg⁻¹ of the extract once daily for seven days followed by the administration of 2 mg kg⁻¹ of the drug (sub-acute dose administration)
- **Group D**: It was given 500 mg kg⁻¹ of the extract once daily for seven days followed by the administration of 2 mg kg⁻¹ of the drug (sub-acute dose administration)
- **Group E (control group)**: It was given 2 mg kg⁻¹ of the drug alone. All administration was done orally

Collection of blood samples: Blood was collected from each rat under chloroform anesthesia by cardiac puncture using 5 mL syringes at 0, 0.25, 0.50, 0.75, 1, 2 and 5 h after administration of Dihydroartemisinin (n = 5 for each time point). The blood samples were allowed to clot centrifuged for 25 min and the serum collected. 0.2 mL of the serum was taken and diluted to 3 mL using simulated intestinal fluid. The absorbance (A) of the serum solution was measured at 230 nm using serum of untreated rats as blank.

Statistical analysis: The significance of the result was calculated using student’s t-test and was considered statistically significant at p<0.05.

RESULTS

The absorption constant (Kₐ) of Dihydroartemisinin (DHA) was reduced significantly by both single and sub acute dose of 250 and 500 mg kg⁻¹ of the plant extract. The reduction in Kₐ is dose dependent. Both the single and sub-acute dose of 500 mg kg⁻¹ reduced Kₐ (1075.7 and 1596.0) twice as much as the 250 mg kg⁻¹ dose (663.8 and 700.5, respectively) (Table 1).

Both single and sub-acute administration of the extract reduced Cmax significantly in a dose dependent manner. 500 mg kg⁻¹ extract reduced Cmax (886 and 10, 643 μg mL⁻¹) better than the dose of 250 mg kg⁻¹ (8525 and 10, 973 μg mL⁻¹), respectively for single and sub-acute administration. The reduction in Cmax by single dose administration of both 250 and 500 mg kg⁻¹ doses (8525 and 5506 μg mL⁻¹) was greater than that by the sub acute administration of the extract (10, 973 and 10,643 μg mL⁻¹, respectively).

The 250 mg kg⁻¹ dose of the extract did not significantly affect the tmax either when administered as a single dose or sub acutely. But 500 mg kg⁻¹ dose significantly increased tmax (0.006985 and 0.00977 h, when administered as a single dose and sub acutely,
The increase was greater in sub acute than single dose administered rats.

Single dose administration of the extract produced a reduction in Area Under the Curve (AUC) at the two dose levels (1392 and 1398, for 250 and 500 mg kg⁻¹, respectively). While sub acute administration of the extract increased AUC in both cases (1441 and 1423, for 250 and 500 mg kg⁻¹, respectively). These changes in AUC were not affected by dose of the extract.

Bioavailability (F value) was reduced by the extract. Both 250 and 500 mg kg⁻¹ dose administration reduced F (0.0240 and 0.2045) more than sub acute administration (0.0297 and 0.0427). While the single dose administration did not show any dose dependent effect, the sub acute administration of the extract gave a dose dependent effect. The reduction in F by 250 mg kg⁻¹ extract (0.2867) was greater than that by 500 mg kg⁻¹ extract (0.0427) (Table 1).

Volume of distribution (Vd) was increased by 250 mg kg⁻¹ of the extract to the same extent when administered as a single dose (0.0290) or sub acutely (0.2867). But at the 500 mg kg⁻¹ dose level, the increase in Vd was greater in the sub acute (0.0505 kg⁻¹) than in the single (0.2867 kg⁻¹) dose administration (Table 1).

Single dose administration of the extract significantly raised the value of Kₘ (Elimination constant) at the two dose levels of 250 and 500 mg kg⁻¹ (8.350 and 6.747 h⁻¹, respectively). The 250 mg kg⁻¹ extract elevated Kₘ higher than 500 mg kg⁻¹. Only 250 mg kg⁻¹ dose of the extract raised Kₘ value significantly when administered sub acutely. The 500 mg kg⁻¹ extract did not. The extracts reduced t₁/₂ (half-life) in a manner opposite to that of Kₘ (Table 1).

The extract at 250 mg kg⁻¹ did not have any significantly effect on CI. But both single and sub acute administration of 500 mg kg⁻¹ extract reduced CI to the same extent (0.1805 and 0.1843, respectively) (Table 1).

Figure 1 graphically depicts the concentration-time curve of each group.

<table>
<thead>
<tr>
<th>Parameters of dichloroartemisinin (2 mg kg⁻¹)</th>
<th>Control</th>
<th>250</th>
<th>500</th>
<th>250</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kₘ (h⁻¹)</td>
<td>1805±23.03</td>
<td>1075.7±153.50**</td>
<td>663.84±1.56**</td>
<td>1596.4±53.19**</td>
<td>700.5±10.69**</td>
</tr>
<tr>
<td>Kₘ (h⁻¹)</td>
<td>4.02±0.001</td>
<td>8.350±0.290</td>
<td>6.747±0.245**</td>
<td>7.097±0.383**</td>
<td>3.460±0.189</td>
</tr>
<tr>
<td>AUC (µg h mL⁻¹)</td>
<td>1401±1.00</td>
<td>1392±0.125**</td>
<td>1398±1.188</td>
<td>1441±3.185*</td>
<td>1423±2.500**</td>
</tr>
<tr>
<td>Tₘ (h)</td>
<td>0.171±0.006</td>
<td>0.083±0.000</td>
<td>0.102±0.001**</td>
<td>0.098±0.001**</td>
<td>0.201±0.001</td>
</tr>
<tr>
<td>Vd (L kg⁻¹)</td>
<td>0.171±0.006</td>
<td>0.029±0.300</td>
<td>0.026±0.000</td>
<td>0.2867±0.002*</td>
<td>0.0505±0.005*</td>
</tr>
<tr>
<td>Bioavailability (F)</td>
<td>0.0535±0.04</td>
<td>0.0246±0.009**</td>
<td>0.2045±0.008**</td>
<td>0.02297±0.002**</td>
<td>0.04270±0.002**</td>
</tr>
<tr>
<td>Clearance, CI (mL h⁻¹)</td>
<td>0.2045±0.002</td>
<td>0.2415±0.002</td>
<td>0.1805±0.001**</td>
<td>0.202±3.339</td>
<td>0.1843±0.008**</td>
</tr>
<tr>
<td>Tₘ (h)</td>
<td>0.00328±0.180</td>
<td>0.00365±0.015</td>
<td>0.00986±0.355**</td>
<td>0.00341±3.92</td>
<td>0.00977±0.002*</td>
</tr>
<tr>
<td>Cₘₘₘ (µg mL⁻¹)</td>
<td>2838±2920</td>
<td>8525±361*</td>
<td>5506±886**</td>
<td>1097±3.504*</td>
<td>1064±3.504**</td>
</tr>
</tbody>
</table>

Mean±SD, n=5, *p<0.05, **p<0.01

Fig. 1: Effect of concentration of dichloroartemisinin w.r.t. time
DISCUSSION

Dihydroartemisinin is rapidly and completely absorbed from the Gastrointestinal Tract (GIT) following oral administration and extensively distributed in the body. In most cases Dihydroartemisinin is detected in plasma after 30 min. The biliary metabolite is the biologically inactive Dihydroartemisinin glucuronide. The other metabolites are products of reductive cleavage and rearrangement of endoperoxide bridge, a process known to generate reactive radical intermediates and abolish antimalarial activity. Peak plasma concentration is 1-2 h and the drug is eliminated from the circulation within 8-10 h (Karbwang et al., 1997; Maggs et al., 1997; Hong et al., 2008).

Interaction between plant extracts and drugs may increase or decrease the pharmacological or toxicological effects of either component (Fugh-Berman, 2000). The hypericum extract of St. John’s wort (Hypericum perforatum) has been shown to cause multiple drug interactions through induction of the cytochrome P450 enzyme CYP3A4 and CYP2C9 resulting in increased metabolism of drugs metabolized by the system, leading to their decreased concentration and a reduced clinical effect. The principal extract thought to be responsible is hyperforin. This plant extract has also been shown to cause drug interactions through the induction of the P-glycoprotein (P-gp) efflux transporter resulting in decreased absorption and increased clearance of the drugs. This leads to a lower clinical concentration and efficacy. Examples of these drugs are Benzodiazepines, immune suppressants such as ciclosporin and other drugs like digoxin, theophylline (Gurley et al., 2008; Linde et al., 2008). Concurrent use of plant extracts with drugs may mimic, magnify or oppose the effect of drugs. This is seen in increased bleeding when warfarin is combined with garlic, decreased concentration of phenytoin when combined with anthrancic containing plants such as serina (Fugh-Berman, 2000).

Solid food, especially those rich in fat and dietary fiber delay the entry of orally administered drug into the duodenum, reducing the rate of absorption and hence, the onset of therapeutic action (Mason, 2002). Reduction in Kₚ by the extract of V. amygdalina may therefore, be as a result of physicochemical reaction such as chelation and adsorption of DHA by the extract of V. amygdalina. The same reasons could also be responsible for the decrease in Cₘₐₚ and increase in tₑₚₜ of DHA by the extracts.

Phytochemicals are known to interact with drug transporters thereby causing impairment or exaggeration of pharmacological activity (Graungerich, 1997; Lin and Lu, 1998; Ioannides, 2003). Some elements, notably Zinc, may induce intestinal proteins which bind drugs and prevent their transfer from the intestine into the body (Schauber, 1984). Reduction in AUC of DHA by single dose administration of the extract might have resulted from the interaction of the drug with components of the extract. It is not known why the sub acute administration of the extract increased AUC of DHA. Elevation of Kₑ of DHA by the plant extract may be a consequence of either increased metabolism or excretion of the drug. Elevation of Vₑ value of DHA by the extract is an indication that DHA is concentrated in some body compartments probably as a result of increased microsomal protein in the body. Low serum drug concentration is indicated by high value of Vₑ.

The bioavailability of chloroquine has been shown to increase when chloroquine was administered together with food; it appears food facilitates chloroquine absorption as the result from the bioavailability studies carried out by Tulipule and Krishnawamy (1982). They suggested that the AUC was significantly higher in postprandial than in the fasting state. Grapefruit juice has been shown to increase the plasma concentration of Chloroquine (Ali et al., 2002). Kava kava beverage extract prepared from the rhizome of kava plant (Piper methysticum Forst) has shown that several kava lactones, the assumed active principles of kava beverages are potent inhibitors of several enzymes of the CYP450 system (CYP1A2, 2C9, 2C11, 2D6, 3A4 and 4A9/11), thus indicating that this beverage has high potential for causing pharmacokinetic drug interactions with other drug metabolized by the CYP450 enzymes (Gurley et al., 2008). Heinsia crinita, Telifaria occidentalis, Lasianthera africana have been reported to affect some pharmacokinetic parameters of Chloroquine (Essen et al., 2007; Eseyin et al., 2010, Olorunfemi et al., 2011). The result of this work is therefore, in agreement with this.

The bitterness of V. amygdalina is caused by sesquiterpenes lactone e.g., vernolin, vernolepin and vernomycdin and steroid glucosides-vernol sides. The effects of the plant on some pharmacokinetic parameters of DHA could be attributable to any of these components. However, further work needs to be done to ascertain this.

REFERENCES

