Pegylated Interferon Versus Standard Interferon and Silymarin in Treatment of Liver Fibrosis Induced by Chronic Carbon Tetrachloride in Rats

Rasha E. Mostafa, Hala F. Zaki, Amany A. Sleem, Omar M. Abdel-Salam, Fatma A. Morsy and Sanaa A. Kenawy

Pharmacology, National Research Centre, Tahrir St., Dokki, Cairo, Egypt
Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Toxicology and Narcotics and Pathology, National Research Centre, Tahrir St., Dokki, Cairo, Egypt

ABSTRACT
The study aimed to investigate the effect of pegylated interferon alpha (Peg IFN α2a), standard interferon alpha (Std IFN α2a) and silymarin in liver fibrosis induced in rats by chronic treatment with carbon tetrachloride (CCl4). Rats were divided into 9 groups (n = 7 per group). Group 1 received olive oil (0.5 ml kg⁻¹, p.o. twice weekly) for 8 weeks followed by saline for 4 weeks (normal control). The remaining 8 groups received CCl4 (0.5 ml kg⁻¹, p.o.) twice weekly for 8 weeks, followed by saline (CCl4 control), Std. IFN α2a (1.5 or 3 MU kg⁻¹, s.c., 3 times per week), Peg IFN α2a (1 or 2 µg kg⁻¹, s.c., once per week), silymarin (100 mg kg⁻¹ day⁻¹, p.o.) alone or combined with either Peg IFN α2a (1 µg kg⁻¹) or Std. IFN α2a (1.5 MU kg⁻¹), respectively for 4 weeks. At the end of the experiment, blood samples were collected and livers were isolated for biochemical and histological assessment of markers related to liver fibrosis. Administration of CCl4 resulted in increases in liver function tests, liver lipid peroxides and hydroxyproline contents coupled with decrease in total protein and liver content of reduced glutathione. Administration of Peg IFN α2a or silymarin alone or combined together attenuated CCl4-induced changes. On the other hand, using Std. IFN was not coupled by significant improvement in CCl4-induced changes, an effect that was reversed by its combination with silymarin. In conclusion, administration of Peg IFN, silymarin or their combination can limit hepatocellular fibrosis caused by chronic CCl4 administration; whereas, the effects of Std. IFN are only evident when combined with silymarin.

Key words: Pegylated interferon alpha, standard interferon alpha, silymarin, carbon tetrachloride, liver fibrosis

INTRODUCTION
Liver fibrosis is the final pathological outcome for the majority of chronic liver insults, which may progress to liver cirrhosis and liver carcinoma if not reversed. CCl4 is one of the most widely used toxins for experimental induction of liver fibrosis in laboratory animals. This model primarily provides insights into the fibrotic process. The relative ease of induction and the reproducibility of the model account for its popularity. There is no standard treatment for liver fibrosis. Although, experimental studies have revealed targets to prevent fibrosis progression in rodents, the efficacy of most treatments was not proven in humans. Interferons (IFNs) are proteins made and released by host cells in response to the presence of pathogens such as viruses, bacteria or tumor cells. Interferon-alpha (IFN-α) is the hallmark of treatment in viral hepatitis. Moreover, it was reported that the antifibrotic effects of IFN-α in rats and patients with hepatitis C virus (HCV) are independent on its antiviral activity, i.e., it reduces the degree of fibrosis even when there is no sufficient antiviral response. In addition, IFN-α decreases the production of Reactive Oxygen Species (ROS) in stimulated hepatocytes and inhibits oxidative stress in patients with HCV infection. Pegylation of standard IFN α-2a (Std. IFNα2a) was performed by F. Hoffmann-La Roche Ltd., in collaboration with Shearwater Corporation, Basel Switzerland. Pegylation optimized the pharmacological activity of the protein such that efficacy is enhanced, adverse effects minimized and patient compliance and quality of life are improved. Silymarin, a natural product prepared from the milk
a radical scavenger and hepatoprotectant. Silymarin also decreases lipid peroxidation and inhibits fibrogenesis in animal models. Although, traditionally reviewed as irreversible, reversibility of liver fibrosis has lately been described. Therefore, the present study was designed to investigate and compare the antifibrotic effects of Std. IFN, pegylated interferon (Peg IFN) or silymarin in treatment of liver fibrosis induced by CCl₄ administration in rats. The study also aimed to see whether combined therapy with silymarin and Std. IFN or Peg IFN would offer any potential advantage over therapy with either of the two drugs alone. The effect of test drugs was evaluated based on biochemical markers associated with liver fibrosis as well as histopathological examination of liver tissues.

MATERIALS AND METHODS

Animals: Sprague-Dawley rats, weighing 130-150 g body weight were used. They were housed under standard laboratory conditions with free access to standard laboratory chow and water. All animal procedures were performed according to approved protocols for the proper care and use of laboratory animals adopted by the Ethics Committee, Faculty of Pharmacy, Cairo University.

Drugs and chemicals: CCl₄ (Egyptian Co. for chemicals and pharmaceuticals (ADWIA), Egypt), Peg IFNα2a (Pegasys®, 180 μg 0.5 mL injection solution; Hoffmann-La Roche Inc., New Jersey, USA), Std. IFN α2a (Roferon-A®, 3 million IU/0.5 mL injection solution; Hoffmann-La Roche Inc., New Jersey, USA) and silymarin (Legalon®, 70 mg sugar-coated tablets; Madaus GmbH, Köln Germany) were used in the present experiments. Drugs were dissolved in saline to obtain the necessary doses. The doses of Peg IFN, Std. IFN and silymarin were chosen from published literature based on their beneficial effects in models of hepatic injury.

Induction of liver fibrosis: Liver fibrosis was induced by CCl₄ dissolved in olive oil (1:1) and given orally in a dose of 0.5 mL kg⁻¹, twice weekly for 8 successive weeks.

Experimental design: After induction of liver fibrosis, rats were randomly allocated in 8 groups (n = 7) and drug administration was started. Rats received saline (CCl₄ control), Std. IFN α2a (1.5 or 3 MIU kg⁻¹, s.c., 3 times per week), Peg IFN α2a (1 or 2 μg kg⁻¹, s.c., once per week), silymarin (100 mg kg⁻¹ day⁻¹, p.o.) alone or combined with either Std. IFN α2a (1.5 MIU kg⁻¹) or Peg IFN α2a (1 μg kg⁻¹), respectively for 4 weeks. Normal control rats were treated with olive oil (0.5 mL kg⁻¹; twice weekly for 8 weeks) followed by saline for the remaining 4 weeks. By the end of the 12th week, blood samples were collected from the retro-orbital vein plexuses under light ether anesthesia and centrifuged at 3000 rpm for serum separation. Rats were sacrificed and livers were isolated. Part of the liver was preserved in 10% formalin for histological examination and the other part homogenized in ice-cold 0.9% w/v saline to prepare 10% homogenates.

Serum samples were analyzed for Alanine Amino Transferase (ALT), Aspartate Amino Transferase (AST) and Alkaline Phosphatase (ALP) activities as well as levels of total bilirubin and total protein. Liver homogenates were used for determination of liver contents of lipid peroxides, measured as malondialdehyde (MDA), Nitric Oxide (NO) metabolites, reduced glutathione (GSH) and hydroxyproline.

Biochemical measurements: ALT and AST activities in serum were measured according to the method of Reitman et al. using commercially available kits (Quimica Clinica Aplicada, Spain).

Colorimetric determination of ALP activity was done according to the method of Jusman and Halim using commercially available kits (Quimica Clinica Aplicada, Spain).

Serum levels of total bilirubin and protein were measured according to the methods described by Walters and Gerade and Cornall et al., respectively using commercially available kits (Biodiagnostic, Egypt). Liver contents of MDA and NO metabolites were measured according to the methods adopted by Ruiz-Larrrea et al. and Miranda et al., respectively. Liver GSH content was measured according to the method by Ellman and modified by Bulaj et al. while that of hydroxyproline was done according to the method of Woessner.

Histological studies: Specimens from the three major lobes of each liver were fixed in 10% buffered formalin. Paraffin sections 5 μ thick were prepared and stained with hematoxylin and eosin (Hx. and E.) for the histological investigations under electron microscope. Photoshop version 7.0.1 was used for photo capturing.

Statistical analysis: All results are expressed as Means±SE. Multiple group comparisons were performed by analysis of variance (ANOVA) followed by Tukey's multiple comparisons post hoc test. p<0.05 was considered statistically significant. Statistical analysis of results was done using GraphPad prism, version 5.00.

RESULTS

Effects of test agents on CCl₄ induced changes in liver function tests: Administration of CCl₄ was associated with marked increase in serum ALT, AST and
ALP activities as well as total bilirubin level by 289, 262, 116 and 290%, respectively as compared to normal control group. Moreover, a marked decrease in serum total protein level by 40% was observed (Fig. 1-5).

Administration of Std. IFN in CCl₄-treated rats did not significantly change CCl₄-induced changes in liver function tests when compared to CCl₄ control rats. Meanwhile; administration of Peg IFN (1 or 2 μg kg⁻¹) in CCl₄-treated rats resulted in 22.7-44.8% decrease in AST activity, 24.7-43.7% decrease in ALT activity, 25.4-32.2% decrease in ALP activity, 20-29.4% decrease in total bilirubin level and 26.3-27.9% increase in total proteins level, respectively when compared with CCl₄ control group (Fig. 1-5).

Administration of silymarin (100 mg kg⁻¹) in CCl₄-treated rats resulted in a decrease in AST, ALT and ALP activities as well as total bilirubin level by 54.6, 51.3, 37.7 and 38.1%, respectively parallel to 29.6% increase in total proteins when compared with the CCl₄ control group (Fig. 1-5).

Moreover, administration of silymarin combined with either Std. IFN (1.5 MIU kg⁻¹) or Peg IFN (1 μg kg⁻¹) resulted in 55-60.2% decrease in AST activity, 54-60.3% decrease in ALT activity, 39.4-47.9% decrease in ALP activity, 41.2-44.4% decrease in total bilirubin and 29.7-32.5% increase in total proteins, respectively when compared with the CCl₄ control group (Fig. 1-5).

Effect of test agents on CCl₄-induced changes in liver contents of hydroxyproline, nitric oxide metabolites, lipid peroxides and reduced glutathione: Administration of CCl₄ was associated with marked increase in liver content of hydroxyproline, NO metabolites and liver lipid peroxides (MDA) by 394, 97 and 241%, respectively as compared to normal control group. Moreover, a marked decrease in liver content of reduced glutathione (GSH) by 72% of the normal level (Fig. 6-9).

Administration of Std. IFN in CCl₄-treated rats at 1.5 or 3 MIU kg⁻¹ did not significantly change CCl₄-induced changes in liver content of hydroxyproline, NO metabolites or GSH when compared to CCl₄ control rats, while Std. IFN 3 MIU kg⁻¹ resulted in 22.3% decrease in liver content of MDA (Fig. 6-9). Meanwhile; administration of Peg IFN (1 or 2 μg kg⁻¹) in CCl₄-treated rats resulted in 18.2-32.2% decrease in liver hydroxyproline content.
18.9-28.2% decrease in liver NO metabolites, 32.3-44.8% decrease in MDA and 40.6-51.7% increase in GSH, respectively when compared with CCl₄ control group (Fig. 6-9).

Administration of silymarin (100 mg kg⁻¹) in CCl₄-treated rats resulted in a decrease in liver content of hydroxyproline, NO metabolites and MDA by 46.6, 36.2 and 54%, respectively parallel to 55.8% increase in GSH when compared with the CCl₄ control group (Fig. 6-9).

Moreover, administration of silymarin combined with either Std. IFN (1.5 MIU kg⁻¹) or Peg IFN (1 µg kg⁻¹) resulted in 47.6-57.1% decrease in liver hydroxyproline content, 38.4-43.6% decrease in NO metabolites, 55.7-59.7% decrease in MDA and 56.3-59.7% increase in GSH, respectively when compared with the CCl₄ control group (Fig. 6-9).

Histological results: The liver of normal control rats revealed the normal characteristic hepatic architecture being composed of plates of hepatocytes radiating from a central vein. These plates are separated from each other by blood sinusoids of nearly equal size (Fig. 10a).

The livers of control CCl₄ group showed vacuolar degeneration, dilated, congested portal vein, dilated bile
duct, congested blood vessel in blood sinusoid and architecture distortion together with the appearance of many pseudolobules, edema, mononuclear cellular infiltration and marked fibrosis (Fig. 10b).

In rats treated with CCl₄ followed by Std. IFN (1.5 MIU kg⁻¹), examination of liver sections revealed no protective effects as compared to control CCl₄ group, since fibrosis was not improved (Fig. 10c), while treatment with CCl₄ together with Std. IFN (3 MIU kg⁻¹) revealed minor improvement in pathological changes in the form of moderate fibrosis and absence of many pseudolobules (Fig. 10d).

Examination of liver sections from rats treated with CCl₄ followed by Peg IFN (1 or 2 µg kg⁻¹) revealed dilated, congested portal vein, dilated bile duct, cellular infiltration and cloudy swelling. Improvement in pathological changes was observed in the form of minimal fibrosis and absence of many pseudolobules (Fig. 10e,f).

Liver sections of rats treated with CCl₄ followed by silymarin (100 mg kg⁻¹) showed minimal fibrosis and signs of degeneration in the form of karyolysis (Fig. 10g).

On the other hand, liver sections of rats treated with CCl₄ followed by silymarin combined with Std. IFN (1.5 MIU kg⁻¹) or Peg IFN (1 µg kg⁻¹) revealed marked
improvement in pathological outcome where fibrosis couldn’t be observed, however, hepatocytes with variable size and signs of degeneration in the form of pyknosis and karyolysis were still seen (Fig. 10h,i).

DISCUSSION

In the present study, treatment of rats with CCl₄ for 8 weeks induced marked fibrosis and architectural distortion. Oral administration of CCl₄ twice weekly for 8 weeks resulted in significant increase in serum AST, ALT, and ALP activities as well as total bilirubin level and a significant decrease in serum total protein level, more over a significant decrease in liver tissue content of GSH and a significant increase in liver contents of MDA, NO metabolites, and hydroxyproline as compared to control group. The observed changes were previously reported in other studies. The increased activities of ALT and AST may be attributed to the damaged structural integrity of the liver. The increased activity of ALP gives an indication of damage in the bile duct. Increased serum total bilirubin is a signal of hepatocellular damage and decreased liver clearance. On the other hand, the liver is responsible for the synthesis of total proteins and their marked decrease in the serum indicates severe liver damage. GSH is an important endogenous antioxidant which can scavenge Reactive Oxygen Species (ROS). Reaction of ROS with lipid membrane will cause lipid peroxidation. MDA is the end product of lipid peroxidation and its concentration in liver tissue will increase markedly in OS and liver fibrosis. The formation of NO increases in liver disease, where the L-arginine-NO pathway is activated. Hydroxyproline is found in few proteins other than collagen and for this reason, its content has been used as an indicator to determine collagen amount and therefore, fibrosis.

The present study provides evidence that in a model of hepatic injury and fibrosis caused by chronic administration of CCl₄ in rats, Std. IFN α2a failed to decrease the elevated serum AST, ALT and ALP activities, total bilirubin level and failed to increase the reduced serum protein level. Std. IFN also failed to decrease the elevated liver MDA, NO metabolites and hydroxyproline contents and failed to increase the decreased liver GSH content. Histopathological investigation of the liver tissues from rats treated with Std. IFN didn’t show any improvement of the pathological outcome. Contradictory results about the antifibrotic efficacy of IFN-α in some liver fibrosis models have been reported. Some studies have shown IFNs as ineffective, others found it effective, while others observed a weak but significant reduction in liver fibrosis. The current results are in good agreement with Tarcin et al., who found no statistically significant recovery or even a change in collagen turnover rate in rats treated with Std. INF α2a and that IFN-alpha has no beneficial effect on experimental fibrosis.

On the other hand, the present study provides evidence that in a model of hepatic injury and fibrosis caused by chronic administration of CCl₄ in rats, Peg IFN α2a decreased leakage of hepatocellular enzymes ALT, AST, and ALP into plasma and lessened the development of hepatic fibrosis necrosis and fibrosis caused by CCl₄. Cellular dysfunction induced by CCl₄ and evidenced by reduced serum protein and elevated serum total bilirubin content were largely prevented by the Peg IFN α2a. Similar findings were observed on treatment with silymarin. These findings indicate that both Peg IFN α2a and silymarin limit hepatocellular injury and exert antifibrotic effect. A benefit from combining either Std. IFN or Peg IFN and silymarin was also observed. The histochemical investigation showed that Peg IFN, silymarin alone or in combination with either Std. IFN or Peg IFN reduced the elevated liver MDA, NO metabolites and hydroxyproline content and elevated the decreased liver GSH content. Histopathological investigation of the liver tissues from rats treated with peg IFN, silymarin alone or in combination with Std. IFN revealed improvement of the
Fig. 10(a-i): A photomicrograph of a section of liver tissue from: (a): Normal rat showing normal structure of liver being composed of plates of cells (hepatocytes) radiating from a central vein (star) (Hx. and E. x 400), (b): Control CCl₄-treated rat showing coagulated necrosis (star), swelling of some hepatocyte (arrow) and karyolysis (line) (Hx. and E. x 400), (c): Rat treated with Std. IFN (1.5 MU kg⁻¹) showing dilated, congested portal vein and cellular infiltration around (star), in addition to minute vacuolar degeneration (white arrow), focal necrosis (line) and congested blood vessel in blood sinusoid (double arrows) (Hx. and E. x 100), (d): Rat treated with Std. IFN (3 MU kg⁻¹) showing massive vacuolar degeneration (arrow), focal necrosis (line) and signs of degeneration in the form of karyolysis (black arrow) and pyknosis (white arrow) (Hx. and E. x 400), (e): Rat treated with Peg IFN (1 µg kg⁻¹) showing dilated, congested portal vein (star), dilated bile duct (2 stars) and cellular infiltration (star). Cloudy swelling (double arrows) could be also noticed (Hx. and E. x 200), (f): Rat treated with Peg IFN (2 µg kg⁻¹) showing necrotic foci (arrow), signs of degeneration in the form of karyolysis (white arrow). Improvement in pathological changes was observed in the form of minimal fibrosis (double arrows) (Hx. and E. x 400), (g): Rat treated with silymarin (100 mg kg⁻¹) showing karyolysis and focal necrosis (arrow head). Minimal fibrosis (arrow) was observed (Hx. and E. x 400), (h): Rat treated with silymarin and Std. IFN (1.5 MU kg⁻¹) showing hepatocytes with variable size, hyperchromasia of some hepatocytes (arrow), karyolysis (line) as well as dilatation and congestion of portal vein (star), Cellular infiltration around the bile duct was observed (double arrows). Fibrosis could not be observed. (Hx. and E. x 400), (i): Rat treated with silymarin and Peg IFN (1 µg kg⁻¹) showing congested blood vessel in dilated blood sinusoid (arrow) and signs of degeneration in the form of pyknosis (red arrow) and karyolysis (white arrow), Fibrosis could not be observed. (Hx. and E. x 200)
pathological picture in the form of moderate to minimal fibrosis, while the pathological picture of liver tissues from rats treated with silymarin in combination with Peg IFN revealed no fibrosis.

Peg IFNs are generally superior to Std. IFNs. Peg IFNs have longer half-lives with more consistent serum levels therefore they require less frequent dosing which accounts for their higher tolerability due to weekly administration in comparison to thrice weekly administration in the case of Std. IFNs. Pegylation optimized the pharmacological activity of the protein such that efficacy is enhanced, adverse effects minimized and patient compliance and quality of life are improved\cite{29}. Results reported by Canbakan et al.\cite{29} were in partial agreement with the results of current study, where the use of Peg IFN α2a (50 μg kg\(^{-1}\); i.p.; once weekly; 4 weeks) improved the OS markers: MDA and GSH but failed to decrease the liver collagen content and thus failed to improve liver fibrosis either histologically or biochemically. Results reported by Tasci et al.\cite{30} are also in partial agreement with the present study where they reported that Peg IFN α2b (1.5 μg kg\(^{-1}\); s.c.; once weekly; 4 weeks) significantly reduced fibrosis scores; decreased liver hydroxyproline content but was not able to decrease the OS biomarkers when compared to control group. Results of the present study are in good agreement with the results of Poynard et al.\cite{31}, who reported that therapy with Peg IFN (1.5 μg kg\(^{-1}\) per week) managed to cause better improvement in fibrosis progression even in patients without sustained virologic response than the Std. IFNα. Moreover, histopathological analysis of liver biopsy specimens showed some improvement in the degree of fibrosis after therapy, irrespective of the initial virologic response. The present study is also in good agreement with Zeuzem et al.\cite{32}, who reported that a regimen of Peg IFN α2a given once weekly is more effective than a regimen of IFN α2a given 3 times weekly in both serum biochemical liver function tests and histological response.

The antioxidant property, the anti-inflammatory activities, membrane stabilizing, immunomodulatory, liver regenerating mechanisms and the antifibrotic actions are considered as most important actions of silymarin\cite{33}. The current results agree with many studies\cite{34,18,5}. Favari and Perez-Alvarez\cite{34} stated that treatment with silymarin (50 mg kg\(^{-1}\)) in CCl\(_4\)-induced hepatotoxicity in rats has led to complete normalization of elevated transaminases. It also reduced liver collagen content by 55%. Abdel-Salam et al.\cite{35} reported that the silymarin (22 mg kg\(^{-1}\)) decreased leakage of hepatocellular enzymes ALT and AST into plasma, decreased serum levels of ALP and lessened the development of liver necrosis and fibrosis caused by CCl\(_4\). Significant decrease in the area of fibrosis was also observed after treatment with silymarin. Cho et al.\cite{36} reported that the elevated serum liver enzymes were significantly attenuated by chronic silymarin treatment. Silymarin also significantly decreased collagen deposition.

CONCLUSION

Hepatocellular injury and hepatic fibrosis evoked by the administration of CCl\(_4\) for 8 weeks in rats was ameliorated by the administration of Peg IFN α2a, silymarin and the co-administration of silymarin with either Std. IFN or Peg IFN. Furthermore, these effects were associated with an improvement in the pathological picture from liver tissues of rats treated with the aforementioned drugs. Peg IFN alone or in combination with silymarin is therefore, likely to be of benefit in reducing the likelihood of malignant transformation in patients with chronic liver disease.

ABBREVIATIONS

Pegylated interferon alpha (Peg IFNα2a), Standard interferon alpha (Std. IFNα2a), Carbon tetrachloride (CCl\(_4\)), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Alkaline phosphatase (ALP), Malondialdehyde (MDA), Nitric oxide (NO), Reduced glutathione (GSH).

REFERENCES

