Monitoring Capacitance Variation of Different Water Liquids Using Cylindrical Cell Probe

1M. Heidari and 2P. Azimi Anaraki
1Department of Physics, Shoushtar branch, Islamic Azad University, Shoushtar, Iran
2Department of Physics, Takestan branch, Islamic Azad University, Takestan, Iran

ABSTRACT
Background: Conductivity measurement has widespread use in industrial applications that involve the detection of contaminants in water and concentration measurements. In this research electrical properties of different liquid mixtures are investigated by using the invasive cylindrical capacitive sensor. Operation of a cylindrical capacitive sensor based on the dielectric reactance capacitance and conductance changes of the gap medium is reported.
Methods: Operation of the capacitance measurement module for such probe is based on the charge/discharge method. The proposed system was used to determine characteristics of different liquid as a result of the capacitance and resistance variations. The air gap capacitance (dry signal) is measured and then by filling the gap with a different liquid mixture the capacitance (wet signal) is monitored for different liquid mixtures. Reported sensor is used for the mixture of ethanol and water, mixture of methanol and water, mixture of petroleum and water and other liquid mixtures were studied. Results: A big difference of about 11700 nF in the measured capacitance values for the mixture of antifreeze and water and mixture of ethanol and water shows a high sensitivity which can be used to recognize different water liquid mixtures. Conclusion: The experimental result are promising for water liquids and verify the successful operation of such a device as a liquid sensor and is a useful method for checking the electrical quality of the water that is required for different applications.

Key words: Sensor, capacitive sensor, electrical properties, water liquids, capacitance

INTRODUCTION
There has been a great deal of interest in the development of precise capacitive sensors in recent years. Different reports on the design, characterization, operation and possible applications of such devices have been given by the author1 and others2,3,4. Capacitive sensors have been used in many industrial applications to control processes and in machine diagnostic tasks. However several problems including stray capacitance, baseline drift, stability and sensitivity have motivated the development of new transducers and measuring systems. To alleviate some of the problems in this field a variety of the capacitive sensor systems have been developed and reported. In this respect, for example, the effects of a guard ring electrode on the operation of a capacitive transducer have been investigated5. Development of a three-dimensional capacitance imaging system for measuring the density of fluidized beds was reported6. In another report design and operation of a capacitive sensor for water content monitoring in a production line was presented7. Concentration measurement of two-component fluids using capacitance sensing techniques is sometimes affected by conductivity variations of the components. Typical examples of this problem occur in measurement of water content of oil-water mixtures in the oil industry and of glass bead concentration in water slurries in the machining industry8. The conductivity problem has been of most concern in the area of dielectric measurement.

On the other hand many researchers have focused on the development of the readout circuits. The goal of such research has been to introduce a readout circuit that can be used for low-noise operation with the cancellation of the operational amplifier 1/f-noise and offset voltage. A new capacitive-to-phase conversion technique for measuring very small capacitance changes has been reported9. This method provided a powerful means for recording very small capacitance changes. Much progress has been made over the last years in developing the capacitor transducers and complementing measuring circuits. For the precision in instrumentation and measurements, the small capacitances to be measured are in the range of 0.01-10 pF with a required resolution of better than 0.01-10 ff. This requirement along with other considerations such as environmental effects, structural
stability and standardization challenges the development of a much more sensitive and reliable capacitance sensor systems.

Monitoring water component plays important role in different applications. For example in wastewater contamination, monitoring the water components, in particular hazardous ones, plays a crucial role. The idea here is to use the conductance effect and as a result the capacitance variation of a mixture in order to monitor the added agent to water sample. Since, the conductivity of the material differs, thus one can monitor the existence of the foreign agent in the pure water sample. This can be a sensitive method for monitoring water contents, in particular those which are hazardous for the drinking purpose and all other applications that the quality of the water is really important.

METHODOLOGY

Capacitance measurement system in general includes a sensing probe and a measuring module. Present experimental setup is a simple one which uses the capacitive sensing probe and the measuring module as shown in Fig. 1. The experimental arrangement includes the cylindrical capacitive sensor, two digital multimeter (DMM) modules (SANWA, PC 5000), a reference capacitor and a PC. As shown in Fig. 1, one of the digital multimeters is used for the capacitance measurement and a similar one together with a temperature probe (T-300PC) is used for the temperature measurements. The DMM has features such as the real time graphic display with scale grid, real-time display of max and min values with time stamp and current measuring window (SANWA ELECTRIC INSTRUMENT CO).

It provides more functions with optional accessories such as temperature probe that is used in this experiment. The software (PC Link plus) allows one to log measuring data into PC through RS232 port with digital multimeter PC series. The operation of this software is possible by using any operational system such as the windows 98, NT4.0/2000/ME/XP versions provides function for capacitance measurements using the

\[C = \frac{2\pi \varepsilon L}{\ln \frac{b}{a}} \]

where, \(\varepsilon \) is the permittivity of the gap dielectric medium. Here \(a \) is the inner electrode radius, \(b \) outer electrode radius and \(L \) is the capacitor length. However Eq. 1 is only valid when \(L > a, b \). Several problems such as edge effect can cause deviation in the actual capacity from the given formula in Eq. 1. For this reason, various attempts have been made to reduce errors due to limited size effects. One simple remedy has been the use of a Kelvin guard-ring in which the main inner electrode is shielded by a grounded guard-ring electrode.

MEASUREMENT METHOD

Depending on the capacitance electrode configuration of the sensor the equivalent circuit can be considered for the case of invasive (direct contact between the metal electrode and liquid) and non-invasive (no contact between the metal electrode and liquid) sensors. In a simple form if consider a uniform liquid...
Fig. 2: Diagram of designed cylindrical capacitive sensor

with the given permittivity and conductivity, the equivalent circuits for the case of non-invasive and invasive sensors have been investigated by Stut6.

It must be mentioned that the given capacitance value is the measured value by the charge transfer reading circuit and fluid capacitance must be deduced from the measured values. Also noted that the capacitance sensing is affected by the conductivity variations of the components1,12. This conductivity problem has been the main concern in the field of dielectric measurements and several attempts have been made to compensate for such variation and for a simple case the effect of conductivity is presented by a resistive element in parallel with the sensor capacitance. However, for sensors using non-invasive electrodes and those measuring two-component fluids; sensor system must be represented by more complex equivalent circuit models. As a result an investigation into the effects of component conductivity should be done for precise measurements13.

Equivalent circuits for the invasive and non-invasive cases are shown in Fig. 3a and b, respectively. In the invasive situation when there is a contact between the metal and liquid is equivalent to a circuit consisting of a capacitor C_x in parallel with a resistor R_x. In this analysis R_x representing the resistance of the fluid due to its conductivity effect and C_x shows its capacitance as a result of its permittivity. For the non-invasive case as shown in Fig. 3b an extra capacitor C is considered in
series with \(R_s \) and \(C_s \) which are acting in parallel. As can be seen, measured capacitance element is depending on both \(C_s \) and \(R_s \) of the fluid under measurement.

In general a variety of techniques have been employed for measuring the absolute and relative capacitance changes. Oscillation, resonance, charge/discharge, AC bridge and capacitive-to-phase conversion are the most common methods for such capacitance measurements. Since, the measurement module uses the charge/discharge (C/DC) circuit, therefore, this method is described here. The charge/discharge operation is based on the charging of an unknown capacitance \(C_s \) to a voltage \(V_s \) via a CMOS switch with resistance \(R_w \) (Fig. 4a) and then discharging this capacitor into a charge detector via a second switch (Fig. 4b). The charge transferred from \(C_s \) to the detector in a single C/DC cycle is (Eq. 2):

\[
Q = V_s C_s
\]

Such operation is repeated at a frequency \(f \) under the control of a clock. The discharging current pulse is averaged in the detector to produce an average current \(I_n \) that is (Eq. 3):

\[
I_n = V_s C_s f
\]

And this signal is further converted by the detector to give a dc output voltage \(V' \) such as shown in Eq. 4:

\[
V' = R_v V_s C_s f
\]

where, \(R_v \) is the detector feedback resistance as shown in Fig. 4b.

A DMM with the given specification based on the charge discharge operation is used here for the capacitance measurements. This capacitance measuring module is capable of measuring precisely the capacitance values in the range of 10 nF to 50 mF. Since, the reported reading module can not measure precisely the capacitance values smaller than 10 nF, thus for such cases a reference capacitor (470 nF), as shown in Fig. 1, is used in parallel with the sensor capacitance to assure the proper readings for the small capacitances. In this arrangement smaller capacitance values can be measured more precisely and with a high resolution of about 0.01 nF. However, for high capacitance values such a reference capacitor is not required.

The capacitance measurements for the cylindrical probe shown in Fig. 2 depend on the permittivity, \(\varepsilon (\text{F/m}) \), of the liquid and its resistance factor that depends only on the conductivity, \(\sigma (\text{S/m}) \), of the liquid. The capacitive value is obtained only by the insulation of the electrodes and reducing the conductivity effect. Complex permittivity of a medium can be written as (Eq. 5):

\[
e^{-j \omega \tau}
\]

where, \(\omega = 2\pi f \) and \(f \) is the frequency of the readout measurements. For Charge/Discharge method the measurement frequency is in kHz-MHz range. Thus a comparison of \(\varepsilon /\omega \tau \) to unity could be carried out to determine whether a particular medium is predominantly a dielectric, quasi-conductor or a conductor.

As described, in general there are invasive and non-invasive electrode arrangements. For the case of non-invasive sensors, in measuring capacitance of a liquid, the effect of resistive component is usually very small because of the dielectric insulator. For the invasive sensors the effect of \(R_s \) on the measurement of \(C_s \) can not be neglected and the effect of conductivity of the liquid must be considered in analysis. However, the effect of \(R_s \) can be negligible if the on resistance of the charge switch \(R_w \) is small compared with \(R_s \) and if the discharge time which is determined by the switching-on time of the resistance of the discharging switch, is short compared with the time constant given by \(\tau = R_s C_s \).

RESULTS AND DISCUSSION

Since, the minimum reliable limit of DMM is about 0.01 nF, therefore the results for air reading were not so reliable and as mentioned a parallel reference capacitor is
used as indicated in Fig. 1. However, when the gap is filled with a liquid mixture, since the dielectric constant of the fluid is larger than that of the air, then the measured capacitance value is increased and the reference capacitance is not necessary. As described, our measuring apparatus is operating under the charge/discharge technique.

In order to test the precision of the capacitance measuring module, in the first experiment the capacitance of a known reference capacitor is measured. For a capacitor with the nominal value of 470 nF the average measured capacitance for this reference is about 494.2 nF. The extra value of the capacitance is most likely due to the lead probe capacitance which is added to the capacitance of the reference capacitor. As mentioned the best accuracy of the DMM for capacitance measurement is about ±0.8 % rdg+3 dgt which are ±0.7 nF for 50 nF, ±7.0 nF for 500 nF and ±0.7 µF for 50 µF range.

As described the averaged capacitance for the reference capacitor is found to be 492.5 nF and after this investigation the air gap capacitance of the sensor was investigated. The averaged air gap capacitance of the probe when it is parallel with the reference capacitor is around 497.5 nF. By subtracting the value of the reference capacitance, thus the air gap capacitance for the designed probe is about 5 pF. However, as described this value is different from the calculated value of 3.5 pF from Eq. 1, must be pointed that Eq. 1 is obtained with the assumption that the length of the probe is much higher than its gap which is not satisfied for our probe; therefore the observed difference looks reasonable.

Stability of a sensor is another important parameter which is described in this research. In general such factor shows the ability of the sensor to maintain its performance characteristics for a certain period of time. In this experiment the capacitance values for the air-gap and liquid mixture-gap cases are measured for a period of 50 sec in 1 sec increment. Both measured values (dry and wet cases) show a good stability for this period of time which is about 1% of the full scale. The repeatability of the reported sensor is also investigated. Such parameter indicates the ability of the sensor to reproduce output reading when operating under the same condition. To provide such a similar ambient conditions a number of about 50 measurements were made consequently. The error of the measured values for the consequent measurements is estimated to be about 2% of the full scale.

To understand the importance of capacitance variation as a result of different liquid mixtures, in Fig. 5, consider the measured values for a period of 50 sec in 1 sec increments. As indicated in Fig. 5 the average capacitance values given for different liquid mixtures are 10300, 11500, 13300, 14400, 15000, 22200 nF, for mixture of ethanol and water, methanol and water, petroleum and water, consumed oil and water, oil and water, antifreeze and water, the capacitance is more dependent on conductance and purity of materials. As described before, these values are just the measured capacitance values which are much higher than the capacitance value of the liquid mixtures. It is noted that the measured values are mainly related to the conductance term and can be used effectively to monitor the conductance and its dynamic developments in liquid filling.

Considered the highest measured capacitance value is 22200 nF for mixture of antifreeze and water while the lowest measured capacitance is 10300 nF for mixture of ethanol and water, considering a significant difference (11900 nF) in capacitance value for different liquid mixtures is indicative of the highest sensitivity of the reported sensor, then finally from Fig. 5 find out stability and sensitivity are two major properties for the application of this sensor.

To understand the importance of capacitance variation as a result of different liquid mixtures, From Fig. 5 two major points can be concluded. First, the measured capacitance signal value recorded by the module is not only the liquid mixture capacitance but also the output due to the liquid conductance. Such measured value is due to both of the dielectric reactance capacitance, conductance term and the stray terms. Thus the present device provides a sensitive probe for the investigation of the conductance effect in such measurements.

Signal value recorded by the module is not only the liquid mixture capacitance but also the output due to the
liquid conductance. Such measured value is due to both of the dielectric reactance capacitance, conductance term and the stray terms. Thus the present device provides a sensitive probe for the investigation of the conductance effect in such measurements.

Second point is that the measured values are relatively constant for the mixture of water and, ethanol, methanol, petroleum, consumed oil, oil, antifreeze measurements but as indicated in Fig. 5, larger capacitance are observed in the mixture of water and antifreeze measurements. This leads to the fact that such capacitance is certainly due to the conductivity effect which are more pronounced for the mixture of water and antifreeze due to higher conductivity.

Figure 6 shows the comparison of capacitance measurement for different liquid mixtures with the different electrical conductivity from 144.00 nF for mixture of ethanol and water to 1395.00 nF for mixture of antifreeze and water. These mixtures have different Total Dissolved Solid density (TDS) that is important factor in capacitance measurements. The reported capacitances are for ethanol and water (E+W), methanol and water (M+W), petroleum and water (P+W), consumed oil and water (CO+W), oil and water (O+W), antifreeze and water (A+W). As can be seen in Fig. 5 the mixture of antifreeze and water capacitance in general is higher than the other mixtures because of its electrical conductivity and TDS is more than the other liquids (Table 1).

Precision is defined as a measure of the reproducibility of the measurements that is considered as a figure of merit for such a sensing device. Figure 7 shows the repeatability of the reported sensor.

In this sensor such a parameter indicates the ability of the cylindrical capacitive sensor to reproduce output reading when the same measurement is applied to consequently, under the same condition. To provide such a similar ambient conditions measurements were made consequently for a series of 40 readings. The output capacitances for such repeated measurements are shown in Fig. 7 which varies from 494.1–494.3 nF at most. The average signal calculated to be 494.20 with the standard deviation of 0.1414 in measurements. For a better comparison average value of capacitance measurement (Dry signal) is also indicated as a dashed line in Fig. 7.

To analyze electrical condition of the tested water liquids, another device was used to measure the Electrical Conductivity (EC) and Total Dissolved Solid (TDS) density of the water samples used in this experiment. A comparison of the results for different water liquids at different temperatures is listed in Table 1. As can be seen the EC factor is increased as well as the TDS in the given order for the tested water liquids. Considering the capacitance value with the EC values confirms our argument about the effect of the electrical conductance on the capacitance measurements, is noted that there is a relation between the increase of the electrical conductivity of the liquids and the increase of

![Comparison of capacitance measurement for different liquid mixtures.](image)

Table 1: Comparison of the electrical properties for different water liquids

<table>
<thead>
<tr>
<th>Sample</th>
<th>Electrical conductivity (µS cm⁻¹)</th>
<th>Total dissolved solid density (mg L⁻¹)</th>
<th>Measured capacitance (nF)</th>
<th>Volume percentage additive</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap water</td>
<td>460</td>
<td>272.0</td>
<td>17200</td>
<td>0.00</td>
<td>23.6</td>
</tr>
<tr>
<td>Methanol and water</td>
<td>332</td>
<td>193.0</td>
<td>11500</td>
<td>43.75</td>
<td>22.8</td>
</tr>
<tr>
<td>Ethanol and water</td>
<td>144</td>
<td>116.8</td>
<td>9900</td>
<td>43.75</td>
<td>24.0</td>
</tr>
<tr>
<td>Antifreeze and water</td>
<td>1395</td>
<td>741.0</td>
<td>22900</td>
<td>43.75</td>
<td>22.9</td>
</tr>
<tr>
<td>Petroleum and water</td>
<td>400</td>
<td>242.0</td>
<td>13300</td>
<td>43.75</td>
<td>25.2</td>
</tr>
<tr>
<td>Oil and water</td>
<td>414</td>
<td>249.0</td>
<td>13500</td>
<td>43.75</td>
<td>25.0</td>
</tr>
<tr>
<td>Consumed oil and water</td>
<td>407</td>
<td>245.0</td>
<td>14500</td>
<td>43.75</td>
<td>22.9</td>
</tr>
</tbody>
</table>

© 2013 Science International
The goal here was to introduce a capacitance sensor for liquid mixture monitoring and to research the role of a foreign agent in the capacitance and conductivity measurements. The invasive sensor such as the one reported here provided a useful mean to study the conductance effect of the reactance capacitance and its role in capacitance measurements. For the case of a gap material with low conductivity the charge/discharge method was used with the proposed cylindrical probe to measure the capacitance. This was a useful method for the checking of the quality of the water mixtures and the results are according to which is required for different applications. The next objective was to recognize different water mixture liquids as a result of such capacitance measurements.

Although the results reported here were for the liquid mixtures is compatible with but the reported sensor could be effectively implemented for the study of other conducting liquids such as industrial oils and liquid mixtures which have wide applications as lubricator, electric insulator and cooling agents with a notable conductance contribution. Arrangements described also can be used for liquid mixture checking and also to see effect of impurities in the water solution.

ACKNOWLEDGMENTS
This research was supported by the Islamic Azad University, Shoushtar Branch. The authors like to acknowledge this support and thank the office of Vice President for Research and Technology.

REFERENCES

