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Chatter Instability Prediction of Ball-End Milling in Discrete Time Domain
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Abstract: This study describes a theoretical model for prediction of chatter vibration in ball end milling of flat
surfaces using discrete time domam approach. A model 1s developed for dynamic cutting process which takes
into consideration the variation of helix angle of the ball end mill along the cutting edge. The vibration of the
tool 18 calculated by using a lumped-parameter model with two degrees of freedom. Expressions are based on
the dynamics of ball end milling with regeneration in the uncut chip thickness. The dynamic cutting force
coefficients are derived from orthogonal cutting data base using oblique transformation method and the
dynamic parameters of cutting process such as shear stress, friction angle and shear angle due to variation in
spindle speed and feed rate are considered. An update semi-discretization method is used to produce stability
lobes. When the process 13 highly mtermittent which occurs at high speeds and low radial depth of cuts, the
stability lobes are more accurately solved by semi-discretization method. The chatter stability limit 1s indicated
by the critical nominal depth of cut. The stability lobes agree well with the analytical method, the

computationally expensive and complex numerical time domain simulations.
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INTRODUCTION

Ball-end milling 15 one of the most widely used
cutting processes in the automotive, aerospace, die/mold
and machine parts industries, to maximize the productivity
in a machining process, both the speed at which the tools
can machine without causing deterioration m the system
stability and accurate evaluations of machining stability
are crucial. The cuftting process is given a great deal of
weight in the development and production of products.
Therefore, reducing the time required for the cutting
process is one of the most effective methods of achieving
rapid product development and improving productivity.
The cutting speed must be increased to reduce the
machining time but this can provoke abnormal tool
behavior such as chatter. Chatter vibration in machining
operations usually has undesirable effects such as
accelerated tool wear, excessive noise, damage of the
machine tool, poor surface fimsh and low dimensional
accuracy of the machined part. A commonly used method
for avoiding chatter vibrations in machiming 1s to select
low spindle speeds and small depths of cut. However,
using this method for chatter-free machining results n low
productivity. Therefore, in order to maximize productivity,
prediction of chatter vibration 1s essential. The theory of
chatter vibration for single point cutting tools has been

discussed by several researchers, for example,
Koemgsberger and Tlusty (1970) and Merritt (1965). This
theory is applicable in operations such as turning where
the directions of the cutting forces can be considered to
be time invariant. Tt is, however, difficult to apply itto a
milling process, due to the variation of uncut chip
thickness and cutting force vector with spindle rotation.
Nevertheless the theory can be used for rough estimation
of stability limits n milling, so that, the apparently stable
conditions can be identified prior to carrying out a more
accurate numerical computation, thereby reducing the
computation time (Tsai ef al., 1990).

Recently, various models for the prediction of chatter
in end milling and face milling have been proposed
(Smith and Tlusty, 1993; Tlusty and Tsmail, 1981). An
attempt to extend the application of these models to ball
end milling, however, presents some difficulties. This is
because in ball end milling, the cutting speed, helix angle
and consequently, the effective ralke angle vary along the
cutting edge. Little work has been reported on chatter
vibration in ball end milling (Abrari et al, 1998,
Altyntas ef al., 1999). In Ahmadi and Ismail (2012) the
researchers of the cwrent study developed the
stability lobes in milling by including process damping in
the formulation of the Semi Discretization Method
(SDM).
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This study presents a predictive time-domain chatter
model to produce stability lobe diagrams using an
update semi-discretization method (Insperger and Steparn,
2004) introduced for delay differential equations. So, it 1s
assumed that the vibration ball end tool is a system with
two modes of vibration in two mutually perpendicular
directions: the x and y-axes. The equations of motion for
the system are solved by semi-discretization method and
asymptotic stability trends are then examined for several
up-milling, down-milling, radial immersions and helix
angles milling. Finally a series of experumental validation
tests are performed to discuss the conclusions from this
researchers.

MATERIALS AND METHODS

Dynamic modeling

Vibration model of ball end milling: The vibration model
of a milling system can be reduced to 2-DOF
vibration system n the two orthogonal directions
(Altintas and Budak, 1995). The equations of motion for
the system are:

m_¥+c_x+k_x=F D
x0T X7 X X

myy+cyy+kyy = Fy (2)
Where:
mx = The modal masses of the tool
C,and C, = The modal damping constants of the tool
k,andk, = The modal spring constants of the tool
F.andF, = The cutting forces acting on the teol in

the direcions of the x and y axes,
respectively

Geometric modeling of ball end milling: Sadeghu ef al.
(2000) introduced a force model using orthogonal cutting
data for cutting mclined plan. The helical flutes were
divided mto M small differential oblique cutting-edge
segments. The orthogonal cutting parameters are carried
to oblique milling-edge geometry using the classical
oblique transformation method. As shown in Fig. 1. In
the ball end mill tool the cutter radius in the x-y plane at
axial location z is:

M= round(w%m),R(z) - 1/R2-(R—z)2 3)
Z

For an element at axial location z:

ztan(i )
R(z)

sin(0,) = (4)

Fig. 1: Flute element position angle

where, 0, 1s the angle between the ball tip z = 0 and an
element at axial location z. It 1s measured clockwise from
the z-axis vector from the Cartesian coordinate center to
a point on the cufting edge and is defined by
Naserian et al. (2007):

r= R(z)sin(ez)i+R(z) cos(@z)j+zk (5

Using Eq. 4 and 5:

r = ztan(i, )R (2) -(ztan(i, )} j+2k (6)
Thus:
R(Z)M -ztan®

dr = (tan(i, )i- dz
R(z)’-(ztan(i, )’

(i)
jtk)dz )

The length of infinitesimal curved cutting edge
segment d, 1s computed from:

R(Z)M-Z tan® (i, )
ds = |[dr] = dz, |ctan® (i, )- dz H)dz
JR(2) -(ztan(i, )’

(®)
Where:

dR(Z) _ R-z (9)
dz R(z)

And for the local helix angle:
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sin(i, )ds = R(z)d® (10)
Using Eq. 4:
. __dR(z)
o tan(i, J(R(z) Z—dz )] . a1
R(z)yfR*(z)-(ztan(i, )*
And therefore:
ds

Utilizing the Stabler’s chuip flow rule (1.e., h, = 1), the
effective rake angle, ¢, can be calculated from the
following equation (Lee and Altintas, 1996):

sin(a, ) = cos{i_ )cos(n, )sin(o, )+sin(n )sin{i,) (13)

where, o, and &, are the normal rake angle and the clup
flow angle, respectively. A point on the flute j at height z
15 defined by its angular position (), g, z) on the global
coordinate system:

W(i0,2) = e+(j-1>i]—"—<en-ez) (14)

where, 0 1s the tool rotation angle about z-axis and 0, 15
maximum angle between ball tip z = 0 and an element at
axial location R and from Eq. 4:1

?, = Arcsin(tan(i, )) (15)

Undeformed dynamic radial chip thickness: Radial clup
thickness for static milling process with horizontal feed
directions have been studied by Martelotti (1941)
Martellott1 (1945). In dynamic milling process, the cutting
forces cause both the cutter and the workpiece to vibrate
on the cutting surface. Each vibrating cutting tooth
removes the wavy surface left by the previous tooth
resulting in modulated chip thickness which can be
expressed as:

h{*F

B,Z) :ft'SIHLP(j,B,Z)+(Vj,O_Vj) (16)

Je
where, F, is the feed rate per flute, 6 the angular
immersion of the tooth j, v, , v, are the dynamic
displacements due to the tool and workpiece vibration for
the current and the previous tooth passing period. For the
case of 3-axis dynamic ball-end milling, assuming circular
tooth path and using Eq. 14:

h¥. . )=I[f sin'¥

Aycos'V

+Axsint,  +

18,2 1.8z

(17)

],E),z]
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Fig. 2: Radial undeformed chip thickness (Lamikiz et al.,
2004)

r:tn(y 10, K)

Fig. 3: Immersion geometry (Lamikiz et al., 2004)

AX = X_Xj,U’Ay = VY, (1 8)
as shown in Fig. 2. Radial chip thickness is equal to:
t,(¥, .. )=h(¥,,, ) *sink (19)

Tt is necessary to establish the engagement of the
discrete element in part material as a constraint for each
wnstant position. Therefore, the angles V., and Ik
determine the area where material 1s present in Fig. 3
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T{0<k<Km =1
1 _>g 1.8,z =
0=, (20)

" k=K, P o

! Yo \‘th #g( ]:B‘Z) -
Where:

aRy-a,
W, —cos T (——=) (21)

0

For the given angular position 6, of the tool, the
dynamic displacements of the cutter and the workpiece
can be expressed in the fixed coordinate system as:

v, =xsinf, +ycosb, (22)

Usually, v;, is modulated by the previous tooth (j-1)
However, thus 1s not always the case because the
amplitude of oscillation might be large enough to make the
tooth (§-1) lose contact with the surface being machined
and then is outer modulated by v, the tooth (j-2) or even
by the teeth (3-3), (j-4), etc. Thus 1s the basic nonlinearity
of the dynamic milling process. This is the basic
nonlinearity of the dynamic milling process.

Determining the specific cutting force coefficients: The
cuting coefficients K, , K, K, are identified from a set of
orthogonal cutting tests using oblique transformation
method (Wang, 1988). These coefficients depend on the
part material and the substrate, coating, rake angle and
helix angle of the tool The relationship among the
coefficients and these parameters is very complex.
Therefore, it is necessary to estimate both shear and edge
specific cutting coefficients for each couple tool-material:

T,(cos(P,-o, yHtanitannsinf, )

Ko = : 2 2 i

sin ¢, Jcos (¢, +P, -, yrtan® nsin® B,
K - v sin(p, -0,

sineg, cosi\/cos2 (¢, +B, o, )+tan’nsin® B,
K T, (cos(P, -a, )tani-tanmsin B, )

* sin@nJcosz(¢n+Bn-otn)+tan2'nsin2 B,
(23)
The shear and edge coefficients are determined from
characterization tests using the measured cutting forces
as mput data. By applying an mverse method, the
coefficients are obtained by least square adjustment. The
characterization tests carried out have been horizontal slot
milling test with different cutting conditions. The Shear
stress (1.), friction angle P, and shear angle ¢, in
machining of 1045 steel with a HSS cutting tool such that:
are modeled using the following equations (Wang, 1988):
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T, = (1.586(V.£,)**+670.73)
¢, = 105.7(V.£ Y7 +0.3750,+13.64
B, = 48.4(V )" ¥ +28.586-¢, ta,
(24)
where, V, (m/fsec) i1s the cutting speed in the shear

plane, t, (N/mm?) is the shear stress in the shear
plane.

Prediction of milling forces: The tangential, radial and
axial components of cutting force acting on each cutting
edge elements of each flute are calculated as:

dE ;= (K t, (o )b+, ds)g(Y 5 )
dE j = (K t,(F ¢ )dbHK ds)g(* . )
dFa,] = (Kactn (LP],S,Z )db+KaedS)g(LPj, 8z )

(25)
where, dF, , dF,, dF, (N) are tangential, radial, axial cutting
force components, respectively, K, , K., K, (N/mm®) are
the specific coefficients K,, , K., K, (N/mm) are the edge
specific coefficients, ds is the length of each discrete
elements of cutting edge, t, (mm) 1s radial undeformed
chip thickness and db (mm) 1s the chip width in each
cutting edge discrete element (Fig. 3):

dz
sink

db= (26)

The differential cutting forces acting on flute’s
cutting edges of the ith element calculated using
Eq. 24 transformed to Cartesian coordinates are as

follows:
dE,;, = -dF, ;sinksin't',  , -dF jcos't, -
dF, ;cosksin't, , ,
dE ;= HdF sinkcos'¥,  -dF sin'V . -

dFa:j cosk cos ‘Pj_ .

(27)

By summing up these forces, the total cutting forces

acting on each disk element will be calculated and we can

calculate the cutting forces in any axial depth of cut a; by

summing up these differential cutting forces acting on
disk elements and an given axial depth of cut:

M m
de,1 = ZdFXIJ Fx,a = ZdF}{x
j: N i=1 (28)
dF,; = ZdFy.l,j F.= Z:dFy:i
i=1 -1
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where, a (mm) is the instantaneous axial depth of cut and
0 <a< Upper axial, 1<m<M is the integer number of
the elements m axial depth of cut a. We can rewrite Eq. 28

to form:
iy

F, doesn’t any contribution on stability and will be
neglected, [A, ] 1s square matrix and define as:

e

The elements of [Am AW} expressed as:

f,+AX
Ay

(29)

A

BY

A

vy

=R

(30)

¥x

AW AW X
K. sin® Wsink-K,_sin'V cos V-

dz
K, sin'Wsinkcosk Ev

jgwdz

-K,.sin'P cos\Psink+K,_ sin® \P-
K, sin'*Fcos'Hcos(k) 8y

-K,.sin'P cos Psink-K,, cos® ‘P~
K, sin'Wcos'Weosk

dz

_J g.dz

(3D

i=1
-K,. cos” Wsink+K._sin ‘¥ cos'P
K cos’ Wsink

N N

i=1 j=1

now rewrite Eq. 1, 2:

mX+e Xtk x = A (x()-x(t-T))+
A Ay (y(t)-y(t-T))
m e, yk oy = A (x(D-x(t-T))+

A Ay (y(t)-y(t-T))
For

et
AL

y(t)
R I
y(t)

(32)

0
2w,

2(::(011}{
0

#(t)
¥t
Aa, 5]

BY

mX

a8
+7AW

2
ot
m

x

a8
A

ny

(

¥

Aa,e

=
m

x
a8
Ay

m

x(t—T)J
y(t-T)

(33)
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Semi-Discretization Method (SMD): The basic idea of the
semi discretization method is to discretize the delayed
terms of the Delay Differential Equation (DDE) while
leaving the current time terms unchanged. This way, the
DDE is approximated by a series of Ordinary Differential
Equations (ODEs) for which the solutions are known and
can be given m closed form. The governing equation of
milling 1 Eq. 33 1s a delayed differential equation with the
tooth passing period as delay. to simplify the notation,
Eq. 36 may be rewritten as:

Wt) = Au(O+Buit-T) (34)
Where:
0 0 1 1
0 0 0 1
A
A= -l ro= —= 200, o,
X mX
WA .
=gt 0 e,
mY mY
0 0 0
0 0 0 x(1)
A A t
B: _ =X _ = 0 0 ,u(t): )-(()
m,  m, x(1)
_.AYX _.Ayy 0 0 vit)
mY mY
(35)

Discretization 1s introduced using a time interval [t,
t] with t, -t = At. The delay time becomes T = (m+0.5) At
where m is an integer determining the coarseness of
the discretization. The periodic coefficients A(t) = A(t+T),
B(t) = B(t+T) and in the i th semi-discretization interval,
delayed state u(t-T) are approximated by:

Ay= A, B(t)=B,
u(t-T) = 0.5(u, ., +1u, )

1-mtl]

(36)

The DDE in Eq. 34 1s here with transformed mto a
series of autonomous second order ODEs with t<t<t,,
which can be rewritten as systems of first order ODFEs:

Aty = Ap(t)-&-%(u fu_) (37)

1-m+3

for the initial condition u(t)) =y and substituting t = t, and
Wy, = ult,,) into this solution the solution is determined
as:

ui+l = Piui +&(u +u1—m) (38)
2

i-mt3
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where:
P = exp(AAL R (A AD-A,'B, (39)
Equation 39 can be rewritten as a map Z,,, = D7, with
the state vector Z, and the coefficient matrix D,
Zi=collx, yi X Vi Xy Yo s Xim Yim)
(40)
Bu Rz Bs P O.n 0 WK, WR, WR, wR,
HZI HZZ H,E 1)1,24 0 R 0 “J;R,Zl “J;R,Z “J;Ri,Zl “QRT,ZZ
pl,31 H,KZ p1,33 pj,34 0 ER 0 “J;le “{a ) “J;RT,BI Vva )
Pe B Bs Pa 0... 0 wR, wWR, wR, wR,
1 0 0 0 O0,., 0 0 0 0 0
0 1 0 0 0,., 0 0 0 0 0
D=0 0 0 1 0 0 0 0 0 0 0
0 s O 0 0 0
00 ... 1 o 0 0
0 s O 1 0 0
(41)

The transition matrix over the principal peried T 1s
approximated by coupling the solutions of m successive
mntervals as:

6=D,,D,,,-..DD, (42)

Finally, stability of the mvestigated system 1s
determined by the eigenvalues of the transition matrix ¢.
The system is stable if all eigenvalues of ¢ are in modulus
less than one. Further details on the semi discretization
procedure can be found in Insperger and Stepan (2004). Tn
the case of milling, two possible instabilities can be
observed.

The critical eigenvalue of ¢ is complex and its
modulus 15 greater than 1. This case corresponds to the
Hopf bifurcation causing the quasi periodic chatter
(Mann et al., 2004).

The critical eigenvalue of £ 1s real and its value 1s
smaller than -1. This case corresponds to the period
doubling or flip bifurcation which causes the periodic
chatter.

These two mstabilities are illustrated m Fig. 4 and 5
by the eigenvalue trajectories in the complex plane
accompanied by the stability chart with the corresponding
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depth of cut and spindle speed values. In the case of
Hopf bifurcation, a pair of complex conjugate eigenvalues
penetrates the unit circle in the complex plane whereas in
the case of flip bifurcation, the unit circle is penetrated by
one real and negative eigenvalue. More information on

bifurcations mn dynamical systems can be found in Wang
{(1988).

RESULTS AND DISCUSSION

Dynamic simulation results: The dynamic milling model
has been implemented in “MATLAB”. The input data to
the program includes the cutter geometry, workpiece
material and dimensions, cutting conditions (axial depth
of cut, radial immersion, chip load, spindle speed),
machine tool dynamics, cutting coefficients and other
miscellancous variables such as number of digitized
points on the cut surface and sumulation time step. Each
simulation runs in a series of small time steps for the
chosen duration. At each instant, the cutting forces and
tool deflections are recomputed. The simulation program
predicts dynamic milling forces, dynamic displacements of
the ball milling tool at the tool tip 1 the x-y plane in any
position of the cutting edge during cutting process. The
milling force distributed non-uniformly along the edge for
the special geometry of the ball part, the rotation of cutter



Agric. J., 13 (5-6): 98-106, 2018

400

200

Tool vibration in x direction (um)

-200
-400 " G e e, e el e, el
0 1000 2000 3000 4000
Tool rotation angel (°)
Fig. 6: Tool vibration in y-direction
200
100|
o,
>
-100
-200 i i :
-200 -100 0 100 200
X (um)

Fig. 7. Tooltip movement in xy-plane

5 -
4.5 9 #* Chatter (unstable)
4 + Non chatter (stable)
6
E
8
o
=
5
=
<
X
<
0
T T 1
4000 6000 8000 10,000
Spindle speed (rpm)
Fig. 8: Stahility lobes and dynamic simulation; Ball-end,

N =2, Immecrsion 100%

and the different cutting depth. There are two typical
states: the steady state (full immersion) and the transient
state (cutting-in or exit) which can stand for the dynamaics
of the model for a ball-end milling cutter. The method used
to calculate the runout parameters i1s derived from the
basic concept that only one wvalue of each cutting
coefficient exists at a given instantaneous uncut chip
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thickness, regardless of the cutting conditions. Tdeally,
one should be able to calculate K., K,, K., from the
physical cutting force model and the synchronized
measured cutting forces (Wang et al., 201 5). However, the
runout related parameters cause significant discrepancies.
From the basic concepts described above, the runout
parameters can be determined by choosing values that
generate the mimmum standard deviation of the cutting
force coefficients at the given instantanecus uncut chip
thickness in the physical cutting force model during one
revolution of the cutter. The cutting force coefficients can
then be determined by substituting the estimated runout
parameters (Quintana and Ciurana, 2011).

For a set of milling with the ball-end-mill tool with the
different cutting and geometrical
dynamical parameters described in Fig. 4-8. We simulate
the dynamical force. After many simulations we consider
that the depth of cut and spindle speed are the main
parameters that affect the dynamic force and tool
vibration:

conditions and

Ball End,Down milling, Axial Depth = 2(mm),
N=2,n=12000 (rpm),

helix = 30°, feed = 0.05[ R =10 {mm),

rev—toothj’

immersion = 100%, o= 12°,

@ =675(Hz), ® =660 (Hz), m_=2.78,
nx ny X

m_ =275 (kg), = 0.0378, =0.0365
=208 L Z,

The cutting force coefficients can then be
determined by substituting the estimated runout
parameters.

Stability lobe diagrams: In this study, dynamic stability
of milling process with a ball-end mill tool has been
investigated with the semi-discretization method. And the
influence of effects of various parameters like cutting
depth, spindle speed, number of tool flutes and the
percent of tool immersion in the stability of process has
been studied. In all cases, we assume that the tool helix
angle = 30°, tool rake angle ¢, = 12°, radius of the Ball-End
tool R =10 (mm), feed rate = 0.05 (mnm/rev-tooth) and the
dynamical coefficients of the machine tool m the x
and y direction are w_, = 675 (Hz), w,, = 660 (Hz),m,=2.78
(kg), m, = 2.75 (kg), £, = 0.0378 (kg). £, = 0.0365 (kg)
(Grossi et al., 2015).

The effect of depth of cut: One of the most impressive
parameters in the stability of the cutting process is the
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depth of cut. Tt is seen from the stability lobe that in the
low speeds of spindle when this parameter increases the
chatter may occur but in the higher spindle speeds this
parameter lonely has less affect on the chatter.

The effect of spindle speed: The revolution of spindle/min.
describes the cutting speed and is the other important
parameter for avoiding the chatter. From stability lobe
diagram it is seen that in high speed of spindle with
regulation of the cutting speed we have no chatter.

The effect of number of tool flutes: According to the most
stability lobe diagrams derived by “MATLAB” program
it can be seen that when this parameter increases, the
distance between lobes will increase, the depth of cut for
non chatter process will decrease and the probability of
chatter occurring will be stronger.

The effect of immersion of tool: Tt is obviously seen from
the drawn stability lobes that with increasing of the tool
immersion, the safety depth of cut for avoeiding the chatter
will decrease.

Validate the stability lobe with dynamic simulation: For
the many various depths of cut and spindle speed we
solve the dynamical equation and compare them with the
point on stability lobe to consider the validation of
stability lobe diagram (Ma et ai., 2016).

CONCLUSION

The stability lobe diagram that has been obtained
from the semi-discretization method has a good agreement
with the dynamical model, solved numerically. Tt considers
that in low depth of cut the chatter will not occur and
when the depth of cut increases, the chatter may occur
But 1t 13 strongly dependent on the spindle speed and in
the higher depth of cut with increasing the spindle speed
we will avoid the chatter and have a stable cutting
process.
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