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Abstract:In embedded systems, use cases have become increasingly popular as a means of requirements
specification and drive all the development activities,particularly in validation ones. However, they are usually
written in informal text form describing the interactions between the environment and the system. This prevents
using formal methods in requirements verification. Though, they are becoming a practical means to ensure the
correctness of system models, formal methods still are not commonplace in embedded systems especially in
the requirements validation. In this study presenst an approach to model transformation for requirements
verification in embedded systems. It firstly consists of transforming the use case structured-text style into an
UML activity diagram, which may be reused in the subsequent development steps and secondly we transform
this diagram into Pres, a formal notation capable of capturing relevant features of embedded systems. In
addition to the offered formal verification framework, we argue that our approach enables enriching the use case
model and producing more precise and complete requirements.
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INTRODUCTION

Embedded systems re becoming ncreasingly
sophisticated and complex, while at the same time
experiencing a shorter time to market with greater
demands on reliability and security. As a result, the need
for systematic software development methods and
efficient tools for embedded systems is now greater than
ever'. In these systems, there is a growing recognition of
requirements engineering as the initial and possibly the
most important development activity, where the real
demands to be placed on the system have to be identified
and captured in a consistent and unambiguous manner'>?..

The most notable UML-based development
processes for embedded and real-time systems™**” are
based on use cases to capture requirements. Such
methodologies suggest that the software development
process should be use case driven. That is, use cases are
not only used for documenting the requirements, but they
also drive other important activities such as requirements
validation, design, and testing. :

For the level of complexity typical to embedded
systems, traditional validation techniques, like simulation
and testing, areneither sufficient nor viable to verify their
correctness. First, such techniques may cover just a piece
of the system model. Second, long simulation times and
bugs found late in prototyping phases have a negative
impact on time-to-market. Though formal methods have
been widely used in software development, they are not
commonplace in embedded systems requirements and

design, especially in requirements model verification!".
In this study offers an alternative to traditional
validation techniques of embedded systems model, by
formalizing use cases to drive ensuring the correctness of
these models. Our transformational process (Fig. 1) will
remedy to some of the limitations of traditional methods.
Furthermore, it will give a better understanding of the
system, help uncover ambiguities, and reveal new insights
in the system. It uses symbolic model checking, based on
a special petri net representation,.called pres (Petri net
based Representation for Embedded Systems)™®, a formal
notation capable of capturing relevant information
characteristics to embedded systems. First, it transforms
the informal requirement model expressed by use cases
into an UML 2.0 activity diagram. Indeed, use cases are
usually written in plain text. Many research®™"! support
that this is usually thebest choice, keeping in mind that
one of the main purposes of use cases is the
communication between customer and developer.
However, text is ambiguous and may contain some
inconsistencies and lead to differentinterpretation. The
use case textual descriptions are prone to mistakes and
incompleteness. Therefore, they cannot be used for
automatically checking the requirements model. In
contrast, use case text transformation into an activity
diagram, not only provides a rigorous process of
requirements verification but also helps developers to
uncover ambiguities, impreciseness and even omissions
that may be present in the use case text. Second, the
derived activity diagram is converted into pres using an
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Fig. 1: Activity flow of the approach

. appropriate model transformation rules. We have chosen
to firstly transform a use case into an activity diagram,
. because the latter presents a semi-formal nature, suitable
. to understanding and manipulation by the users and
“constitutes a precise means to communication between
. users and developers and then facilitate comprehension
- and validation of the user requirements. In contrast, Pres
- is a formal model, difficult to understand and use by the
users but also by the developers themselves, however, it
- is needed as input language to the SMV tool"" to model
~ check the embedded systems. Our transformation process
- from activity diagram to Pres is automatically performed,
- and is therefore transparent to the users. Model checking
with SMV Derive activity diagrams Transform into Pres
Specify use cases. It is worth noting that activity
diagrams established at the requirements step, may be
reused at the next steps of development process
(analysis, design, implementation and test). They provide
both the benefits of an improved requirements
specification and the effective means that lead to
requirements verification. Once system requirements have
been specified by use cases, it is possible, with our
approach, to validate embedded system properties as well
as timing constraints. Moreover, our approach copes with
the model-driven development processes, especially the
one proposed by the MDAUY, In this area, we are
witnessing a paradigm shift, whére models are no longer
mere contemplative documentation, but are used as
productive artefacts for analysis, verification and code
generation, Model transformation has become central to
most software engineering activities. It refers to the
process of modifying a (usually graphical) model for
the purpose of analysis
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(by its transformation to some other domain), analysis,
refactoring, verification, or even code generation. This
framework offers visual and formal techniques based on
rules, in such a way that resulting models from the
transformation process can be subject to analysis,
especially the requirements verification.

MANIPULATED MODELS

It present the manipulated models by our
transformation process: use cases, activity diagrams and
Pres and highlight important elements needed by the
transformation process.

Use cases: A use case is a specific way of using the
system by performing some part of the functionality®. In
embedded systems, an actor can be a human being, a
computer system, an external I/O device, or a timer.
External I/O devices and timer actors are particularly
prevalent in these systems'. A complete set of use cases
specifies all the different ways to use the system, and
therefore defines all behaviour required of the system. As
use cases serve as a means of communication between
developers and users, they are fundamentally written in
simple text. In our transformation process, we are
interested in the description of a use case defined by a
name, actor, preconditions, postconditions, normal steps,
and alternative steps according to Cockburn’s template®.

Use case name: Request elevator.

Context of Use: The elevator system has many elevators

that service many users at any one time, taking them from

one floor to another.

Primary Actor: User, Secondary actor: Floor sensor

Precondition: User is at a floor and wants an elevator.

Postcondition: Elevator has arrived at the floor in

response to user request.

Description :

1. User presses an up floor button. System selects an
elevator to visit this floor.

2. If the elevator is idle, the system determines in which
direction the elevator should move in order to service
the new request.

3. The system commands the elevator door to close.
After the door has been closed, the system commands
the elevator to start moving, either up or down.

4. As the elevator moves between floors, the floor
sensor detects that the elevator is approaching a floor
and notifies the system.

5. The system checks whether the elevator should stop
at this floor. If so, the system commands the elevator
to stop.

6. When the elevator has stopped, the
commands the elevator door to open.

system

1013



Asian J. Inform. Tech., 1012-1019, 2005

7. If there are no other outstanding requests, the elevator
stays at the current floor with the door open.

Alternatives:

la. User presses down floor button to move down.
System response is the same for the main sequence.

2a. The elevator is moving, Go to step 4.

Sa. Current floor is not in the list of the floor to visit, Go to
step 4.

7a. When there are other outstanding requests, Go to step
2.

Quality of Service :

1. Elevator movement must be minimized.

2. Use case response time must be minimized.

3. Doors must be closed before starting any elevator
movement

Fig. 2. Textual description of the elevator request use case

To this template we have added a quality of service
section in which we describe non-functional requirements
(response time, security, cost, accuracy, etc.). Figure 2
shows a typical textual description of a request elevator
use case in an elevator control system. A use case can be
seen as a tuple <ucName, ucActor, ucPre, ucPost,
ucSteps, ucAlt, ucQoS>. ucName is a label that uniquely
identifies a use case, ucActor is a primary actor and the
secondary actors, ucPre is a set of preconditions, ucPost
is a set of postconditions, ucSteps is a set of ordered
normal steps, ucAlt a is set of alternative steps, and
ucQoS is a set of qualities of services. Each step in
ucSteps is a tuple <sNumber, sAction> with sNumber a
step number, sAction a set of actions(actor action(s) or
system response(s)). An action may also be a branching
statement to another step. A normal step may be
associated with a set of alternative steps.

An alternative step can be seen as a tuple
<altStepNumber, guardCond, altStepAction>, with
altStepNumber an alternative step number and guardCond
a guard condition on this step, and altStepAction an
alternative set of actions. A subset of use case steps in an
automated teller machine system may be as follows: {<1,
User inserts card>;<2, System Asks for PIN>, <2a, [invalid
card]>, <2al, System emits alarm>, <2a2, System ejects
card>}.

UML 2.0 activity diagrams: we introduce the UML 2.0
activity diagram concepts we use to model system level
behaviour of use cases. UML 2.0 provides activity

diagrams with better constructs (Fig. 3), making them more
effective and flexible in describing use cases. They have
recently undergone a major revision and redefinition of
important concepts like, activities, actions, control and
data flows, concurrency, procedure call, and exception
handling that are very useful in modeling embedded

systems. Moreover, these diagrams are a graphical

technique that provides a relatively simple and abstract
representation using easy tolearn notation. The obvious
advantage of this is that they offer a means of
communication between developers and clients, and a
valuable tool for requirements elicitation.

An activity describes a logical unit of work. It can be
broken down in actions. An action is the smallest unit of
work that is not decomposed any further. The sequencing
of actions or activities is controlled by control and object
flow edges. There are three kinds of nodes: action/activity
node, object node, and control node.

An object flow is an edge that can have objects or
data passing along it. It models the flow of values to or
from object nodes. Activities/actions are joined by edges
that represent process flows or events. A decision node
can model divergent behaviour based on a
Synchronization points may also be defined to illustrate
how processing may be carried out in parallel, then
synchronized at a point before further activity is
undertaken. Input and output parameters can be shown in
an activity node. This is done via rectangles that are
attached to the activities.

Petri net based model: Pres™ is an adaptation of Petri nets
allowing for capture important characteristics of
embedded systems. Some of the features of this model will
be illustrated using the example shown in Fig. 4. The net
represents an elevator control system as studied by
Kimour'. Pres!® is constituted by a finite non-empty set
P of places, a finite non-empty set T of transitions, a finite
non-empty set I of input arcs, a finite non-empty set T of
output arcs, and the initial marking M, of the net. Like in
classical Petri nets, places are graphically represented by
circles, transitions by boxes and arcs by arrows. The
elevator control system is modeled in Pres (Fig. 4) where
the operations performed in the processes are captured by
transitions and the data dependence between them is
given by the structure of the net. The transitions have
been named after the processes. A marking M is a
function that denotes the absence or presence of tokens
in places of thenet. The model requires the net to be safe
or 1- bounded, i.e. no more than one token is allowed in a
place. The marking M,, for the model of the elevator
control system in (Fig. 4) shows P, as the only place
initially marked.
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Fig.3: UML activity diagram corresponding to the
request elevator use case

In Pres™ a token is a associated with a pair <v,r>
where v is the token value (this value may be of any type)
and r is the token time (a non-negative real-valued time
stamp). Thus, tokens themselves carry data and time
information. There exists atype function t that associates
a token type to every place. This is the type of value that
a token may vehicle in that place. The token type related
to a certain place is an intrinsic property of that place and
will not change during the dynamic behaviour of the net.
For every transition t, there exists a transition function
associated with that transition. Transition functions have
as arguments token values of tokens in places of the pre-
set of the transition. Pre-set and post-set of a transition
t are respectively the set of input places and the set of
output places of t.

Transition functions are very important when
describing the behaviour of the system to be modeled.
They allow systems to be modeled at different levels of
granularity with transitions being associated with simple
or complex operations. For example, in Fig. 4, there is one
transition function associated to transition
elevatorSelecting, which defines token values of new
token in P,, when elevatorSelecting is executed.

For every transition t, there exist delay, a non-negative
real number, which represents the execution time (delay)
of the function associated with that transition. Such a time
is captured as transition delay and is inscribed in the
respective transition box. In Figure 4, rt represents the
execution time of the function associated with the
transition elevator selecting. Each transition t in the net
may also have a guard G which represents a condition
that must be satisfied in order to enable that transition,
when all its input places hold tokens. Guards are
functions of token values of tokens in the pre-set of a
given transition. In Fig. 4, for example, elevldle represents
the condition that must be fulfilled to execute the process
elev start moving.

TRANSFORMATION PROCESS
FOR MODEL CHECKING

In UML based software development process such as
RUP™, Ropes', Comet'”, requirements are expressed by
use cases. As use cases are mainly textual description,
and to be able to automatically verify requirements, we
firstly need to circumvent the drawbacks of the use case
text and give rise to important requirement elements such
as data and control flows, but also time parameters. To
this end, we give here a transformation procedure (Table
1) that allows cofiverting the use case structured text
style!™ into an activity diagram.
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Fig. 4: Pres model fragment of an elevator control system

From use cases to activity diagrams: In the following, we
present our procedure to transform a use case text into an
activity diagram. Figure 3 shows the resulting activity
diagram from the transformation of the use above
mentioned use case example. The transformation
procedure is composed of two iterations: construction
iteration, refinement iteration.

Construction iteration: For each use case, build an
activity diagram, where nodes and edges are determined
as follows:

* Draw a begin node that corresponds to the use case
starting;

» Draw an End node that corresponds to the use case
ending;

* Draw a node for each step;

* Draw an edge from the begin node to the node
corresponding to the first step;

* Draw an edge between nodes of each two consecutive
steps,

* Model the normal flow first, integrate the alternative
flows later, and place the steps guards on- the
corresponding edges.

Refinement iteration: Check the activity diagram to
achieve:

* Edges and nodes should be named expressively and
consistently, according to the corresponding steps;

» All the necessary nodes and edges should be
specified. As the steps are mapped to nodes, missing
nodes will emerge andneed to be added.

* All the nodes in the activity diagram should be
connected.

¢ Check the event list created to see if all relevant
events are handled and if all the necessary operations
are specified in the activity diagram.

* Identify the possible timing constraints and place
them on the events that label the corresponding
transitions:

From activity diagrams to pres: The model transformation
from activity diagrams into Pres is specified by graph
transformation rules'"*'*. Graph transformation provides
a rule-based manipulation of graph models. A graph
transformation rule consists of a Left-Hand side (LHS)
graph L, Right-Hand Side (RHS) graph R, and (an
optional) application condition N. Informally, L and N of
a rule define the precondition while R defines the
postcondition. We give in the following the rules to
transform the activity diagram representation into pres:

* Every node (except the starting and ending ones) in
LHS (the source activity diagram) is modeled with a
transition in RHS (the target pres model).

* Every transition in LHS is modeled with a place in
RHS.

* Connect every place to the succeeding transition with
an arc starting from this place and ending at this
transition

» Connect every place (except the starting one) to the
preceding transition with an arc starting from this
transition and ending at this place .

* Connect the starting place to the succeeding
transition with an arc starting from this place and
ending at this transition.

PRES BASED MODEL CHECKING

Model checking is an automatic technique for
verifying finite-state  systems. Specifications are
expressed in temporal logic, and the system is modeled as
a state-transition graph. An efficient search procedure is
used to determine whether or not the state-transition
graph satisfies the specifications. In the following, we
show how the Pres based model is checked against given
properties, using the SMV model checker tool.

In Pres, every transition is associated with a
behaviour. The behaviour associated with the transition
t is defined in terms of its transition function and its
transition delay. Unlike the classical Petri net model, each
token holds a value v and a time stamp r. When a
transition t is fired the marking M will generally change by
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removing all the tokens from the pre-set and depositing
one token into each element of the post-set. A transition
t is said to be enabled if all places of its pre-set are
marked, its output places, different from the input ones,
are empty and its guard is asserted. Tokens, placed into
post-set have values and time stamps which depend on
the previous tokens in the pre-set and the behaviour of t.
When a transition fires, all the tokens in its output places
get the same token value and token time. Moreover, every
enabled transition has a trigger time r that represents the
time instant at the dynamic behaviour of the net.

Based on the above mentioned net, different
properties can be studied. For instance, in an elevator
control system, the door must not open while the elevator
is moving. This sort of safety requirement might be
formally proven by checking that the places which
represent such a dangerous state are never marked
simultaneously. Sometimes, the designer could also be
interested in proving that the system eventually reaches
a certain state whose marking represents the completion
of a task. A given marking, i.e. absence or presence of
tokens in places of the net, may represent the state of the
system at a certain moment.

This kind of analysis described above, called
reachability analysis, is very useful but says nothing
about timing aspects nor does it deal with token values.
However, in many embedded.systems, time is an essential
factor, especially in hard real-time systems (embedded
systems are usually real-time), where deadlines should not
bemissed, it is crucial to reason quantitatively about
temporal properties to assure the correctness of the
system model. As a consequence, it is necessary not only
to check that a certain state will eventually be reached but
also to ensure that this will occur within some time
window. As time information is attached to tokens, we can
analyze quantitative timing properties: we may, for
instance, prove that a given place will eventually be
marked in the future and that its time stamp, for any
possible condition, will be less than a certain time value
that represents a temporal constraint. Such a study will be
called time analysis.

A third type of analysis for systems modeled in a Pres
model, involves reasoning about values of tokens in
marked places. In this model, a place may hold at most
one token for a certain marking. Consequently, it is
possible to encode markings as boolean functions where
the variables correspond to places of the net. Boolean
functions can be straightforwardly represented by
BDDs"“. Firing a transition in a Petri net changes the
marking into a new one, which is a variation in the state of
the system. It is possible to build the BDD that represents

the transitionrelation of the system and then compute
efficiently the reachable states using BDDs!'®., With such
a BDD-based representation we can formally verify
properties, specified in CTL"", using symbolic model
checking"” and accomplish reachability analyses. In our
experiments, we use the SMV tool (a BDD-based symbolic
model checker)'” and its input language todescribe and
verify systems modeled in Pres.

A program in SMV describes both the system and the
specification (properties to verify). The system is
described as a collection of modules. Each module may
contain variables, its initial state, and assignments of
variables for the next state. A process is an instance of a
module, in such a way that the model checker executes a
step by choosing non-deterministically a process and
then executing all assignment statements of that process
in parallel.

To translate a Pres model into the SMV input
language, we declare each transition as a process that has
as parameters its input and output places as well as time
stamps of tokens in those places. In the main module we
also define the initial marking of the net, assigning initial
values to the variables that represent places and to time
stamps of tokens in initially marked places. We
describeeach transition of the Petri net as a module that
adds/removes tokens (changes the marking) when it is
executed.

RELATED WORKS

The increasing complexity of embedded systems
poses a challenge in verifying their correctness. Recently,
some validation approaches for embedded systems have
been proposed. Dano et al'® has proposed a
formalization of use cases with Petri nets, he defines a list
of temporal relations between use cases (begin at the
same time, end at the same time, one after the other, etc.).
Alur"""), presented model checking procedures based on
Hybrid Automata. Balarine®, presented a verification
methodology based on codesign finite state machines
that are translated into traditional state automata. This
procedure checks if all possible sequences of system
inputs and outputs satisfy given properties. In Wimmel®",
approach based on Petri nets, presents a BDD-based
model checker for safe nets. Although this approach is
intended to verify Petri nets in general, with no particular
interest on embedded systems and without dealing with
time parameters, it studies different kinds of describing
Petri nets. Moreover, it uses the SMV system, developed
at Camegie Mellon University. Another important
technique is proposed by Pastor'®. It is based on Petri
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nets and uses the efficiency of BDDs to represent sets of
markings and reduction rules to transform Petri nets. It
can be used for reachability analysis and verification of
some properties of Petri nets. Stoy®, a modeling
technique based on Petri nets is proposed, where timed
Petri nets with restricted transition rules are used to
represent control flow in the system. None of these
approaches integrate the formal technique in the use case
model. Our approach is to some extent complementary to
these existing techniques.

CONCLUSIONS

In this study we have presented a transformational
approach for requirements.model verification in embedded
systems. The transformation process starts by converting
the use case text into an activity diagram and uses the
latter as a means to build the input model of an
appropriate model checker. The semi-formal nature of
UML 2.0 activity diagrams, allows for uncovering
ambiguities, omissions, impreciseness, and inconsistency
that may be present in the natural language description of
the use case. In this way, while preserving the advantages
of the use cases’ natural language description
(expressivity and ease to use), we also allow for using
existing tools to verify and prove some properties of
embedded systems. ,

Currently, besides the development of a supporting
tool for our approach, we are studied the subject of
modifying the XMI DTD to represent our extended
activity diagram by means of XML documents, in order
to automate the transition between the use case model
and the activity diagrams.
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