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Abstract: We design a new yet efficient strategy for identifying against-expectation patterns in databases. An
against-expectation pattern is either an itemset that its support is out of a certain neighbor of its expected value,
referred to an against-expectation itemset or an association rule generating by an against-expectation itemset,
referred to an against-expectation rule. The techniques for mining against-expectation patterns are previously
undeveloped. Present algorithm for identifying against-expectation patterns is based on the nearest- neighbor
graph and correlation analysis techniques. We experimentally evaluate our algorithms and demonstrate that

our approach is efficient and promising.
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INTRODUCTION

An against-expectation pattern is either an itemset
that its support is out of a certain neighbor of its expected
value, referred to an against-expectation itemset; or an
association rule generating by an against-expectation
itemset, referred to an against-expectation rule. The
techniques for mining against-expectation patterns are
previously undeveloped. This study studies the issue of
mining against-expectation patterns in databases. ,

Using extant frequent-pattern-discovery algorithms
to a market basket dataset, apple can be identified as a
frequent pattern (itemset) even though its support (=200)
much lesser than its expected sales (=300) because apple
is an everyday fruit and is frequently purchased
everyday. Comparing to apple, cashew is an expensive
fruit and is rarely purchased. In the market basket dataset,
cashew cannot be discovered as a frequent pattern of
interest, even though its support (=20) much greater than
its expected sales (=5). From an applied context, while
frequent pattern apple is commonsense, the purchasing
increase of cashew is desired in marketing decision-
making that is just the against-expectation pattern to be
mined in this paper. Similarly, the purchasing decrease of
apple is also an against-expectation pattern desired.
These against-expectation patterns assist in evaluating
the buying amount of the products in next time-lag.

Against-expectation patterns are  distinct from
frequent patterns (or association rules) because (1) they
may be pruned in identifying frequent patterns (or
association rules), (2) they can be deviated from frequent
patterns (or association rules) and (3) against-
expectation patterns are hidden information, whereas
traditional frequent patterns (or association rules)

are relatively plain information.

To our knowledge, likely related achievements mainly
include unexpected pattern'”, exceptional pattern®® and
negative association rules”, The first and second ones
are referred to exceptions of rules, also known as
surprising patterns. The third ones are referred to a
negative relation between two itemsets.

An exception of a rule is defined as a deviational
pattern to a well-known fact, exhibits unexpectedness. For
example, while bird(x)—flies(x) is a well-known fact, mining
exceptional rules is to find patterns such as bird(x),
penguin(x)— ~flies(x). The negative relation really implies
a negative rule between the two itemsets, including
association rules of forms A— ~B, ~A— B and ~A— ~B,
which indicate negative associations between itemsets
A and B"¥

Hence, against-expectation patterns are also different
from the unexpected pattern, exceptional pattern and
negative association rules. Therefore, against-expectation
patterns should be regarded as a new kind of patterris,

AGAINST-EXPECTATION PATTERNS

This presents some basic concepts and describes the
issue of mining against-expectation patterns in databases.

LetI={i, i, ..., 1,} be a set of n distinct literals called
items. For a given dataset D over [, we can represent
D as follows.

In Table 1, T, is the identifier of transactions in D;
a, is the state of item i, in transaction T,, i, = 1 when i,
occurs in T; and i, = 0 when i, does not occur in T, and f,
is the frequency of i, in D, i.e. the sum of kth column a,,.

In marketing, data marketers must know the sales
expectation of each product that is used to determine how
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Table 1: A dataset D over 1

TID iy ip s iy
T, ay a ‘.- Ay
T, ayn ay - an
Ta ap, an B Ay
Frequency f, f, i.e f,

Table 2: The expectation of items
i i in
Expectation [ [ ... €

many products should be bought in each month (or a
certain time-lag). Therefore, for the set of items I, we
have the expectations of the supports of items( Table 2).

In Table 2, ¢, is the expected frequency of i, in D. For
the example in Section 1, expectation(apple)=300,
support(apple)=200, expectation(cashew)=5 and
support(cashew)=20. Therefore,

support(cashew)-expectation(cashew) = 20-5 = 15

Is three times of its expectation. Hence, cashew is an
against-expectation pattern. However,

expectation(apple)-support(apple) = 100

€.g. the purchasing decrease is a third of the
expectation, we also refer ‘apple’ as an interesting
against-expectation pattern.

Against-expectation patterns are defined as either
those itemsets that their supports are out of an
e-neighbour of their expected values, referred to
against-expectation itemsets; or those rules that are
interactions  within  against-expectation  itemsets,
referred to against-expectation rules. Formally, an
against-expectation itemsets X has its support out of the
e-neighbour of its expectation, i.e.

[support(X)-expectation(X)| > e

Where, ¢ is a user-specified positive value. An
against- expectation rule is of the form:

X-Y

That is  the interaction  between the
against-expectation itemsets X and Y. For example,
apple — cashew can be an against-expectation rule
between the above two against-expectation itemsets.

We represent and classify against-expectation
patterns into three kinds: increment patterns, decrement
patterns and negative associations.

* An increment pattern is either an itemset X that its
actual support is greater than its expected value, e.g.,
support(X) -expectation(X) > ¢ (e is a user- specified
positive value), referred to an increment itemset; or a
rule that is an interaction within increment itemsets,
referred to an increment rule.

* An decrement pattern is either an itemset X that its
actual support is less than its expected value, e.g.,
support(X) -expectation(X) < -e (e is a user-
specified positive value), referred to a decrement
itemset; or a rule that is an interaction within
decrement itemsets, referred to a decrement rule.

* A negative association is a rule that its antecedent
and action belong to different against-expectation
itemsets, i.e. either (1) its antecedent is an increment
itemset and its action is a decrement itemset, or (2) its
antecedent is a decrement itemset and its action is an
increment itemset.

Mining against-expectation patterns is actually a
challenging issue because it is very different from those
problems faced by discovering frequent patterns (or
association rules). Because against- expectation patterns
can be hidden in both frequent and infrequent itemsets
(with lower frequency), traditional pruning techniques are
certainly inefficiency for identifying against-expectation
patterns. This indicates that we must exploit alternative
strategies to; (a) confront an exponential search space
consisting of all possible itemsets, frequent and
infrequent in a database; (b) detect which of itemsets can
generate against-expectation patterns; (c) which of
against-expectation patterns are really useful to
applications; and (d) measure the interestingness of
against-expectation patterns.

One may note that the expectation can be expensive
and dynamic. For a new company, its heads must take
efforts on estimating the expectation by analyzing the
environment and possible customers. For an old
company, we can take the support of items in last
time-lag’s database as their expectations so as to check
the support of items and identify the against- expectation
patterns in this time-lag’s database, or to predict the
support of items and the against-expectation patterns in
next time-lag. In the following, a time-lag is a month for
simplifying the description.

ALGORITHM DESCRIPTION

Present algorithm for mining against-expectation
patterns mainly includes; (1) generating a set of against-
expectation items by preprocessing; and (2) identifying
interactions within these against-expectation items based
on the Nearest-Neighbor Graph and the Correlation
Analysis techniques.
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Before drafting our algorithm, we illustrate our ideas
using an example as follows.

Example 1: Suppose we have two market basket datasets
from a grocery store in January (Table 3) and February
(Table 4), respectively. Let us focus on the purchase of
products. Let min_supp = 33.3% and min_copnf = 70%.
From the dataset DF in Table 4, we can use extant
mining algorithms to get association rules as follows.

supp (toothbrush -~ toothpaste) = 33.3%
conf (toothbrush - toothpaste) = 100%
supp (toothbrush ~ shampoo) = 33.3%
conf (toothbrush - shampoo) = 100%

Different from these rules, we mine against-
expectation patterns in DF by referencing the dataset DJ
in Table 3. The idea is briefly drafted as follows. Let’s
compare the support and increment of items apple and
cashew as listed in Table 5.

Obviously no matter when is Jan. or Feb., apple is
always frequent and cashew is not. However, the
increment of cashew is far higher than that of apple.
Therefore, our algorithm is designed for identifyin cashew
with its change trend as an against-expectation pattern.
This kind of against-expectation itemsets cannot be
identified using extant association rule mining algorithms.

Finding against-expectation itemsets with square
deviation: As mentioned above, confirming the
expectation is not an easy thing for them of the supports
of items are often expensive and dynamic. So the first key
step in the process of finding against-expectation itemsets
is to how to make sure the expecatations. Associated with
real world, we decide to use store to denote expectation,
because store must be confirmed according to previous
sale record, market prediction and experts suggestions
and represent expected sale of this item in next time-lag.
But we think only one or two stores is not enough. What
we really want is a trend curve about store so as to

Table 3: J: Transactions in january
Toothbrush, toothpaste
Bread, jam

Cashew

Apple, banana

Toothbrush, toothpaste, bread
Apple, cola, shampoo

Apple, banana, shampoo
Bread, jam, apple

Apple

Apple, banana, cola

Table 4: F: Transactions in february
Toothbrush, toothpaste, bread, jam, shampoo
Bread, cashew, apple, shampoo, jam
Cashew, shampoo, bread, jam

Apple, banana, cola, shampoo

Toothbrush, toothpaste, shampoo

Bread, jam, shampoo

Toothbrush, toothpaste, cola, shampoo
Apple, shampoo, bread, jam

" Apple, banana, shampoo

Cashew, apple, banana, cola, shampoo
Toothbrush, toothpaste, apple, shampoo

Bread, jam, apple, shampoo

Table 5: The support and increment of apple with cashew

Jan’s supp Feb’s supp Increment
Apple(%) 50 58.3 16.7
Cashew(%) 10 25.0 300.0

whether an item is on earth against-expectation item
or not. So in this sub-section, an algorithm base on square
deviation is designed for seeking against-expectation
itemsets.

Definition 1: Let S; be store of i-th item at j-th time-lag,
where 1<i<m, 1<j<n. So its math expectation is:

E(S,) = S, +8S,..+S,
n

and its square deviation is:
p(S) =58, - ES))’
=

and let prop be threshold. Then against-expectation
items are those satisfying:

p(S) = prop

Based on the above, our SD algorithm is described
in Fig. 1.

Identifying interactions with in against-expectation
items: Only finding against-expectation items is not
enough, our goal is also to identify interactions within
them. So this employs two algorithms to get this goal.

Input  Stock, Prop

Output MID

(1) for each MID in a dataset
(2) begin j-MID;

3) calculate E(X))p(X);

@) if (p(X)>=Prop)

5) return MID,

(6) _end

Fig.1: SD  algorithm  finding  against-expectation
merchandise
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The nearest neighbor graph: Let V= {v,, v,, ...v,} be a set
of points in R'. The nearest neighbor of v, is a point v, j#i,
with minimum Euclidean distance from v, To make the
nearest neighbor unique we choose the point v; with
maximum index in case of ties and denote it by nn(v;). For
any v, we define the directed edge e(v) = (v, nn(v). The
nearest neighbor graph of V, denoted by NNG(V), is
directed graph (V,E), where E = {e(v) | v € V}*'!,

We introduce an example after learning what the
nearest neighbor graph. Through this, you can see why
it is suitable for settling our problem.

Example 2: Suppose shirt and shoes are both
against-expectation items and so are other items listed
below too.

shirt: business suit, tie, shoes, shoes, T-shirt, belt, tie bar
and socks.

shoes: business suit, socks.

The two lists above represent items having influence
on shirt and shoes, respectively. And their influence
extents are organized with down trend. Dealing with this
problem like this can make users know not only
interactions between against-expectation items, but also
what extant their influences are.

Let shirt € V, shoes € V. Then a list corresponding to
any of them construct a nearest neighbor list in NNG(V)
and all lists NNG(V). So according to this analysis, we
have definition 2 and 3 about relative bargaining quantity
below. :

Definition 2: Suppose A = {a,, a,,...3,}, B = {b,, b,,...b,}.
Let A and B denote two goods, a; and b, sales in I th time-
lag. Then A’ and B’ denote sale quantity increments:

A'={a,-a,a,—a,,.,a,—-a,}
B ={b, -b,,b;—b,,...,b, —b,,}

Let Q(A,B) = {q;, qu,---Qu. }, where q =.;i+'__zi . We
i+1 — Y
call Q(A,B) as the relative bargaining quantity of A and B.
And interaction extant between A and B, or distance is
denoted by:

MA&=§@—H@AEW

We suppose against-expectation item represents
node in NNG(V) and weight of edge D(A,B). Then the
problem seeking interactions between items converts into
that seeking the nearest neighbors of an item. After
finishing the NNG(V), a threshold is given to confirm the
number of nearest neighbors (Fig. 2).

Input Sale table, k-threshold
Output  MID neighbors

(1) SaleTable - Stage table

(2) for each MID from Fig. 1

(3)  begin for each MID’ from Fig,. 1

“4) begin calculate X(MID, MID*)O

5) calculate d(MID, MID*)O

6) if(d(MID, MID’)>=k-threshold)
@) MID neighbors - MID’;
(8) end

(9) end

Fig. 2: Algorithm NN, k-nearest neighbor algorithm

Finally, this algorithm will give users a serial of
lists each of which is corresponding to each against-
expectation item and organized with down trend.

The process of this algorithm is as follows:

Correlation analysis: Different from the nearest neighbor
graph, correlation analysis can not only find interactions
between against-expectation items, but also find that
these interactions are positive or negative,

For explaining our algorithm, there has necessary to
introduce some basic concepts about correlation analysis.
The below contexts can be found in any book concerning
correlation analysis (Fig. 3).

Let X = {X,, X,,...X,} be an itemset and each x; an
against-expectation item. Then P(X) denotes the
probability that X occurs in a transaction and P(X)
the probability that X dose not occur in a transaction.
So P(X) = 1-P(X ). And P(XUY) denotes the probability
that X and Y occur in a transaction simultaneously. If
P(XuY) # P(X)P(Y), then X and Y is dependent, otherwise,
independent. Correlation itemset is such an itemset each
pair of items in which is correlated with each other"".

Theorem 1: If each item in itemset S is correlated, then all
supersets of S are correlated, i.e. correlation is upward
closed.

Proof: Let X and Y be correlated, but X, Y and Z are
independent one another. Then:

P(XUY)
=PXUYUZ)+PXUYUZ)
=P(X)P(Y)P(Z) + P(X)P(Y)P(Z)
=P(X)P(Y)

So X and Y are independent. This result and the
hypothesis conflict, so theorem is right.

1089



Asian J. Inform. Tech., 4 (11): 1086-1092, 2005

According to theoreml, we decide to only seek
minimum correlation itemsets for enhancing efficiency and
reducing time cost by set-enumeration tree!”. And the
formula to make sure whether an itemset is positive or
negative is as follows:

P(x,Ux,U..Ux,)

Corr(X) = P(x,)X P(X,)X...Xp(X,)

If Corr (X)>1, items in X are positive correlated; if
Corr (X)<1, items in X are negative correlated; if
Corr (X) = 1, items in X are independent. But in fact, the
last situation is hardly to happen in real world. So we give
a new threshold proRange and modify the judgment
criterions:

Items in X are independent if X satisfies:

[1-pro range| < Corr (X) < |1 + pro range|
Items in X are positive correlated if X satisfies:
Corr (X) > |1 + prorange|
Items in X are negative correlated if X satisfies:

Corr (X) < |1 - prorange|

The process of this algorithm is as follows:

Input  Transaction

Output Pos corr, NegCorr

(1)  Construct set-enumeration tree for MID from Fig. 1;
(2)  Scan each node in set-enumeration tree

(3)  if (Corr>(1+Prorange))

PosCorr-node;
(4)  if (Corr<(1-Prorange))
NegCorr-node
(5)  if (|1-ProRange|<=Corr<=|1+Prorange|)
pruning node

Fig. 3: Algorithm CA: correlation analysis algorithm

In addition to this measure, chi-square is another way
for identifying correlation of itemset and its formula
is below:

(O(x)-E[1])’

2 __
* AT EN

Where,

R = {ip iy} X fiys ip} X X fipy iy}, T =Thpenf € R

R is possible count of all frequent itemsets occurring
and r is a count of a item occurring singly. O(r) denotes
the actual count of r occurring and E(r) the expected count
of r occurring.

Particularly, the formula for measuring correlation of
two items is as follows:

_(ElxY]-o(xv) (E[XY¥]-o(x¥)]
E[XY] E[X?]

(%¥]-o(%)] _(£[3¥]-o(c7)]
B[XY] B[]

Although these two measures are both used for
identifying correlated itemsets, but for us, the former is
better than the latter, because it can distinguish positive
itemsets from negative ones. So here, we employ the
former measure.

EXPERIMENTS AND ANALYSIS

Experiments: To evaluate our algorithm, we have
conducted extensive experiments on a DELL Workstation
PWS650 with 2G main memory, 2.6G CPU and
WINDOWS 2000.

The experiment have made on a synthetic database
that includes 100 transactions consisting of 15 items. We
not only evaluate our algorithms on this database, but
also evaluate Apriori on it and make a comparison
between them.

Below is comparison aiming at Apriori’s three
drawbacks.

*  Generating false association rules: In this experiment,
the result of Apriori is:

supp(8 — 9) = supp(10 = 13) = 60%
conf(8 — 9) =conf(10 - 13) =100%

while k-nearest neighbor graph get: (Table 6)
8:3,4,6,13,

9:12,13,

10: 13,

13:0,1,2,3,4,5,6,7,8,9,10, 11, 12,

Table 6: K-nearest neighbor

MID Nearest neighbor MID Nearest neighbor

0 5,7,13 8 3,4,6,13

1 57,11,13 9 12,13

2 513 10 13

3 8,5,6,4,13 11 1,13,14

4 6,5,3,8,13 12 9,13

5 0,1,2,3,4,7,13 13 0,1,2,3,4,5, 6,7,
8,9,10,11,12

6 4,3,8,13 14 11

7 0.1,5,13
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Table 7; Correlation analysis
Positive correlated itemsets
(0,1),(0,4),(0,8),(0,10),(1,4)
(1,8),(1,10),(1,14),(2,3),(2,5)
(2,10),(2,13),(2,14),(3,5),3,6)
(3,11),(3,12),(4,8),(4,10),(4,14)
(5,10),(5,14),(6,7),(6,11),(6,12)
(7,12),(8,9),(8,12),(10,13)
(12,13),(0,7,9),(0,7,13),(0,9,13)
(5.9,13),(6,8,13),(6,9,13) (9.10,14)

Negative correlated itemsets
(0,3),(0,5),(0,11),(1,2),(1,3)
(1,5),(1,6),(1,11),(1,12),(2,4)
(2,8),(2,11),(2,12),(3,4),(3,8)
(4,5),(4,6),(4,11,(5,6),(5,7)
(5,8),(5,12),(6,10),(6,14)(7,14)
(8,11),(9,11),(10,11),(10,12)
(12,14)

Table 8: Apriori algorithm
1-freq emsets
3,7,8,9,10,13

3-freq itemsets
(8,9,13)
(9,10,13)

2-freq itemsets
(8,9),(8,13),(9,10)
9,13),(10,13)

It can be seen easily that 8 toothbrush is closest to 3
toothpaste and has nothing about 9 bread. 10 and 13 are
beer and milk respectively and their result is
Corr(8,9)=1.2<Corr(10,13)=1.4. So toothbrush and bread
is a rule.

»  Generating abundant rules: Apriori gets supp (9-13)
= 73%. But it is not useful for decision makers
because of closed correlation between them. While k-
nearest neighbor graph reveals that they are not very
closed and correlation analysis sees that they are not
independent.

¢ Missing some rules:
Case 1: Two algorithms both demonstrate that tie is
correlated with business suit, perfume and cigarette, but
on the contrary, in Apriori, it cannot be frequent given
minsupp = 0.4. It is not difficult to understand that tie is
supposed to affect the sale of business suit, which is
justified. Although tie can be found with Apriori just
reducing the threshold but in the meantime, more and
more abundant rules generates too.

In addition, correlation analysis also found: (Table 7)

5: positive 2, 3, 10, 14, (9, 13)

negative 1,0, 4

That is, diaper have positive correlation with 2
cigarette, 3 toothpaste, 10 beer, 14 makeup, 9 and 13 bread
and milk and negative correlation with O tie and 4
business suit.

Case 2: In Apriori, 12 cashew can not be found until
minsupp = 0.2, but the number of one frequent item is up
to 13. But finding out almost all items is obviously not
significant (Table 8) supp(7) = 0.55 of apple can be gotten
in this process. It is reasonable that the sale of apple is
higher than that of cashew. For example, in prior stage,
sale of cashew is 2 kg and that of apple is 50 kg, then in
next stage, the former is 6 kg and the latter is 60 kg. But
apple is still frequent and cashew still not although sale of
cashew increases 3 times while that of apple increases just
one-sixth. So in this situation, compared with Apriori,
k-nearest neighbor graph works better because it can keep

25
20 1
o 15 1
E
10 -
5
0
1 2 3 4 5 6
Database
Fig.4:  Consuming time of databases with different
size based on the nearest neighbor graph
210
200
g
£ 19
180
170
1 2 3 4
Database
Fig.5:  Consuming time of databases with different

size based on ‘correlation analysis

out the mistakes arising from item’s own properties
through introducing relative bargain quantity and
calculating correlation with increment.

¢ These two algorithms are also good from maturity,
i.e. they can find all itemsets which Apriori can
find. K-nearest neighbor graph is to find nearest
neighbors of each against-expectation item, so it can
do well employing suitable threshold. And correlation
analysis must not miss some against-expectation
itemsets for its operating of visiting and pruning on
tree.

¢ The advantages of two algorithms still exist even
database changes.

Time complexity: We have performed several experiments
on databases with different size to illustrate the time

complexity.
We employ 6 transaction databases including 7500,
10000, 20000, 30000, 40000, 50000transactions

respectively. From Fig. 4, we can see that consuming time
increases with the growth of size of database.

Similar trend can be found in correlation analysis
(Fig. 5).

Comparison between two algorithms: K-nearest neighbor
graph and correlation analysis are evaluated, respectively,
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either of which can make up drawbacks of association rule
with support-confidence model and is good at static
classification.

The former enhances the correctness by introducing
relative bargain quantity and considering increment to be
quotient. And its manner of result output can be
understood because the sequence of all nearest
neighbors of each item is from strong to weak.

Correlation analysis can enhance correctness and
reduce time cost by pruning. Introducing fuzzy theorem
makes its result more reasonable. Finally, it is convenient
for decision makers to distinguish positive correlation
from negative correlation for each against-expectation
item.

CONCLUSIONS

We have designed a new yet efficient strategy for
identifying against-expectation patterns in databases.
The techniques for mining against-expectation patterns
are previously undeveloped. Present algorithms for
identifying against-expectation patterns are based on
the Nearest-Neighbor Graph and Correlation Analysis
techniques. We have conducted experiments for
evaluating our algorithms and demonstrated that our
approach can efficiently discover against-expectation
patterns.
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