Asian Journal of Information Technology 4 (12): 1120-1126, 2005

© Medwell Online, 2005

Improving Dlmi Algorithm by Incorporating New Features

Abdullah Mohdzin and Yousef Kilani
Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia

Abstract: The DLMI Algorithm is a local search algorithm for solving constraint satisfaction problems that
incorporates the use of Island confinement method. Local search starts the search for a seolution from a random

assignment. [t then examines the neighbours of this assigmment, using the penalty fimetion to determine a

better neighbour valuations to move to. It repeats this process until it finds a solution that satisfies all
constraints. The island confinement method considers some of the constraints as hard constraints that are

always satisfied. In this way, the constraints reduce the possible neighbours in each move and hence the

overall search space. We choose the hard constraints C in such away that the space of valuations that satisfies

these constraints 1s connected in order to guarantee that a local search can reach a solution from any valuation
in this space without violating C. A previous study has shown that the DLMI algorithm performs better than
the original DLM algorithm. Tn this paper, we describe how incorporating learning in the island traps and restart

mmproves the DLMI algorithm.

Key words: DLM algorithm, DLMI algorithm, local search, SAT problems

INTRODUCTION

Many problems in computing can be modelled as a
Constraint Satisfaction Problem (CSP). CSP is a
problem defined by a set of variables, each of which
can take a number of values from some domain and a set
of constraining conditions invelving one or more
variables!”. The task is to find a solution which satisfies
all these constraining conditions.

There are two methods of search techniques to find
such solution: Systematic and nonsystematic. The
systematic search method explores the whole search
space in a systematic manner by following techniques
such as depth-first or breadth-first with respect to
particular variables and thewr values ordering or by
maintaining a database that store part of the search space
which has been visited and does not contain a solution.
Examples of such methods include chronological
backtracking'” and dynamic backtracking'”. The
nonsystematic method came to stochastically search the
search space in only a probabilistic sense in attempt to
find a solution. Examples of such nonsystematic
techniques include genetic algorithms, neural network and
the local search algorithms.

Local search algorithms traverse the search space to
look for solutions using some heuristic function. These
algorithms, for example GSAT™, WalkSATP?, DLM 9,
the min-conflicts heuristic™, GENET!" and ESG!Y have
been successful in solving large constraint satisfaction
problems.

There are many examples of CSP problems, such as
machine vision!, scheduling!, temporal reasoning!
and circuit design™. our interest in this study is in using
local search algorithms in solving a special type of CSP
known as the Satisfiability Problem (SAT)'

In the context of constraint satisfaction, local search
first generates an imitial varable assignment (or state)
before making local adjustments (or repairs) to the
assignment iteratively until a solution is reached. Local
search algorithms can be trapped in a local mimmum
(trap), a mnon-solution state in which no further
improvement can be made. To help escape from the local
minmmum, GSAT and the mm-conflicts heuristic use
random restart, while GENET, the breakout method, DLM
and ESG modify the landscape of the search surface.

The efficiency of a local search algorithm depends on
three things:

» The size of the search space (the number of variables
and the size of the domain of each variable),

s The search surface (the structure of each constraint
and the topology of the cons-traint connection) and

¢ The heuristic function (the defimition of
neighbourhood and how a good neigh-bour is
picked).

The Island Confinement Method (ICM) aims to reduce the
size of the search space!'. Previous work has
successfully incorporate ITCM into DM, which is a local
search algorithm. The algorithm, known as DLMI has

Correspomding Author: Abdullah Mohdzin, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia,

Malaysia

1120

Asian J. Inform. Tech., 4 (12): 1120-1126, 2005

been shown to be faster than the original DLM algorithm.
This paper, describes a study that has been carried out to
improve the original DLMI algorithm by adding new
features. The aim of this study 1s to get a new algorithm,
known as DLMI2004, which is better than the original
DLMI algorithm.

In this section, we illustrate some terminologies and
concepts that are used in this study .

CSP: Given a CSP (Z, D, C), we use var(c) to denote
the set of variables that occur in constraint ¢ € C. If
|var(c)| = 2 then ¢ 18 a binary constraint. In a binary
CSP, each constraint ¢ € C is binary. A valuation for
variable set {x,,..., x,} ¢ Z 1s a mapping from variables to
values denoted {x;, - a,..., x, » a,} where each x, is a
variable and a € D, where a, € D,. A state of a CSP
problem (Z, D, C) (or simply C) is a valuation for Z. A
state 5 1s a solution of a constraint ¢ if 5 makes ¢ true.

Solution of a CSP: A state s 18 a solution of a CSP
(Z,D,C) if s is a solution to all constraints in C
sinultaneously. An #nsat 1s the set of literals occurring in
the unsatisfied clauses.

SAT: SAT problems are a special case of CSPs. A
{propositional) variable can take the value of either 0
(false) or 1 (true). A literal is either a variable x or its
complement x'. A literal / 15 true if / assumes the value 1;
1l is false otherwise. A clause is a disjunction of literals,
which 1s true when one of its literals 1s true. For simplicity,
we assume that no literal appears in a clause more than
once, and no literal and 1ts negation appear in a clause.

A Satisfiability problem (SAT) consists of a finite set
of clauses (treated as a conjunction). Let I denote the
complement of literal I: I =x"if I =x, and I =x"if I'=x Let
L'=4l' |1e L} for a literal set L.

Since we are dealing with SAT problems we will often
treat states as sets of literals. A state {x, - a,, ..., X, ~a,}
corresponds to the set of literals

ixa=1t U {x/|a = 0}.

Encoding CSP as SAT: In this study, we focus on a
specific class of SAT problems, namely those encoding a
CSP. We can encode any bmary CSP (Z, D, C) to a SAT
prablem, SAT (7, D, C) as follows:

¢+ Every CSP variable x € Z is mapped to a set of
propositional variables x,,...., x,, where D, = {a,,...,
a..

» Foreveryx £ Z, SAT(Z, D, C) contams the clause, x,,
V...V x,, which ensures that any solution to the
SAT problem gives a value to x. We call these
clauses at-least-one-on clauses.

* Each binary constraint ¢ € C with var(c) = {x, ¥} is
mapped to a series of clauses. If {x-a,v~a"}is
not a solution of ¢ we add the clause x', V v, to
SAT(Z, D, C), where x, and y', € Z. Thus ensures that
the constraint ¢ holds m any solution to the SAT
problem. We call these clauses problem clauses.

The above formulation allows the possibility that in
a solution, some CSP variable x is assigned two values.
Choosing either value is guaranteed to solve the original
CSP. This method is used in the encoding of CSPs into
SAT in the DIMACS archive.

When a biary CSP (7, D, C) 1s translated to a SAT
problem SA7¢Z, D, C) each clause has the form x"V '
except for a smgle clause for each variable in Z.

Local search: A local search solver moves from one state
to another using a local move. The neighbourhood n(s)
of a state 5 1s the states that are reachable mn a single move
from state s. The neighbourhood states are the states
reachable in one move from the current state regardless of
the actual heuristic function used to choose the
neighbour state to move to.

The Hamming distance between states s, and s, is
defined as

Hd (51, 52) = |81 - (5111 82)] = sz - (8 N s2)].

It measures the number of differences in
variable assignment of s, and s, A vector variable
vec(x) = (x,.... X).

The general local search algorithm 1s given in (Fig .1).

1-LS(_¢)

2- let s be a random valuation for var(_c)

3- while (solution not found and time not over)

4- 5 := b(n(s))

5- If (there is no such s) then it is local minima
escape this minima

Fig . 1. A general local search algorithm

The local search algorithm starts the search from a
random valuation. This valuation represents the current
state. Some local search algorithms may start the search
from a heuristically chosen valuation. Local search then
moves from the current state to a better neighbour. If
there is no better neighbour then it is local minima, #rap.
It escapes this trap. Some local search algorithms may
include a restart and/or tabu list. If the search could not
find a solution within a number of flips it restarts the
search. It uses the tabu list to avoid flipping the same
variable m the next coming number of steps.

1121

Asian J. Inform. Tech., 4 (12): 1120-1126, 2005

Local search for SAT problems: We assume the
neighbourhood function n(s) returns the states which are
at a Hamming distance of 1 from the state s. In an abuse of
terminology we will also refer to flipping a literal / which
sunply means flipping the variable occurring in the literal.
A local move from state s to its neighbour s' 1s a
transition, s = &', where &' € n(s). We will consider a SAT
problem as a vector of clauses vec(c) (which we will often
also treat as a set).

The island confinement method: The ICM" is a generic
method which can be mcorporated m any local search
algorithm. The ICM is based on the observation: the
solution space of any subset of constraints in P encloses
all solutions of P. Solving a CSP thus amounts to locating
thus space to all the constramts in P, which could be either
points or regions scattered around in the entire search
space. The solution space of constramts D 1s commected
if the search can move between any two solutions of D
without violating any constraint in D. The idea of ICM
works by finding a set of constraints which are
commnected, it starts the search from an assignment which
satisfies all these constraints and finally restrict local
search to search in this space.

Let 50l(C) denotes the set of all solutions to a set of
constraints C, in other words the solution space of C. A
set of constraints C is an island if, for any two states s,
s, € sol(C), there exist states s......s,, € sol{C) such that
s, = s, forall i e {0.... .n-1}%. Thatis we can move from
any solution of C to any other solution using local moves
that stay within the solution space of C.

Let litfc) denote the set of all literals of a clause ¢.
Let ityC) = u .. litfc). A set C of clauses is non-
conflicting if there does not exist a variable x such that x,
x' € lit(C). A non-conflicting set C of clauses forms an
island"”. Therefore, the problem clauses are an island.

Incorporating TCM into LS algorithm: Given a SAT
problem, we can incorporate ICM into any local search
algorithm by the following steps:

» Split the clauses to vec(c), and vec(c),, where vec(c),
and vec(c), are the island clauses and the at least-
one-on clauses respectively.

+ Make an initial valuation that satisfies vec(c);;
getting nside the island. vecfc), consists of clauses
of the form x' V y'. An arbitrary extension of
lit(vec(c)) to all vanables can always be such an
initial valuation.

¢ Restricting the search to search within the at-least-
one-on clauses while satisfying the problem (island)
clauses. To do so, we exclude literals / from flipping
when s" =s -1 u l' does not satisfy vec(c),. Hence
we only examine states that are in n(s) and satisfy
vec(c),.

The DLM algorithm: DLM™ is a discrete Lagrange-
multiplier-based local-search method for solving SAT
problems, which are first transformed into a discrete
constrained optimization problem. Experiments confirm
that the discrete Lagrange Multiplier (LM) method 1s
highly competitive with other SAT solving methods.

DLM performs a search for a saddle point of the
Lagrangian function

L(s, vec(A)) = vec(A).vec(c)(s)

(That is zk .c‘(s))

where vec(A) are LM, one for each constramt, which
give the penalty ' for violating that constraint and ¢fs) =
@ if state s satisfies constraint ¢ andc (s) = 1. The saddle
point search changes the state to decrease the Lagrangian
function, or increase the (LM).
Fig. 2 shows the core of DLM (Downloadable from:
http://www . manip.crhec.uiuc.edu/Wah/-programs/
SAT DLM 2000.tar.gz). The full DLM algorithm also
includes many other features,™ for details.

1- DLM(vecfc))
2- let s be a random valuation for varfvec(c))
3-vec(d) =1
4- while (L(s, vec(4)) >0 and (max flips 1s not over))
5- min:=L{s, vec(A)), best := {}
6- wunsat ;= the literals in unsat clauses
7- for (each literal I € unsat)
8- s":=s-lul
9- i (L(s", vec(A) < min) //a downhill move
10- min = L{(s", vec(A)), best = {s"}. s :=s"
11- elseif (((L{(s", vec(d)) = min)
and (I is not in tabu Iist))
12- best:= bestu {s"}
13- if (best is empy) then it is trap; do learning
14- else s :=s — {var = arandomly
chosen element from best: U var'
15- if (LM update condition holds)
16- vec(d) ;= vec(d) + vecfci(s)
17- return s
Fig . 2: DLM (the core algorithm)

Line 2 makes random initialization to all the vanables.
Line 3 imtializes vec(4) to 1. Line 4 repeats the search until
it finds a solution or reaches a maximum number of flips.
L(s, vecfd)) = O means no constraint is violated, i.e.
vec(ci(s) = 0.

Lmes 5 and 6 set min and best and unsar to the
Lagrangian function of the current state s, empty and the
set of all the literals m the unsatisfied clauses
respectively. We call the local move if it is to a better and
equal neighbours a dowrhill and flat moves respectively.

Lines 8-12 save the best neighbors in best. Note that
every variable i best must either make a downhill move or
1t 1s not n the tabu list making a flat move. DLM restricts

1122

Asian J. Inform. Tech., 4 (12): 1120-1126, 2005

the tabu list to the flat moves only. If best is empty then
it 1s a trap, line 13 makes learning. In learning, DLM
mcreases the lagrangian multipliers of the unsatisfied/all
clauses according to parameters.

Lme 14 chooses one of the best neighbours and flip
1t. Lines 15-16 update the lagrangian multipliers according
to a parameter.

The DLMI Algorithm: The first DLMI algorithm was
implemented by incoporating the ICM into the original
DLM algorithm™”.

IMPROVING THE DLMI ALGORITHM

To enhance the DLMI algorithm, we have added two
new features.

Furstly, the use of cutoff parameter and restart. We
restart the search when the number of flips reaches certain
limit. This helps us getting the solution faster.

Secondly, the use of learn when the number of island
traps reaches certain limit. In learning, we increase the
lagrangian multipliers of the unsatisfied clauses. When
there is an island trap, we choose the variables to free
from the unsatisfied clauses of the higher lagrangian
multipliers since the clauses of the highest lagrangian
multipliers involved in 1sland traps more than the clauses
of a lower lagrangian multipliers. Freeing the variables
from the currently unsatisfied clauses of the highest
lagrangian multipliers gives more chances for these
clauses to be satisfied in the coming flips.

The improved algorithm is shown in (Fig . 3).

The following is the detail description of this
algorithm. Line 3 makes an initial valuation that gets the
search inside the island. Line 6 restarts the search after
each cutoff flips, where cutoff is a parameter. Line 8 sets
unsat to the set of free literals in the unsatisfied clauses
so that flipping any of these literals will not violate any
1sland clause. It 1s an 1sland trap if snsaf 15 empty.

Lines 6 and 10 contain the new features of
DLMIZ2004. We do learmng in the same way DLM does
learning 1n the DLM traps. Line 10 learns when the
number of traps reaches a certamn limit.

If there 15 no 1sland traps, line 13 makes a DLM move.
Note that DLM trap never happened and this is because
every literal appears only once in the at-least-one-on
clauses and flipping this literal will only satisfy the clause
i1 which this literal occurs. In other words, if the literal x
is free then flipping x makes a downhill move.

1- DLMI(vec(c))
2- split vec(e) into vecfc), and vec(c),
3- make an nitial valuation s that satisfies vec(c),
4- vec(d) =1
5-while (L(s, vec(A) > 0 and (max flips is not over))
6- restart after each curoff flips
7- min :=L(s, vec(A)), best := {}
8- wnsat:= v {I | I € unsatisfied clauses |
cevec(c), s dsollc)and (s-1ul)esollc)}
9- if (unsat 1s empty) then an island trap
10- learn after learn island traps
11- escape an island trap
12- else
13- g":=s-10T
14- 1if (L{s", vec{d) < min) //a downhill move
15- min:=L(s", vec(4)), best := {s"},s:=5"
16- elseif (((L(s", vec(d)) = min)
and (7 1s not 1n tabu lis1))
17- best .= bestu {s"}
18- s:=s- {var = arandomly
chosen element from best} u var’
19- 1f (LM update condition holds)
20~ wveco(d) = vec(d) + vec(c)(s)
21- return s
Fig . 3: The DLMI2004 algorithm.

EVALUATION

To evaluate the effectiveness of the new algorithm,
we have conducted an experiment to compare the
performances of the DLM algorithm, the DLMI algorithm
(now known as DLMI2002) and the new DLMI algorithm
(now known as DLMI2004).

Eight problems have been
experiment as shown in Table 1.

selected for this

Table 1: Problems to be solved

Problems
P1 Queen Placement Problems
P2 Random permutation generation problems
P3 Tncreasing penmutation generation problems
P4 Latin square problems
Ps Hard graph-coloring problems
Pé Tight random C8Ps
P7 Phase transition CSPs
P8 Slightly easier phase transition C8Ps P

Encoding the problem into binary CSP: Table 2 shows
the instances that are used for experimenting and the
number of variables and clauses in each of these
instances. These mstances have been translated from a
binary CSP.

1123

Asian J. Inform. Tech., 4 (12): 1120-1126, 2005

Table 2: Number of Variables and Clauses in each of the Tnstances.

Table 3: The results of the DM algorithm

Instance Vars Clauses
Pl 10queen 100 1,480
20queen 400 12,560
S0queen 2,500 203,400
100queen 10,000 1,646,800
P2 pps0 2,475 159,138
ppo0 3,568 279,305
pp70 4,869 456,129
pp8O 6,356 660,659
PpRo0 8,059 938,837
ppl0o 9,953 1,265,776
P3 aplo 121 671
ap20 441 4,641
ap30 961 14,911
P4 Magic-10 1,000 9,100
Magic-15 3,375 47,475
Magic-20 8,000 152,400
Magic-25 15,625 375,625
Magic-30 27,000 783,200
Magic-35 42,875 1,458,975
P35 2125n-18c 2,250 70,163
g250n-15¢ 3,750 233,965
g125n-17c 2,125 66,272
£250n-29¢ 7,250 454,622
Ps resp-120-10-60-75 1,200 331,445
resp-130-10-60-75 1,300 389,238
resp-140-10-60-75 1,400 451,702
resp-1350-10-60-75 1,500 518,762
resp-160-10-60-75 1,600 590,419
resp-170-10-60-75 1,700 666,795
P7 resp-120-10-60-5.9 1,200 25,276
resp-130-10-60-5.5 1,300 27,670
resp-140-10-60-5.0 1,400 29,190
resp-150-10-60-4.7 1,500 31,514
resp-160-10-60-4.4 1,600 33,581
resp-170-10-60-4.1 1,700 35,338
P8 resp-120-10-60-5.8 1,200 24,848
resp-130-10-60-5.4 1,300 27,168
resp-140-10-60-4.9 1,400 28,605
resp-150-10-60-4.6 1,500 30,843
resp-160-10-60-4.3 1,600 32,818
resp-170-10-60-4.0 1,200 34,476

The DLM Algorithm: Table 3 shows the result of using
the DLM algorithms in solving the problems stated in
Table 1. PS is one of a set of five parameters that 13 used
i the DLM algorithm.

The DLMT2002 Algorithm: The result of using this
algorithms m solving the problems stated in Table 1 1s
shown in Table 4. PS and P are two of a set of five
parameters that are used in the DLM algorithm.

The DLMI2004 Algorithm: Tables 5 shows the results of
using DLMI2004 i solving siumilar problems. L 1s the
value of the learning parameter, while C is the cutoff
value.

DLM
Instance Succ Time Flip

P, 10queen 2020 0.0 383
20queen 2020 0.04 312
50queen 2020 4.33 1,251
100queen 20/20 144.23 4,922

P? ppSo 2020 4.75 1,496

PS4 ppso 2020 12.75 2,132
pp70 2020 28.33 2,876
pp80 2020 54.97 3,607
ppo0 2020 98.87 4,486
pploo 2020 164.6 5,378

P; aplo 2020 0.54 38,620

Ps=3 ap20 2020 563.75 14,369,433
ap30 20020 emeem e

Py Magic-10 2020 0.05 899

PS4 Magic-15 2020 2.75 3,709
Magic-20 2020 24.19 14,218
Magic-25 2020 226.76 13,547
Magic-30 2020 937.28 72,203
Magic-35 2020 3,583.72 169,956

P; £125n-18¢ 2020 5.06 7,854

Ps=3 2250n-15¢ 2020 15.96 2,401
g125n-17¢c 2020 146.93 797,845
2250n-29¢ 20/20 331.91 334,271

Ps resp-120-.. 2020 9.73 4,857

P3=4 resp-130-.. 2020 12.52 5,420
resp-140-.. 2020 16.07 6,125
resp-150-.. 2020 20.21 6,426
resp-160-.. 2020 25.75 7,575
resp-170-.. 20/20 28.68 6,760

P, resp-120-.. 2020 158.03 1,507,786

P3=3 resp-130-.. 2020 875.67 7,304,724
resp-140-.. 2020 109.89 888,545
resp-150-.. 2020 613.62 3,966,684
resp-160-.. 2020 382.84 2,244,334
resp-170-.. 20/20 293.8 1,383,200

P; resp-120-.. 2020 47.67 443,665

Ps=3 resp-130-.. 2020 155.75 1,242,907
resp-140-.. 2020 43.68 319,386
resp-150-... 2020 60.5 422,370
resp-160-.. 2020 112.58 554,154
resp-170-.. 2020 46.73 244,413

DISCUSSION

We ran all the instances on the same machine; a PC
with Pentium T 800 MHz and 256 MB memory. Tables 3,
4 and 5 show the success ratio, average solution time (in
seconds) and average flips for all the instances used. The
underlined and bold-typed results of success ratio, time
and number of flips in Table 5 shows where DLMI2004
gives results than DLMI2002 and DLM
respectively.

DIMI2004 shows substantial improvement in time
and in number of flips over DLMIZ002 in increasing
permutation generation, latin square, hard graph-coloring
and tight random CSP problems. Note that DLMI2004
could solve ap3@ instance which DLMI2002 could not. In
addition, DLMI2004 has 20/20 success ratio for all the
instances of phase transition and slightly phase transition

WOrse

1124

Asian J. Inform. Tech., 4 (12): 1120-1126, 2005

Table 4: The results of the DLMI2002 algorithm

Table 5: The resukts of the DLMI 2004 Algorithm

DLMI2002 DLMI2004
Instance Succ Time Flip Instance Succ Time Flip
P, 10queen 20/20 0.00 110 P, 10queen 2020 0.00 05
PS=2 20queen 20/20 0.01 16 Ps=2 20queen 20120 0.01 120
P=70 S0queen 20/20 0.12 175
. ooguem 50120 0.88 ot P=70 SOqueen 2020 0.18 194
b 050 50120 013 o4 L=100 100queen 20120 0.70 199
] - .
PS=4 Pp&0 20/20 0.24 308 E’ZOOO p 030 s =0
P=70 pp70 20/20 0.36 323 2 pp :
7580 0120 049 08 Ps=4 pp60 20120 0.36 205
bt 0120 073 A P=70 pp70 2020 0.34 344
o100 0120 0.0 250 L=200 pp80 20120 0.50 360
b, ho10 50120 0.03 16 C=0.5M pp90 20120 0.86 269
PS=3 ap20 20120 3330 3,266,368 ppl00 20720 L.08 270
b7 ap30 20/20 P; ap10 2020 0.03 2,015
P, Magic-10 20/20 0.02 101 Ps=3 ap20 2020 1448 211,031
e Magic 15 0120 o1l 1706 P=70 ap30 2020 4335 1,907,253
P=70 Magic-20 20/20 0.52 6824 C:IIM
Magic-25 20/20 2.53 25240 = _
Magic-30 20/20 60.23 513,003 1134s » mag%”}g ;gﬁg 8-8; %g
Magic-35 3720 72342 3,773,925 > magic- g :
Ps 21250-18¢ 2020 0.81 15,514 P=90 magic-20 2020 0.28 1,473
PS=3 2230n-15¢ 2020 0.47 2815 L=16 magic-25 20120 0.87 2,389
P=70 g125n-17¢ 20120 188.61 4,123,124 =M m"‘g?c'gg ;gﬁg g;“; i’zf
2250n-29¢ 20/20 128.81 867.396P6 magie- : >
P resp-120-. 20/20 1.33 2919 Ps g125n-18¢ 2020 0.49 8,919
PS=4 resp-130-. 20/20 1.30 2,528 P§=3 8250m-15¢ 20/20 7.23 3,608
P70 resp-140- 20/20 508 Py P=85 2125n-17¢ 2020 4085 1,099,926
ey 5020 L 10m L=36 £250n-29¢ 20120 79.67 560,737
resp-160-. 2020 233 3,306 CEIM
resp-170-, 20/20 3% 3435 P; resp-120-.. 20120 0.70 1,179
P, resp-120-. 19/20 2871 1,909,746 PS= resp-130-. 20120 0.89 1,379
Ps=3 resp-130-. 16/20 103.92 6,445,009 p=70 resp-140-. 20/20 1.1 1,627
P=70 resp-140-. 20/20 14.07 850,886 L=16 resp-130-. 20120 0.80 720
ey 190 o071 5273978 C=3000 resp-160-.. 20120 1.15 1,196
resp-160-.. 19/20 31120 1,695,978 resp-170-. 20720 231 2,792
resp-170-, 19/20 17 131,357 P, resp-120-.. 20120 2773 1,734,696
B, resp-120-, 18/20 061 11175 P§=3 resp-130-. 20/20 167.02 9,675,405
PS=3 resp-130-. 19/20 16.82 1,062,060 P=70 resp-140-. 20/20 1674 1,012,200
P70 resp-140-, 20/20 328 195 881 L=36 resp-150-.. 20120 11336 6,222,070
resp-150-. 50/20 P 199480 C=1M 1csp-160-.. 2020 4143 2,162,274
resp-160-. 20/20 10.36 574,386 resp-170-. 20/20 4118 2,046,899
resp-170-. 19720 374 197 758 P, 1csp-120-.. 2020 854 558,616
Ps=3 1csp-130-.. 2020 2161 1,313,539
. P=70 resp-140-.. 20120 7.86 453,190
CSPs while DLMI2002 could not make a 20/20 success 1236 resp-150-.. 20120 8.05 460211
ratio for all the instances of these CSPs. Note that C=1M resp-160-.. 20/20 9.36 485,895
DLMIZ2004 gives slightly worse results in some of the 1e5p-170-.. 2020 4.65 227,894
mstances. However, the gamed improvement for
CONCLUSIONS

DLMI2004 is more than loss. Therefore, we recommend
the use of DLM2004. In the rest of the mstances,
DLMI2004 performs almost the same as DLMIZ004.

If we compare DLMI2004 with DLM, we find that
DIM2004 gives substantial improvement in time over
DLM in all the instances. But, DLM2004 is still back to
DLM m number of flips in some instances. In our opinien,
the gained performance in time 18 more important than the
gained performance in number of flips.

Note that the cost of flips in DLM is much more than
the cost of flips in DLMI2004. This is because the search
space of DLMI2004 1s much less than the search space of
DLM.

In this study we have presented the DLMI2004
algorithm which 1s the improved algorithm over
DLMI2002. DLMI2002 18 also an improvement over the
original DLM algorithm by incorporating the Tsland
Confiement Method.

We have evaluated the new algorithm by comparing
it with the original DLM algorithm and DLMZ2002 in
solving eight problems. The result of the study has
shown that there 1 a sigmficant improvement in the
performance of the new algorithm when solving the
problems such as the increasing permutation generation,
latin square, hard graph-coloring and tight random CSPs.

1125

Asian J. Inform. Tech., 4 (12): 1120-1126, 2005

Study are currently being carried out to improve the
algorithm further. We are also working on improving other
local search algorithms, such as WalkSAT and ESG by
mcorporating the ICM and other features.

REFERENCES

1. Mackworth, A K., 1977. Consistency in Networks of
Relations, AIT., 8 99-118.

2. Tsang, E. 1993, TFoundations of Constraint
Satisfaction. Academic Press.

3. QGimsberg, M. and D. McAllester, 1994. Gsat
anddynamic backtracking. In: Fourth Conference On
Principle of Knowledge Representation and
Reasomng, pp: 226-237.

4. Selman, B., H. Levesque and D.G. Mitchell, 1992. A
New Method for Solving hard satisfiability
problems, AAAT, pp: 440-446.

5. Selman, B. and H. Kauts, 1993. Domaimn-mdependent
extensions to GSAT: Solving large strucured
satisfiability problems, TICAT, pp: 290-295.

6. Selman, B., H.A. Kauts and B. Cohen, 1994. Noise
Strategies for Improving Local Search, AAAIL
pp: 337-343.

7. Wu, 7. and BW. Wah, 1999. Trap escaping strategies
in discrete lagrangian methods for solving hard
satisfiability and maximum satisfiability problems,
AAAL pp: 673-678.

8. Wu 7. and BW. Wah, 2000. An efficient global
Search strategy in discrete lagrangian methods for
solving hard satisfiability problems, AAAT,
pp: 310-315.

9. Minton, 8., M.D. Johnston, A.B. Philips and P. Laird,
1992, Minimizing conflicts: A Heuristic Repair Method
For Constraint Satisfaction And Scheduling Problems,
Al 58 161-205,

10.

11

12.

13.

14.

15.

16.

17.

1126

Davenport, A., E. Tsang, C. Wang and K. Zhu,
1994, GENET: A connectionist architecture for
Solving constraint satisfaction problems by iterative
unprovement, AAAT, pp: 325-330.

. Morris, P, 1993, The Breakout Method fo rEscaping

From Local Minima, AAAT, pp: 40-45.

Chakravarty. 1., 1979. A generalized line and junction
labelling scheme with applications to scene analysis.
In: TEEE Transactions On Patternanalysis And
Machine Intelligence 1: 202-205.

Fox, M., N. Sadeh and C. Baykan, 1989. Constramned
heuristic search. In proceedings of the eleventh
mtemnational joint conference on artificial intelligence,
pp: 309-315.

Allen ., 1983. Mamtaining knowledge about temporal
mtervals. In commumications of the ACM, pp:
832-843.

de Kleer, I. and G. Sussman, 1980. Propagation of
constramnts applied to circuit synthesis. In circuit
theory and applications pp: 127-144.

Selman, B., H. Levesque and D. Mitchell, A new
method for solving hard satisfiability problems. In
AAAL pp: 440446,

Fang, H., Y. Kilami, J. Lee and P. Stucky, 2002.
Reducing Search Space in Local Search for Constraint
Satisfaction, AAAT, pp. 200- 207.

