Asian Journal of Information Technology 4 (9): 835-839, 2003

© Grace Publications, 2005

An Improved Algorithm for Scan-converting a Line

"™d. Hasanul Kabir, ®Md. Imrul Hassan and 'Abdullah Azfar
'Department of Computer Science and Information Technology,
*Department of Electrical and Electronic Engineering,
Islamic Umiversity of Technology, Bangladesh

Abstract: For scan-converting a line, Bresenham’s Line Algorithm 1s an efficient mcremental method. In this
study, presented an improved algorithm over the Bresenham’s Algorithm for line scan-conversion. Depending
on the slope of the line, we computed up to which point the line is going to have a unigue
increasing/decreasing pattern in one of the directions while there are unit increments in the other direction.
Then we have used this mcreasing/decreasing pattern to draw the remaining pixels of the line without the need
of checking the sign of the decision variable for pixel choice. The difference with the Bresenham’s Line
Algorithm is, in that algorithm, for pixel choosing, we had to decide till to the other end point of the line, but
in present algorithm we only have to decide up to a portion of that line and then we can continue drawing pixels

without decision making.

Key words: Bresenham’s line algorithm, DLE, DDA, GCD

INTRODUCTION

In computer graphics, scan converting a straight-line
segment is the most basic operation!"!. Many curves, wire
frame objects and complex scenes are composed of line
segments. The speed of graphics rendernng depends
heavily on the speed of scan converting a line. The ability
to scan convert a line quickly and efficiently is an
important factor in graphical library. Bresenham’s line
algorithm 1s a very important algorithm and has been
widely used for scan conversion. Many new methods
have been proposed in attempt to speed up the scan
conversion of line. Here we restrict our discussion to scan
converting a straight line, based on Bresenham’s line
algorithm.

A line in computer graphics typically refers to a line

a portion of a straight line that
[2]

segment, which is
extends indefinitely that extends in opposite directions
Scan conwverting (1.e. rasterizing) a straight-line segment
(or simply line) is the most basic operation. For the past
40 years, there have been many improvements in the
algorithms for scan conversion of a line. But out of
those, only four algorithms
Brief descriptions of these algorithms are as follows.

are used most widely.

Direct line equation algorithm: The Direct Line
Equation (DLE) algorithm uses the simplest technique of

scan converting a lne. At first the two end points are

scan converted to pixel coordinates. Then it calculates the
slope and the y intercept of the line. If the absolute value
of the slope 1s less than or equal to 1, then for every
integer value of the x coordinate between and excluding
the two x coordinate endpoint values, calculates the
cormrespending y coordinate value”. Conversely if the
absolute value of the slope 1s greater than 1, then for
every integer value of the v coordmmate between and
excluding the two y coordinate endpoint values,
calculates the corresponding x coordinate value and scan
converts the calculated values™™. A major drawback of the
DLE algorithm is that it involves floating point
computaticn in every step™.

Digital differential analyzer algorithm: The Digital
Differential Analyzer (DDA) algorithm is an incremental
method. This

characterized by performing calculations at each step

scan comnversion approach 1s
using results from the preceding step'™. It calculates
the line

multiplication. But a floating point addition is still

pomts on without any floating point
needed in determining each successive point. The
DDA algorithm is faster than the DLE algorithm. But
cumulative error due to lumited precision 1n floating
point representation may cause

calculated points to drift away from their true position
when the line is relatively long™.

Corresponding Author: Md. Hasanul Kabir, Department of Computer Science and Information Technology (CIT)
Islamic University of Technology (ITUT), Bangladesh

Asian J. Inform. Technol., 4 (9): 835-839, 2005

Midpoint line algorithm: Midpoint line algorithm™ uses
only mnteger operations to scan convert a line. The choice
of pixels 13 made by testing the sign of a Discriminator
based on the Midpoint principle. The Discriminator obeys
a simple recurrence formula that can be calculated using
only integer arithmetic shift operation. When it begins to
scan-convert the next pixel, 1t first modifies the
Discriminator based on its original value by a few integer
arithmetic shift operation. After that it tests the sign of
this new Discriminator to decide which pixel should be
selected. (The selected pixel is the closest to the actual
line). The Discriminator sign testing approach is simple,
robust and efficient. Tt can also be implemented in the
hardware easily.

Bresenham’s line algorithm: Bresenham’s line algorithm
15 a hghly efficient incremental method for scan-
converting lines'”. It produces mathematically accurate
results using only mteger addition, subtraction and
multiplication by 2, which can be accomplished by a
simple arithmetic shift operation. The method worlks as
follows. The line we want to scan convert is shown in
Fig. 1, where O<m<1. We start with pixel P,(x,,y,). Now we
choose either the pixel on the right or the pixel right and
up.

The coordinates of the last chosen pixel upon
entering step 1 are (x,y,). We choose the next between the
bottom pixel S and the top pixel T.

If the chosen pixel s the top pixel T (d,20) then
X = x+1 and y,,, = y+1 and so

dey=d+2 (ay - ax)

T
yi+l tll:;'_/_ﬁ/
8
I A Laa |
xi-1 xi xitl

Fig. 1: Pixel selection according to Bresenham’s Line
Algorithm

If the chosen pixel 1s pixel S (d;<0) then x;,,= x;+1 and
Y1+1 - Y1 aﬂd 50

836

d,, = dt2ay

where d, = 2ay * x, - 2ax * y, +C
and C =2ay+ax(2b-1)

We use here a decision variable d. For the value of
each d, we calculate the corresponding value of d..,.

The code for implementing Bresenham’s line
algorithm is given below:

Void Bresenham()

{
Line 1: dx=x,x,;
Line 2: dy=yy:;
Line 3: dT=2*(d,~d,);
Line 4: dS=2%d,;
Line 5: d=(2*d)-d,;
Line & putpixel(x,.y,);
Line 7: while(x,<x;)
Line 8: {
Line 9 X
Line 10: if(d<0)
Line 11: {
Line 12: d=d-+ds;
Line 13: putpixel(x,,y,);
Line 14: i
Line 15: else
Line 16: {
Line 17: yitt
Line 18: d=d+dT;
Line 19: putpixel(x,.y,);
Line 20: ¥
Line 21: K
Line 22: putpixel(x,,y,);
i
THE IDEA BEHIND

A scan converted line may contain many identical
pixel segments in their relative positions™. If any two
points of a line repeat their relative positions mn the
squares of the raster grid field, the line can be cut mto
segments and the corresponding pixel arrangement of the
scan converted line segment will repeat also™. In other
words if (x;, vy) and (x,+1, yytr) are on the line where r
and s are two arbitrary integers then the corresponding
scan converted pixel arrangement from x = [x,| to x = [x |+
will be same as the pixel arrangement from x = |x|+r
to x = [x,42r. Therefore multiple segments (or pixels) ofa
line can be replicated.

Let f{x,y) be a straight line and m 13 the slope of the
line. We have four cases of m:

Asian J. Inform. Technol., 4 (9): 835-839, 2005

a) Oszm <1
b) 1zm<8
¢) -8<m <-1
d) -lzm <0

Our discussion will be restricted to case (a). The
other three cases can be transformed mnto case (a) by
swapping x and y and/or changing the incremental
direction.

Let the two endpoints of the line be (x;,v;)
and (x,, v,) respectively. The the slope of the line is

m= (yn'Yu)/(Xn'Xu): dY/dX

Since we only study case (a) mentioned above, we
have

¥a- Yol | %~ Xy

Let’s assume (x;, y;) = (0,0) and (x,, v,) = (dx,dy)
which are integer end points. We have the line segment
equation y =mx, where m = dy/dx and 0 < x < x, Let gbe
the Greatest Common Divisor (GCD) of x,and y, Then
m can be representedas m =y, /x,=Pg / Qg =P/ Q. Here
P and Q are positive integers 0 <« P < Q, g < 1 and
GCDP,Q)=1.

How segments can be replicated: Let y={(v,/x,)*x
=(Pg/Qg)*x =(P/Q)*x be aline with mteger endpoints
(%o, yo)and (x,, vy, where 0 e x < x,, Oy <y, v.€X,
,g < 1,and GCD(P,Q) = 1M". This line can be broken up
mto g = 1 segment, and each segment has Q) pixels. The
pixel arrangements of the g segments of the line take the
same shape after scan conversion. If dy=0, we define
g=dx , Q=land p=0.

Proof: From the equation of the line, we know that after
X increases Q pixels from x,=0, theny will increase
P pixels. So the pomnt on this line (Q, P) is located on a
pixel. (0,0) and (Q,P) are the two corresponding
endpomnts of the first and second segments. The second
segment starts from (Q,P), and the third segment starts
from (2Q,2P). Since the slopes of the line segments are
same, The pixel arrangements of the g segments are also
the same. All the scan converted segments of the line can
be considered to be the parallel translations of the first
segment. The segments’ end points are as follows :

Segment 1 : (0,0) - (Q-1, P-r)
Segment 2 : (Q,P) - (2Q-1, 2P-1)

Segment g:((g-1)Q,(g-1)P)-(gQ-1,gP-1)

837

Where 1 = rounded up value of (P / Q). If we extend
one extra segment for every pixel, we have:

Segment 1 : (0,0) - (Q, P)
Segment 2 : (Q,P) - (2Q, 2P)

Segment g : ((g-1)Q, (g-1)P) - (gQ, gP)

The above discussion tells us that multiple segments
or pixels of a line can be replicated or scan converted in
parallel.

PROPOSAL

As from the above discussion, a line segment
maintains a pattern according to which it repeats
identical shape. A line segment repeats its identical
nature after the value of x coordinate has reached up
to x,+(dx / GCD(dx,dy)). Our basic idea 13 to plot the
pixel values up to x, by Bresenham’s line algorithm,
where x, = x, H &x/GCD(dx/dy)). While plotting the pixel
values by resenham’s line algorithm, we keep track of for
which values of x the value of y changes. Now, after
getting the first segment of the line, we plot the remaming
pixels according to the obtained pattern. For example, the
next repeatative segment will be from (x,+1) to x, where
(%, 1) -x,= x,. This 1s continued until we reach x, .

The code for present proposed algorithm 18 given
below:

Void newline()

{

Line 1: dx=x,-x,;

Line 2: dy=y.-y;

Line 3: dT=2*(d,-d.);
Line 4 dS=2%d,;

Line 5: d=(2*d,)-ds;
Line & putpixel(x,,v,);
Line 7: ine = gedid,.d,);
Line 8: iner = dx/ne;
Line 9 nex = X,+iner,
Line 10: while(x1<incx)

Line 11: {

Line 12: X+

Line 13: 1f(d=0)

Line 14: {

Line 15: d=d-+dS;

Line 16: putpixel(x1,y1);
Line 17: a[1]=0;

Line 18: K

Line 19: else

Line 20: {

Asian J. Inform. Technol., 4 (9): 835-839, 2005

Line 21: yitt;
Line 22: d=d+dT;
Line 23: putpixel(x,,y,);
Line 24: a[1]=0;
Line 25: }
Line 26: 1
Line 27: mt s=0;,
Line 28: while(x,<x,)
Line 29: {
Line 30: X,
Line 31: yvi=ytals];
Line 32: s+
Line 33: if{s==incr)
Line 34: s=0,
Line 35: putpixel(x,,y,,2);
Line 36: 1
Line 37: putpixel(x,,¥,.5);
B
A DETAIL OVERVIEW

Let the two endpoints of the line be (x,, y,) and
(x,, v,) respectively. Then dx =x,-x jand dy =y, - v,.
The GCD of dx and dy is computed by a function named
ged. After getting the value of the GCD, Bresenham’s
line algorithm 1s applied for the points x;to x,, where
%, = %, Hdx / GCD(dx,dy)). As each value of x corresponds
to a value of y, we keep the track for which values of x the
value of y increases from its previous y value. We
maintam this mformation in an array. Let a be the array.
Then if the corresponding y value of x+1 15 same as the
corresponding y value of x then the value of (i+l)th
element of array a 15 a[i1+] |=0. If the comresponding vy value
of x+1 is not same as the corresponding y value of x;then
the value of (1+1)th element of array a 1s a[1+1]=1.

Now up to x, the line segment is drawn. The
remaining portion of the line segment 1s plotted from the
stored information m the array. For each segment x to x,
where x,—x,=x,we only compare the relative x value with
the corresponding element of the amray. If the
corresponding array element 1s 1 then the y wvalue
mcreases from the previous y value and if the
corresponding array element is O then the y value remains
same as the previous value.

PERFORMANCE ANALYSIS AND EVALUATION

After analyzing both the Bresenham’s algorithm and
present proposed algorithm, we find that both of them
have the complexity level m order of O(n). Neither of the
two algorithms have any nested looping conditions that

838

increases the complexity in order of O(n®). Only simple
looping conditions keep the complexity level in order of
O(n).

The main advantage of present proposed algorithm
15 there i1s no need to iterate over Bresenham’s line
algorithm for all values of x, rather only up to the value
where the first repetition starts is evaluated through
Bresenham’s line algorithm. After that only a sumple
comparison is made to plot the remaining values. Tt
becomes a huge benefit that we get the pattern of the
whole line just after plotting the first segment as we have
a clear-cut view about the line.

Now, let us make a line-by-line comparison of present
proposed algorithm with Bresenham’s line algorithm. Let
us consider the length of the line n where the length of
the line up to iner as in line 8 of present proposed
algonithm 1s r and there are M repetitive elements of length
r. Let us consider the cost of each iteration for the while
loop in line 7 of Bresenham’s line algorithm as C. So the
total cost for mmplementing Bresenham’s line algorithm
is C.r+C.Mr.

In present proposed algorithm the cost to draw for
the line up to length r is C.r+r. This additional ris needed
because we make an assignment m line 17 or mn line 24.
Now comes the part of implementing the m repetitive
After
algorithm we find that present proposed algorithm has to
make an additional increment each time in line 32 unless

segments. analyzing with Bresenham’s line

otherwise Bresenham’s algorithm iterates through line 17
for each value of x. Bresenham’s algorithm iterates
through line 17 only if it matches a condition. But our
algorithm iterates through line 32 for each value of x.

Replication in hardware level is much faster than
replication m software level. Bresenham’s line algorithm
is not dependent on any kind of replication. But present
proposed algorithm replicates multiple segments of line.
This replication can be implemented in hardware level
which will make the overall scan conversion method much
faster than Bresenham’s scan conversion method.

CONCLUSIONS

We
converting straight lines. Instead of scan converting
the whole line step by step, we can scan convert
multiple segments of line through replicating. We
believe present work is a significant contribution to

have introduced a new method of scan

implementing basic graphics primitives. We plan to
further investigate this idea and extend the method to
curved lines.

Asian J. Inform. Technol., 4 (9): 835-839, 2005

REFERENCES

Chen, J.X., 1998. Fast
Scan-Conversion and Antialiasing,

Floating Pomt Line
Research,
Department of Computer Science, George Mason
University, http: /graphics.gmu.edu/ raster/
floatLine.pdf

Xiang, Z. and R A. Plastock, 2000. Schaum’s Outline
of Theory and Problems of Computer Graphics,
Second Editior, McGraw-Hill, Reprint Edition.

839

3.

Bresenham, T.E., 1965 Algorithm for Computer
control of digital plotter. TBM Syst. T., 4: 25-30.
Foley, Vandam, Feiner and Hughes, 1994.
Introduction to computer graphics principles and
Practice, Addison Wesley.

Edward Angel, 1990. Computer Graphics, Addison
Wesley.

Heamn, D. and M.P. Baker, 1986. Computer Graphics,
Prentice-Hall.

