Asian Journal of Information Technology 4 (9): 845-851, 2005

© Grace Publications, 2005

An Object Oriented Framework for the Management of Compound Documents

Souheil Khaddaj
School of Computing and Information Systems, Kingston University,
Kingston upon Thames, Surrey KT1 2EE, UK

Abstract: Tt is already widely accepted that the use of data abstraction in object oriented modelling enables real

world objects to be well represented in information systems. In this work we are particularly interested with the
use of object oriented techniques for document management. Object orientation is well suited for such systems,

which require the ability to handle multiple types content. However, the matter of how to deal with the reuse

and management of existing documents over time remains a major issue. This paper aims to investigate a

conceptual model, based on object versioning techniques, that will represent the semantics in order to allow

the continuity and pattern of changes of documents to be determined over time.

Key words: Object oriented modelling, object versioning, document management systems

INTRODUCTION

Electronic document management systems, in which
documents are collected, organised and categorised to
facilitate their preservation, retrieval and use have become
an essential part of many organisations in order to retain
their business competitive edge. Historically, relational
databases have been the most popular for the
imnplementation of such systems however, recently
object oriented concepts and databases have been
considered for the management of complex compound
documents.

Object
successfully in many different applications that range

oriented concepts have been used
from numerical modelling to web applications. The main
benefits, apart from the abstraction power to represent
real objects are the provision for the extensibility needed
to create new models and the semantic needed to
construct complex objects of similar states!”. The
attributes and behaviour are encapsulated within the
objects; therefore a network of relationships among
objects can be easily established® .

The use of object oriented techniques in information
management has been given considerable attention in the
past decade™®. Recent research works have used
temporal mnformation and object oriented techmques to
explicitly define the relationship between object behaviour
over time!?. The ability to examine the continuity of object
changes over time 15 very important for many different
applications.

The object oriented approach provides the flexibility
to make the changes to attributes and/or behaviour of
objects independent of one another, in order to allow the
examination of detailed information of object application
models. Therefore, 1t can be used to identify the pattern of
changes within the objects. The simplest way to store
changes to objects 1s that every time a change occurs the
whole object is stored again, but this can be prohibitively
costly in terms of storage space, and might compromise
system performance particularly if objects are updated
regularly (fast changes). An alternative is to use object
versioning techniques in order to track the evolution of
objects. In this study, object tracking and evolution
include not only attributes changes to homogenous
objects, but also major changes that lead to
transforming/destroying existing objects and creating new
ones, for example using object splitting and merging.

The aim of this study is to investigate a document
management object model that will represent the
semantics to allow the continuity and pattern of changes
of objects to be determined over time. In this study
considering object orientation’s major concepts and
information management. Then, object versioning is used
in the development of the models for the determination of
the continuous links between different versions of objects
and mamtaining the metadata of those objects. An object
oriented document management model is then considered
together with an object-oriented environment for system
implementation. Finally present some conclusions and
suggestions for future works

Corresponding Author: Souheil Khaddaj, School of Computing and Information Systems, Kingston University, Kingston upon
Thames, Surrey KT12EE, UK Tel: +44 20 8547 2000 Fax: +44 20 8547 7972

Asian J. Inform. Technol., 4 (9): 845-851, 2005

OBJECT ORIENTATION AND
INFORMATION MANAGEMENT

The object-oriented approach has the abstraction
power to represent real objects. Tt represents space as a
domain populated with independently existing objects
that encapsulate attributes and operations. Therefore, this
encourages modularity within information systems, whle
entity relationship models will not show these properties.
For example, changes in an object do not necessarily
affect the properties of any other object in the system.

The object-oriented approach provides the
extensibility needed to create new models through
mheritance which alse promotes hierarchies of objects.
Tt also provides the semantic power needed to
construct complex objects of similar states, through
polymorphism, for handling complex attributes and
behaviour changes and the flexibility needed to
develop simulation models that can adapt to the
changing states of information systems. This approach
makes it easier to develop new software from existing
ones, thus, promoting reusability.

The object-oriented approach has
successfully for the umfication of temporal and other
information related to objects. Tt is supported by efficient
design tools such as UML (Umversal Modelling
Language), programming tools such as C++ and Java and,
more recently by Object Oriented Database Management
Systems (ODBMS) such as Objectivity and Versant. The
choice of a particular database however, clearly depends
on the actual application. A relational database is a better
choice for a project where relationships among objects are
fairly fixed and well known. Object-oriented databases can
outperform relational databases at handling complex
relationships among objects’™. The problem becomes
acute, however, when the changes are too fast for a
database to be redesigned so it can rapidly deliver
necessary information

An object-oriented database could model the
presented changes based on a mix of objects and their
relationships. For example, if a real life object is
represented 1n object oriented form, rather than as an
entry in a database table, associations with other objects
(to which 1t 18 linked) can automatically mherit any
changes made, making it easier to track later. At this point
1t 18 mmportant to mention that the Enhanced ER Model
supports generalisation, aggregation and composition.
Moreover, many object oriented features are provided by
object-relational database management systems ORDBMS
and are supported by SQL3 standard. However, an
ORDBMS does not represent a true object oriented
database, since it still represents a data-centric system as
a relational database.

been used

846

The ORDBMSs, which have now been supported by
most vendors, are much larger and have huge entrenched
marketing infrastructure. By comparison, the ODBMS
vendors are much smaller. It 13 clear that in today's
complex, rapidly changing world, ODBMSs provide the
more flexible, extensible alternative for companies that
must act quickly to match the capabilities of their
information systems with the needs of their organizations.
Users will make choices of database vendors based on
many criteria, some of which are addressed here.

OBJECT VERSIONING

Associating additional temporal information with
individual objects provides a means of recording object
histories, and thereby allowing the histories of objects
and the types of objects to be easily traced and compared.
This means that the temporal aspects can also be
described by their temporal topological relationships. The
object-oriented approach has been used in different ways
to effectively track versions of the original object and
these include the use of version management® and the
identity-based method™. Although i this work we are
mainly concemed with object versiomng, other versioning
strategies such as schema versioning can also be
considered”.

There are a number of methods for dealing with
object versiomng. The first technique stores the versions
as complete objects and any of the versions can be
accessed simply by a reference to the particular object.
The second approach, which i1s a relative techmque,
stores one version as a complete object and the rest of the
versions are presented as differences between the current
version and the previous version. The method of storing
the versions as complete objects is relatively easy to
implement m existing database systems. But this method
introduces problems, such as waste of storage space as
the number of versions increases. The technique of
stormg only one complete version and the rest as
differences between the current and the previous version
is difficult to implement but is suitable for representing
continuous and dynamic changes; and it solves the
storage space problem of the previous approach. These
two approaches have been examined for relational
databases!'!.

Using the second approach, changes of objects are
handled using version management, starting with a
generic object; then first and subsequent changes can be
represented as versions. Hach version of the object
changes of attributes
Subsequent changes of the versions will generate related

reflects and/or behaviour.

dynamic attributes and temporal links to be updated to

Asian J. Inform. Technol., 4 (9): 845-851, 2005

respective versions. Version management reduces the
need for large storage space, since only the generic object
or the current object holds the complete attributes and
behaviour of the object.

Complete versions: The first approach can be stated
using the following equation (1):

Versions(x)=(CV (n), CV,(n-1),....., Cv,(n,))

In Eq. 1, CV represents the complete version, »
indicates the number of the version, x is the object and #,
1s the oldest version mumber. Each version can be
accessed by reference to the mumber of the version, n.
Although access to any version 1s supported directly and
all versions have similar access time, storage space can be

costly.

Linear versioning: Using this technique one version 1s
stored as a complete object, and the rest of the versions
are presented as differences between the versions. There
are many different strategies for working out the
differences, which are only restricted by storage space
and performance. The relationship using this approach is
based on one-to-one versioning of objects, which means
any parent or base object will have only one child or
derived object.

The technique can be classified into two versioning
strategies. The first strategy allows the current version to
be calculated from the previous version and 1s referred to
as forward oriented versioning. The second strategy
enables the previous version to be evaluated from the
current version and is referred to as backward orented
versioning".
temporal relationships between the generic object and
versions is given by:

Using forward linear versioning the

Versions(x)=(A, (n.n-1), A, (n-1.0-2)... .. A, (n/+1, o),
Cv(ny))

Where CV (n,) is the complete version of object x whiles
n, indicates the generic version, which holds the complete
attributes and behaviour. A, (k. k") represents the
difference between the current version (k) and the
previous version (k’) of object x. As shown in Eg. 2
access to the current version » requires m-I iterations,
which means evaluating delta version A, (ng.,, ng)
followed by delta version A, (ng.,, ng.,), then the next
version up to delta version A, (n, n-1). This forward
oriented versiomng strategy equation provides faster
access tume for the oldest version (Fig. 1).

(1

(2)

847

In backward linear versioning the current object
holds the complete attributes and behaviour. The
temporal relationships between the current object and
verslons 1s given by:

Versions(x) = (CV (), A, (nn-1), A, (n-1 n-2), ., A (n+1,
1)) (3)

As shown in the Eq. 3, the rest of the versions, apart
from the cumrent version, are expressed as delta to
the successor-in-time version, which means that this
strategy provides faster access time for the newest
versions. As a result, this strategy is bound to be
more useful than the previous one for
applications.

most

Branching: Tn this technique, one version is stored
as a complete object and the rest of the versions are
presented as differences between that version and
other versions. There are several different strategies for
working out the differences, which are again only
restricted by storage space and performance. This

technique is also classified into two versioning
strategies. The branch forward ornented strategy is
based on one-to-many object versioning (object

splitting), which means any parent or base object will
have many children or derived objects (Fig. 2). The
branch backward oriented strategy i1s based on many-
to-one object versioning (object merging) which means
any chuld or derived object will have many parents or
base objects (Fig. 2).

A 4

A v,

ol

Vo= Generic Version, V, ... Vn = versions of generic object
— = Temporal toplogy link

Fig. 1 Linear versioning

| v] 0 | _> vu _’
/v ~a
IT|_> Vu || Va | — - | Y
\ o e /

Fig. 2 : Combined strategies

Vo= Generic version (Parent), V, = Object merging
V... VILm = Object splitting , V... V., Linear Versioning
Temporal Topology link

Asian J. Inform. Technol., 4 (9): 845-851, 2005

The relationship using branch forward versioning
strategy provides the same access time for all versions:

Versions(x) = (A, (nny), A, (n-1.n,),, A, (ng+1, n),
CV,(ny)) 4)

In Eq. 4, as before, A, 13 the delta version represents
the difference between the previous version and the
current version. In Eq. 4, version number #, represents the
generic version of an object x and this provides equal
access time for all the versions. The value of the delta
remains unchanged when versions are created. All
versions are derived only from the generic one.

The relationship using branch baclward versioning
15 based on many-to-one versiomng of objects and is
given by:

Versions(x) = (CV (), A, (n,n-1), A, (n,n-2), . ., A, (n, ny))
(5)

This strategy provides a faster access time for the
current version. However, due to the relationships
between the current version and the previous ones the
values of the versions are re-calculated whenever a new
version is created.

Combined strategies: Different versioming strategies
might be more suitable for different applications. Linear
versioning can be applied for attributes changes and/or
behaviour changes, while branch versioning is required
for splitting and merging objects. In many applications
however, 1t might be necessary to apply both strategies
(Fig. 2). As shown in Fig. 2, a generic object (V) is split
mnto a number of objects (V,, V,, ... V) each of which
then follows its own linear transformation (V 4, V;,... V,.
o) and eventually the objects are merged to form one
object (V).

DOCUMENT MANAGEMENT

Most events and processes in an organisation are
initiated, accompanied or formalised by some form of
documentation. Documents can now be generated and
distributed easily, but what is still needed is support in
managing the information contained in those
documents!'**¥. This is vital because by putting pieces of
information from different documents together, the user
can generate new knowledge!"!. The ability to collect,
store, manage, analyse, retrieve and utilise information
about documents and present information in text, graphics
and, increasingly, multimedia form has received
considerable attention in the past few years!'*™>'"]
However, the matter of how to deal with the reuse and

management of existing information over time remains a
major issue.

Document management systems: There are a number of
elements of a Document Management System which
include the software to manage documents across an
organisation at the core of which is the database used for
storage, retrieval, etc. of documents. These also include
workflow management systems and more recently
knowledge management. Other elements will include
infrastructure, authoring tools, distribution etc. However,
in this work we are mainly concerned with information
database storage and retrieval. Traditionally relational
databases have been the most popular, but recently many
Document Management Systems are moving toward
Object-oriented Database Management Systems
(ODBMS).

Historically, document management systems have
aimed to deal with two main types of documents;
static unflexible documents which are produced by
scanners and other devices and editable changing
documents, which are produced by many software
packages such as word processing and spreadsheets etc.
Systems supporting static documents focus on access,
with input, indexing and retrieval, while systems
supporting editable documents focus on creation,
authoring, workflow etc. However, almost all documents
have some structure. Structured information contains
both content (words, pictures, etc.) and some indication
of what role that content plays (for example, content in a
section heading has a different meaning from content in
a footnote). Mechanisms to identify structures in a
document are provided by markup languages such as
XML, which defines a standard way to add markup to
documents.

v ¥
[Dovument Type class| | Lacationclass | [Temporal class |

Fig.3: Composite classes of a document object

o]+

V= Generic Object
V., Vg™ Version changes

4+— = Temporal topology link

848

Fig. 4: Relationship between the versions and generic
object

Asian J. Inform. Technol., 4 (9): 845-851, 2005

There have been a massive increase in the number of
applications currently being developed that or make use
of XML documents. However, such documents refers not
only to traditional documents, but also to the miriad of
other XMI., data formats which include vector graphics,
mathematical equations, object meta-data etc.

However, there are a number of approaches to store
and query XML data. Stoning XML data in a file system 1s
straightforward but does not support querying XML data.
Other generic approaches that store documents without
any user interaction, and which provide for the storage
and retrieval of different types of XML documents, e.g.
XSL documents ete., using the same relational schema for
storing. However different strategies to completely
decompose arbitrary XML documents into relational
tables are required’”. Cther methods to store XML
documents in relational or object-relational databases that
is based on an adaptable fragmentation™®.

As aresult of the massive increase in the amount and
complexity of the generated documents there has been a
major need to move away from the management of
static/editable documents toward complex, compound
documents which are constantly changing. These are not
usually tied to a particular application or software and
they include information about their content and
structure. In this way, documents are reflecting the trend
toward object-oriented architectures, where information 1s
contained in objects which can be considered as units of
information of a finer granularity than traditional
documents, and which also contain information about
themselves and their originating applications. Documents
using this approach can use many object orented
concepts such as aggregation and containment where
new specific documents can be created from existing
objects which can also be reused. Documents objects will
have attribute such as auther, dates, status etc, and
behaviour such as access control, workflow processing
etc. Using association links to other external objects
representing images, datasets ete. can be established.

Object oriented model for document management: In this
section we are concerned with a generic document
management, context independent, object model reflecting
the structure and semantic linking for different types of
documents. The model should take into account
document structuring and content referencing, and
mcludes 1ssues like document versions, ownership,
notification and propagation of changes, particularly in a
collaborative environment. The model makes use of the
techniques discussed earlier, particularly versioning and
will tackle problems related to document storage and
tracking.

849

Of particular interest in this approach, are scenarios
when documents are regularly updated, and new versions
are created whether there is a need for time stamping or
not. Clearly, it is more useful when time stamping is
required, i.e. where there is a need to keep a history of
activities and changes in managed documents, such as
user manuals, online help, tourist guides, web
applications, etc. The 1dea 1s to sumplify the management
of all types of documents such as scammed paper
documents, faxes, emails, word processing generated
reports, spreadsheets, htm! forms, and so on.

Using this approach, changes to documents are
handled by version management. A version of the object
consists of composite classes as in Fig. 3. The aggregated
composite classes include a document type class
(documents can be classified according to their types
which can take the form of texts, graphics, multimedia etc,
and can be regarded as derived classes from the type base
class), location class and temporal class. The associated
composite classes mclude manager class and event class.
The location class deals with queries about the location
of the object document within the federated database
(including the ability to search documents by either
context or index term, text extraction and full text search
engine). The type class deals with queries about the
features of an object (e.g. length, content types etc). The
temporal class deals with the queries about the time
attributes of the object (e.g. when was the document
created). Furthermore, an event class deals with the
changes (and their causes) of the document object (e.g.
adding new manuals after an operating system upgrade).
And, a manager class with persistent object store,
including the ability to store documents, to control the
access to documents, to deal with the effect of the
changes of the object, to assure changes are not
confused and te co-ordmate documents transformation,
extension, etc.

The version class: As Fig. 4 shows, a document object is
represented as a generic object and any subsequent
changes are represented as versions. Each version of the
object consists of changes (invelving an afttribute or
behaviour) of the aggregated classes (type, location and
temporal) and the associated class (event and manager).
Subsequent changes of attributes of the versions will
generate related dynamic attributes and temporal links to
be updated to the respective versions. The relationships
between the generic object and the versions of the object
are represented by temporal version management!'"!. To
avold the use of large storage space, only the generic
object or the current object holds the complete attributes
and behaviour of the object while versions represent the

Asian J. Inform. Technol., 4 (9): 845-851, 2005

intermediate changes of the attributes and behaviour. The
temporal relationships between the current object and
versions can be stated by either Eq. 2 or Eq. 3. According
to this approach, when a document object splits, the
generated dynamic attribute locates the versions and
creates temporal links between the previous version and
the new versions. Similarly, when document objects
merge, the generated attributes will establish the location
of the new version and create temporal links between the
previous and the new version.

Thus, a version of an object consists of changes
(attribute or behaviour) of the type, location and temporal
classes. Subsequent attributes and behaviour of the
classes are automatically updated to the respective class.
Each attribute or behaviour change is contained in a
version, linked bi-directionally to the respective type,
location and temporal classes. Also, the attribute and
behaviour changes of the versions of the object are linked
respectively to the previous and next changes.

System implementation: A successful implementation of
the model will require an Object Oriented Programming
Environment (QOPE) and an Object Oriented Database
System (OODBS). This approach eliminates the need for
mapping the model to an OODRBS, since the class
structure used in the model, the OOPE and OODBS are
consistent. The OODBS considered in this work is based
on Objectivity/DB!". The classes (version, temporal,
location, type, event and manager) are defined in the
application schema file, called Data Definition Language
(DDL). The DDL processor generates the schema header
file and the schema source code which are linked with the
application source code. In the application DDIL and
application source code files, all the classes have their
own representation (Fig. 5).

Objectivity/DB has the capabilities to represent the
various versioning approaches: linear, splitting and
merging. As discussed earlier, simple changes are
represented by a linear versioning method while complex

Schema
Application DDL »| header
schema (C++) C)
Schema source
code (C+H) Jischema source
code (C+H)
| Compiler/Linker (C++) |
¥ v i
i :
(g | [nater]

Fig. 5. General architecture of the system implementation

850

changes, involving splitting and merging, are represented

by branching. Document objects persist by storing the
object within the container of the database. Persistent
objects are identified using the Object Tdentifier (OID)
which remains unique within a federated database.
Objectivity/DB uses an object handling class to access
persistent objects automatically by the DDL process for
every persistence class found in the schema header. All
the objects and versions in the database can be
determmed by scamning through the database using
iterative scanmng functions.

Aggregated relationships between the version class
and the type class, the location class and the temporal
class are established in the application source code.
Moreover, in order to determine and analyse dynamic
changes, the model establishes a temporal relationship
between the versions, the event and the manager classes.
A dynamic function handles the temporal relationships
between the versions, the event and the manager classes.

As indicated earlier the relationships between the
versions allow forward and backward movement. The
previous version and the next version to the current
version can be obtamed by iteration using either
backward or forward movement functions. In order to
avoid the use of large storage space, only the generic
object or the current object holds the complete attributes
and behaviour of the object while the other versions
represents the changes of their attributes and behaviour.

CONCLUSIONS

The applications of object oriented techniques to
document management have been discussed in this paper.
Particular attention was paid to the concept of object
versioning and its applications. The presented object
oriented approach provides an mtegrated framework for
effective tracking of the evolution of objects. Tt also
promotes good temporal modelling, because the temporal
attributes and behaviour of the versions are independent
but have relationships that enable the tracking of patterns
of change. Also, less data storage 1s required since only
the generic object and the changes to the object, which
are represented as versions are stored.

Finally, although the author has focused on a
particular application, the ideas discussed in this paper
can be easily applied to other systems and applications.
Further comprehensive testing and evaluation of the
approach and its implementation will be carried out and
reported in future study, particularly with large and
complex data.

11.

Asian J. Inform. Technol., 4 (9): 845-851, 2005

REFERENCES

Yourdon E., 1994. Object-oriented system design: An
Integrated Approach, Yourdon Press.

Martin, J. and J.J. Odell, 1995. Object-Oriented
Methods: A Foundation, Prentice Hall, Englewood
Cliffs, NT.

Bertrand, M., 1997. Object-Oriented Software
Construction. Prentice Hall Publishing International
Series m Computer Science.

Cattell, R.G.G., 1991. Object Data Management,
Object-Oriented and Extended Relational Database
Systems, Addison-Wesley Publishing.

Won, K and F. Lochovsky, 1989. Object-Oriented
Concepts, Databases, Applications. ACM press
Frontier Series. Addison-Wesley Publishing.
Loomis, M.ES., 1995. Object Databases, The
Essentials, Addison-Wesley Publishing.

Khaddaj, 5., A. Adamu and M. Morad, 2004, Object
versioning and Information Manag. J. Inform. and
Software Technol., 46: 491-498.

Wachowicz, M. and R. Healey, 1994, Towards
Temporality in GIS. Tn: By Worboys M.F. (Ed.).
Innovation in GIS T, 1: 105-115.

Dadam, P., V. Lum and H.D. Wermner, 1984. Integrating
of time versions mto relational database systems.
Proceeding of the Conference on Very Large
Database, pp: 509-522.

Hormsby, K. and M. Egenhofer, 2000. Identity-based
change: A foundation For Spatio-temporal
knowledge representation. Intl. T. Geograph. Inform.
Systems, pp: 207-224.

851

11.

12.

13.

14.

15.

16.

18.

19.

Grandi, F. and F. Mandreoli, 2002. A formal model for
temporal schema versioning in object-oriented
databases. A Timecenter Techmcal Report TR-68.
Barth, 5., 2000. K.M. Homror stories. Knowledge
Management, 3: 36-40.

Bielawski, L.. and I. Boyle, 1998. Electronic document
management systems: A user centered approach for
creating, distributing and managing. Online
Publications, Upper Saddle River, NT: Prentice Hall
PTR.

Davenport, T.H.,, D.W. De Long and M.C. Beers,
1998. Successful knowledge management projects.
Sloan Management Review, 39: 43-57.

Outsell, Tnc., 2001. Taxonomies: Structuring today’s
knowledge systems. Information about Information
Briefing, 4: 1-18.

Outsell, Tnc., 2001. Knowledge management: Tt’s all
about behavior,
Briefing, 4: 1-16.

Information about Information

. Wilhams, K., 2002. Professional XML Databases.

Wrox Press Ltd.

Christian, S., 2001. An approach to the model-based
fragmentation and relational storage of XML-
documents. 13th GI-Workshop Grundlagen von
Datenbanken.

Objectivity/DB, 2003. Complete handbook for

objectivity/C++ Instruction Manual.

