Asian Journal of Information Technology 4 (9): 878-884, 2005

© Grace Publications, 2005

Simple Flight Simulator Model

Loay E.George and Suhad F.Sheehan
Informatics Institiutes for Postgraduate Studies,University of Technology, Baghdad, Iraq

Abstract: Pilots are trained using computerized flight simulators. A flight simulator is a training system where
pilots can acquire flying skills without need to practice on a real airplane. Simulators are used by professional

pilots to practice flying strategies under emergency or hazardous conditions, or to train on new aircraft types.
In this study a framework for flight simulation is presented and the layout of an implemented program 1s
described. The calculations were based on simple theoretical approach. The implementation was based on
utilizing some of utilities supported by ActiveX, DirectX and OpenGL. written in Visual C++. The main design
consideration 1s to build a simple flight sunulation program can operate without need to high computer

environment specifications.

Key words: OpenGL, activeX, directX, joystick, throttle, rudder, elevator, aileron, pitch, roll, yaw, longitude,

latitude, heading, speed, altimeter, gauge

INTRODUCTION

This study is an afttempt to establish a Flight
Simulator Cockpit with almost its mam gauges, control
surfaces that are controlled by the trainee via a joystick
and it responds like the real flight to the trainee
instructions, there is an external view to make sense of the
outside world, which ammates according to the simulator
actions and reactions. Several effective parameters are
considered such as (wind, wind speed, crosswind speed,
weight, minimum weight, delay time of the hardware, air
speed, etc.) for giving reality to the system. A theoretical
framework 15 developed as a mathematical model for
simulation. All of its involved parameters are adopted in
the designed model and they have been successfully
inplemented. Flight Simulator System software 1s based
on the Object-Oriented concepts that simplifies the
necessary synchronization and the coordination of the
simulator system. The software was developed using
a mixture of
1. DirectX for joystick as an input tool
2. ActiveX for drawing the 11 gauges
3. OpenGL for drawing the external view and all is written
using Visual C++ language version 6.

Since the late 1950's the National Aeronautics and
Space Administration (NASA) has found in-flight
simulation to be an invaluable tool. In flight sunulation
has been used to anticipate problems and to avoid them
and to solve problems once they appear. Before flying an
experimental aircraft it is always desirable to consider the

flying qualities of the vehicle. New aircraft of unusual
configuration or flight envelope, however, require special
handle™. Northrop Aircraft Group had been invelved in
aircraft simulation since the early 1960's. Inn the mid-1970's,
the original analog simulation computers were replaced by
digital computers'.

THE SYSTEM LAYOUT

The Overall simulation model of the Flight Simulator
is shown in a block diagram (Fig. 1). The Data Flow
Diagram (DFD) 18 a perfect media that provide the work
with a powerful and useful picture about the whole
skeleton of the system from the beginning stages which
help i deciding which way could be taken in order to
synchronmze and coordinate the overall systems™ objects.
The DFD of the implemented system 1s demonstrated in
fig. 2. Tn the object oriented analysis the system could be
modeled as a collection of objects and classes, the
orgamzation of these objects and classes is arranged by
the class hierarchy (Fig. 3).

the fight control stick [, gttended _’ammlv_nlues
parameters (Joystick) and 10 AgtiveX
actual controls
values C ication
amomng ActivX
Draw the Simulate Determine i
Dtermnine
whols the jactual responsd " J
interface ‘paramiers peremeters) paraImctcrs

Fig. 1: The overall flight simulator block diagram

Corresponding Author: Dr. Loay E. George, Sheehan Informatics Institiutes for Postgraduate Studies,
University of Technology, Iraq Baghdad

878

Asian J. Inform. Technol., 4 (9): 878-884, 2005

Fig. 2: Data flow diagram of the flight simulator system

Cockpit class
Attributes:
start
Throttle, elevator, aileron, rudder
pitch, roll, yaw, speed, head,rpm
altimeter, joystick

Operations:

Read from joystick

Draw cockpit

Communication among ActiveX
controls

y

¢A¢A¢A¢A¢A¢¢

Throttle Elevator Aileron Rudder Pitch Roll Yaw

A 4 A 4 A\ 4 \ 4 A\
Rpm Speed Head Altimeter Joystick

Fig. 3: The class hierarchy of the flight simulator system

Start
Initialize Initialize joystick —
aerodynamic (hardware-software Communication
parameters setup of joystick as among gauges
input tool) r timer to| v
work within time | Manipulate flight |
. Qpen .GL slotr and navigation values
initialization for +
graphics *
+ Strat timer (setup for
- steps) Draw within openGL)
Cockpit world
initialization for <
gauges v ¢
+ Read from joystick
Cockpit draw
i — No
presentatin Majnipulate control Wait for another
| parameters time slot

Fig. 4: Flowchart of the flight simulator system

The simulator system can simply be demonstrated
as a closed loop, where the system takes attended values

from Joystick and then after some processing operations
(calculations), it will produce the output simulated values.
The demonstration is extended to give more details about
the system to make a sense about its data and operations
flows, as the flowchart in the Fig. 4.

THE IMPLEMENTED FLIGHT SIMULATOR GAUGES

In this study the established Flight Simulator
system has several gauges that could be classified into
three main groups of gauges, each one of these gauges
was implemented as alone ActiveX control, written as an
independent programs. Eleven gauges were reconstructed
to cover the constructed system, then there are eleven
ActiveX programs, each ActiveX control program has
three stages, these stages are:

. The drawing of the entire gauge bitmap (except the
Horizon and Altimeter gauges, since they are
different in their shapes, so they were drawn by
using the graphical functions without bitmap).

. The calculations of the gauge parameters.

. The drawing of the gauge moving pointer (except
the Horizon gauge).

The whole Flight Simulator gauges can be
categorized into the following types of gauges:

CONTROL SURFACES GAUGES

The control surfaces are the electromechanical
components that are responsible for driving the flight,
they are represented by gauges controlled by the joystick,
the control surfaces are as follows™!:

Throttle: It’s the element, which controls the RPM
(Round Per Minute) of the flight engine, using the
joystick (Fig. 5).

Fig. 5: Throttle gauge

6Elevator: It is the element, which controls the Pitch
(climbs/ descents) operations by changing the elevator
using the joystick of the flight either Pitch up (climbs) or
Pitch down (descends), moving around X-axis (Fig. 6).

Asian J. Inform. Technol., 4 (9): 878-884, 2005

Fig. 6: Elevator gauge

Aileron: It is the control element, which is responsible for
rolling the flight, it moves around z-axis, making the flight
change its direction and causing the Roll activity (Fig. 7).

Fig. 7: Aileron gauge

Rudder: It is the control element, which is responsible for
making the flight skewed around y-axis, causing the Yaw
activity, by using the joystick (Fig. 8).

Fig. 8: Rudder gauge

The four control gauges are implemented in the following

steps:

A. Drawing the bitmap, which is activated in the
container program.

B. Redrawing the gauge pointer to show its

movement according to the following programming
steps:

a=(th2-th1)/(max Value -min Value)

b=th1-a*old Value

theta=a*oldValue +b

if ((oldValue >= minValue) and

(oldValue <= minValue))
Xnew=xcenter+0.83*r*sin(theta *DegreetoRadian)
Ynew=ycenter-0.83*r*cos(theta * DegreetoRadian)
Draw Line (Xcenter, Ycenter),(Xnew, Ynew)

880

where:

thl = -180 (It is the starting angle of the pointer (in
degrees))

th2 = 180 (It is the ending angle of the pointer (in
degrees))

r 60 (It is the radius of the gauge circle)
(Xcenter=0, Ycenter=0) They are the coordinates of the
central point of the gauge circle that the pointer rotating
around it.

(Xnew, Ynew) They are the coordinates of the pointer’s
pointing end, they represent the new position of the
pointer for each change in the Rudder guiding value.

C. Performing the required calculations. This gauges
depends on some parameters (attended Value,
ControlValue, maximum rate of ControlValue change,
maximum ControlValue, minimum ControlValue,
deltatime), this stage implies the following
programming steps:

D = Attended ControlValue — ControlValue
Mx = MaxRate ControlValue * deltatime
IfD> MxThenD =Mx Else
If D < -Mx Then D = -Mx
End if
ControlValue = ControlValue + D
If ControlValue < in ControlValue Then
ControlValue = Min ControlValue
Else
If ControlValue > Max Controlvalue Then
ControlValue = Max ControlValue
Endif

FLIGHT PARAMETERS

These gauges present the change in flight
information due to the flight driving (through the control
surfaces), the included flight parameters are as follows:

Pitch: The value of this gauge is represented by Pitch
gauge the ascending pitch up or descending pitch down
of the flight around x-axis, the change in its value depends
on the control surface (Elevator) (Fig. 9).

Fig. 9: Pitch gauge

Asian J. Inform. Technol., 4 (9): 878-884, 2005

Its implementation is composed of the following stages:

A. Drawing the bitmap, which is activated by the
container program.

B. Redrawing the gauge pointer, to present the new
values of Pitch parameter, the redraw implementation
implies the following programming steps:

a = ((th2-th1)/(maxValue -minValue)
b thl-(a*oldValue)
theta = a*old Value +b
If (oldValue >= minValue) and (oldValue <= maxValue)
Xnew = xcenter+0.83*r*sin (theta * DgreetoRadian)
Ynew = ycenter- 0.83*r*cos (theta * DgreetoRadian)
DrawLine (Xcenter, Ycenter),(Xnew, Ynew)
where,
th1=-180 (It is the starting angle of the pointer (in
degrees))
th2=180 (It is the ending angle of the pointer (in
degrees))
r=60 It is the radius of the gauge circle
(Xcenter=0; Ycenter=0 They are the coordinates of
the central point of the gauge circle that the
pointer rotates around.
(Xnew, Ynew) They are the coordinates of the
pointer’s end point, they represent the new
position of the pointer after each change in the
Pitch guiding value such that the sense of the
pointer movement will match the change in Pitch
value.
C. Performing the required calculations. This gauge
depends on some parameters (Elevator, Elevator to
Pitch, Height Speed Effect, Weight Effect,
maximum rate of pitch change, deltatime), the stage
implies the following programming steps:

D = Elevator * ElevatortoPitch * HeightSpeedEffect *
WeightEffect

Mx = MaxRatePitch * deltatime

If D > Mx Then D=Mx Else

If D < -Mx Then

D = -Mx

Pitch = Pitch + D

If Pitch>90 Then Pitch = -Pitch +180
Heading=Heading+180

If Heading>=360 then Heading=Heading-360
Else if Pitch<-90 then Pitch=-Pitch-180
Heading=Heading+180

If Heading>=360 then Heading=Heading-360

Yaw: This flight angle is represented by Yaw gauge,
yawing is responsible for turning the flight around y-axis,
which makes the flight slightly skewed depending on the
control surface (Rudder) (Fig. 10).

881

Fig. 10: Yaw gauge

Its implementation consists of the following steps:

A. Drawing the bitmap, which is activated by container
program.

B. Redrawing the yaw gauge’s pointer and its
movements will reflect the changes, which occurred
in Yaw, its implementation is the same as in the step
B in above paragraph.

C. Performing the required calculations. This gauge
depends on the parameters (Rudder, Rudder to Yaw,
height speed effect, weight effect, maximum rate Yaw,
deltatime); its implementation implies the following
programming steps:

D = Rudder * RuddertoYaw * HeightSpeedEffect

* WeightEffect

Mx = MaxRateYaw * deltatime

If D > Mx Then D = Mx

Else If D < -Mx Then D = -Mx

Yaw =Yaw +D

RPM (Round Per Minute) Gauge: This gauge represents
the increase or decrease in the power of the flight engine,
which depends on throttle control that is changed by the
joystick as the trainee desires (Fig. 11).

Fig. 11: RPM gauge

Its implementation implies the following steps:

A. Drawing the bitmap, which was initialized in the
container program.

B. Redrawing the RPM gauge’s pointer such that its
movement should reflect the change, which occurred
in RPM. its implementation is the same as in the step
B in above paragraph.

C. Performing the required calculations. This gauge
depends on some parameters (engine, maximum RPM,

Asian J. Inform. Technol., 4 (9): 878-884, 2005

throttle, throttletoRPMI1, throttletoRPM2, oxygen
effect, AltimetertoRPM, Altimeter). This stage is
implemented by the following programming steps:

If Engine = 1 Then

AttendedRPM=MaxRPM*(Throttle*(ThrottletoRPM 1+

ThrottletoRPM2* Throttle))

OxygenEffect = Exp (-AltimetertoRPM * Altimeter)

AttendedRPM = AttendedRPM * OxygenEffect

D = AttendedRPM — RPM

Mx = MaxRateRPM * deltatime

IfD>Mx Then D=Mx Else IfD<-Mx Then D =-Mx

End if

RPM =RPM+D

If RPM >MaxRPM Then RPM = MaxRPM
=0

End if

Else RPM

Roll: The value of the flight parameter is represented by
horizon gauge, it reflects the turning of the flight around
z-axis, which making the flight changing its direction left
or right, depending on

the control surface (Aileron) (Fig.12).

Fig. 12: Roll gauge

Its implementation consists of the following steps:

A. Drawing the Sky as a blue filled circle.

B. Drawing the Earth as a movable green chord
according to the changing values of the roll. The
movement of this chord depends on the following
programming steps:

scl=r/maxpitch

d=newpitch*scl

sq=(r*r)-(d*d)

theta=atan(d/sqrt(sq))

pl.x=xcenter-r*cos(theta)

pl.y=ycenter+r*sin(theta)

p2.x=xct+r*cos(theta)

p2.y=yctr¥sin(theta)

rdroll=(oldroll*DegrretoRadian)

pll.x = (pl.x-xc)*cos(rdroll)+(pl.y-yc)*sin(rdroll)+xc
pll.y = (pl.x-xc)*sin(rdroll)+(p1.y-yc)*cos(rdroll)+yc
p22.x = (p2.x-xc)*cos(rdroll)+(p2.y-yc)*sin(rdroll)+xc

882

p22.y = (p2.x-xc)*sin(rdroll)+H(p2.y-yc)*cos(rdroll)+yc

Draw Chord (p11and22)

where,

pl It is the starting point of the chord

pl.x Itis the x-coordinate of the point p1

pl.y [Itis the y-coordinate of the point pl

p2 It is the ending point of the chord

p2.x It is the x-coordinate of the point p2

p2.y Itis the y-coordinate of the point p2

pll It is the new starting point of the chord (after

rolling)

p22 It is the new ending point of the chord (after

rolling)

It is the x-coordinate of the point p11

It is the y-coordinate of the point p11

p22.x It is the x-coordinate of the point p22

p22.y Itis the y-coordinate of the point p22

xc, yc The coordinates of the center point of the circle

r It is the radius of the circle

C. Performing the required calculations. This gauge
depends on the parameters (Aileron, Aileron to Roll,
height speed effect, cross wind effect, weight effect,
maximum Rate Roll, delta time); this stage is
implemented by the following programming steps:

pll.x
plly

D= Aileron*Aileron2Roll*HeightSpeedEffect*
CrossWindEffect* WeightEffect
Mx = MaxRateRoll * deltatime
IfD>Mx ThenD=Mx Else If D <-Mx Then D =-Mx
Roll = Roll + D
If Roll > 180 Then Roll = Roll - 360
Else if Roll <-180 Then Roll = Roll + 360

NAVIGATION PARAMETERS

These parameters are very important to pilot because
they help him to make good assessments of the course.
They provide information about the geographic position
of the flight airplane and its motion direction
and speed. The navigation parameters include:

Heading: This gauge indicates the flight motion direction

(in degrees) relative to the geographic north. Fig.13. Its

implementation implies the following stages:

A. Drawing the bitmap, which is enabled by the
container program.

B. Redrawing the pointer by applying the following
programming steps:

Xnew=xcenter+0.83*r*sin

(old heading *degreetoRadian)

Ynew=ycenter-0.83*r*cos(oldHeading * DegreetoRadian)

DrawLine (Xcenter, Ycenter),(Xnew, Ynew)

Where:

Asian J. Inform. Technol., 4 (9): 878-884, 2005

r=60 It is the radius of the gauge circle

(Xcenter=0, Ycenter=0) They are the coordinates of the

central point of the gauge circle that the pointer rotates

around.

(Xnew, Ynew) They are the coordinates of the pointer’s

pointing end, they represent the new position of the

pointing end after each change in the Heading value.

C. Performing the required calculations. This gauge
depends on the parameters (Roll, Rolltohead, Yaw,
Yawtohead, speedeffect, Deltatime) this stage
implies the following programming steps:

deltaHead=(Roll*RolltoHead+Yaw*YawtoHead)* Speed
Effect*deltatime

Head = Head + deltaHead

If Head < 0 Then Head = Head + 360 Else If Head >= 360
Then Head = Head — 360

End if

£ AP
re B W
13”"4?1" & i

Fig. 13: Heading gauge

Fig. 14: Speed gauge

Speed: This gauge represents the actual speed of the
flight. Fig.14. Its implementation consists of the following
steps:

A. Drawing the bitmap which is enabled by the
container program.
B. Redrawing the speed pointer such that its

movement will reflect the variation in speed, this
stage is implemented as follows:

a=((th2-th1)/max Speed
b=th1
theta=a* Speed +b

883

If ((oldSpeed >= minSpeed) and (oldSpeed <= maxSpeed))
Xnew=xcenter+ 0.83*r*sin (theta *DegreetoRadian)
Ynew=ycenter- 0.83*r*cos (theta * DegreetoRadian)
DrawLine (Xcenter, Ycenter),(Xnew, Ynew)

where,

th1=-135 It is the starting angle of the pointer (in
degrees)

th2=135 It is the ending angle of the pointer (in
degrees)

=60 It is the radius of the gauge circle

(Xcenter=0; Ycenter=0) They are the coordinates of the
center point of the gauge circle that the pointer rotates
around.

(Xnew, Ynew) They are the coordinates of the pointer’s
pointing end, they represent the new position of the
pointing end after each change in the speed value.

C. Performing the required calculations. It uses
several effective parameters, such as (the RPM, maximum
RPM, maximum speed of the flight, weight effect,
dragcoefficient, airspeed, pitch, degreetoradian,
decrementratespeed, incrementratespeed, deltatime),
depending on the following programming steps:

R = RPM / MaxRPM
AttendedSpeed=MaxSpeed*(R*(RPM2Spdil+RPMtoS
pd2*R))* WeightEffect

AttendedSpeed = AttendedSpeed - DragCoeffecient *
AirSpeed

If Pitch > 0 Then
AttendedSpeed=AttendedSpeed*Cos(Pitch*Degreeto
Radian)

Else If Pitch < 0 Then
AttendedSpeed=AttendedSpeed*1+Cos(Pitch*
DegreetoRadian)

D = AttendedSpeed — Speed

Mx = IncrementRateSpeed * deltatime

Mn = DecrementRateSpeed * deltatime

If D> Mx Then D = Mx

Else If D < Mn Then D = Mn

Speed = Speed + D

If Speed > MaxSpeed Then Speed = MaxSpeed else If
Speed<0 then Speed=0

Altimeter: This gauge is different from other gauges in its
shape and it gives the height of the flight, it is composed
of three vertical bar regions (red, orange, blue) and there
is a movable blue indicator that moves up and down
according to the Height value as shown in the following
programming steps:

Asian J. mform. Technol., 4 (9): §758-58584, 2005

If (height >==0 and height <= 1500) then
scalefactor = rectl .Height / 1500.0

drwheight =rectl. Height - (height *scalefactor)
DrawLine (0,drw_height), (rectl. Width,drw_height)

where,

rectl Height It is the height of the height of the

rectangular gauge

rectl Width Itfis the width of the height rectangular

gauge
drw_height Itisthe value of the scaled (mapped) height
according to the boundaries of the main rectangle which
containg the three small bars (Fig. 15).

When the indicator points in the red region, it means
the flying is in a dangerous height (between 0-300m),
when the indicator points in the blue region it means the
flying iz in a less dangerous height (between 500-1500m),

Fig. 15: Altimeter gauge

when the indicator points in the orange region it means
the flight is in a safe height (from 1500 m and over). The
operational program of the gauge object depends in its
work on some parameters (Pitch, degreetoradain,
deltatime, height) as shown in the following programming
steps:

deltaheight
deltatime

height = height + deltaheight
If height < 0 Then height = 0

Speed* Sin(Pitch*DegreetoRadain)*

Latitude and longitunde: These two parameters considered
ag infermediate results indicate the geographic position of
the flight in the world according to some parameters
(speed, pitch, degree to radian, delta time) as in the
following programming steps:

dHorz = Speed* Cos(Pitch*DegreetoRadian)*deltatime
LatScl = 6372* DegreetoRadian

LonScl=LatScl *Cos (Latitude*DegreetoRadian)
Longitude=Longitudet+dHorz*Sin (Heading*Degreeto
Radian)/LonScl

a84

atitnde=Latitude+dHorz*Cos
Radian)/LatScl

{(Heading *Degreeto

FEATURES OF THE IMPLEMENTED FLIGHT
SIMULATOR

The Fight Simulator system as shown in fig. 16 is
implemented as a homogeneous collection compozed of:

The Cockpit as a panel shape (dashboard) which
contains eleven gauges (each of them is an ActiveX
program alone) with animated pointers as follows:
Control surfaces set of gauges (Elevator, Aileron,
Rudder, Throttle)

Response set of gauges (Pitch, Horizon, Yaw, Rpm,
Speed, Altimeter)

Navigation Gauge: Head gauge

The External view which is drawn using OpenGL, the
simulated view of Earth surface (drawn as a plane)
and Sky (drawn as a sphere), it gives the sense of fly
when the simulator is running in any combination of
axes (Up/ Skewed, Down/ Skewed, Skewed left or
right).

The start buiton for starting the Whole Flight
Simulation task.

The Joystick represents the input or controlling tool
of the flight simulator, which iz implemented using
DirectX (DirectInput), which iz work under OpenGL
environment as an external class.

Fig. 16: Final flight simulator

REFERENCES:

Forsstrom, K. S., Armray Processors in Real-Time
Flight Simulation, Computer, p: 62.

Shafer, M. F., 1992. NASA Technical Memorandum
4396, In: Flight Simulation Studies At the NASA
Drvden Flight Research Facility.

