Asian Journal of Information Technology 4 (10): 901-906, 2005

© Grace Publications, 2005

The Conversion Algorithm and Implementation
Between Carry-save and Binary Sign-digit Representations

Guoping Wang
Department of Engineering, Indiana University
Purdue University, Fort Wayne 2101 E. Coliseum. Blvd. Fort Wayne, IN 46805, USA

Abstract: The carry-propagation-free addition which is independently of operand length is feasible only if the

outputs are expressed in the redundant representations. B
the two popular redundant formats which are widely used
the previous studies, these two representations are treated separately. In this study,
the conversion between them, thus,

implementations are proposed for

inary sign-digit and carry-save representations are
in the implementation of high-speed multipliers. In
the algorithms and
the computer arithmetic developed for

one representation can be easily adapted to the other. The conversion overheads in the area and speed are also

discussed.

Keywords:Binary signed-digit number, carry-save format, redundant representations, catry-propagation-free

addition

INTRODUCTION

Constant-time binary addition is possible using
redundant binary representations, among which the
Binary Signed-Digit (BSD) and Carry-Save (CS) formats
are well known. They have been used widely in the
implementations of high-speed multipliers. For
example"?, the high-speed multipliers were proposed
using binary sign-digit implementations. Huang et al¥
proposed a high-speed MAC unit using BSD
representations. High-speed implementations of
multipliers using carry-save representations were studied
by Itoh et al*, Fadavi-Ardekani®, Gustafsson et al
Verma and lenne™, Junhyung and Taewhan”, Ciminiera
and Monthuschi'”. These two formats are treated
respectively in the previous researches. For example, the
conversion algorithm and implementations from BSD into
2’s-complement numbers were studied by Herrfelled and
Hentschke!"”, Walter'”, Montalvo and Parhi"¥,
Kornerup "9, Yen et al.,' and Phatak et al.,"". Lang and
Bruguera proposed an algorithm and an implementation
structure to detect the sign and overflow which can only
be used in carry-save format representations.
Srikanthan"® proposed a sign detection technique only
for binary sign-digit systems. In this study, the algorithm
and structure of the conversion between CS and BSD
representations are proposed, hence the algorithms which
are developed for one representation can be easily
adapted to be used for the other one.

BSD number system: Binary sign-digit representation
is one of the Signed-Digit (SD) number systems
originally introduced by Avizienis"”, which provides
carry-propagation-free addition. In a signed-digit system,
the individual digits have negative as well as positive
values. Given a radix-(r) signed-digit number, each digit of
the signed-digit number can take one of the following
2a+1 values:
{-oc,‘..,-l,O,l,...,a})]
where the magnitude of a positive integer 4must be
within the following interval:

[LJSaSr—l
2

The radix-2 signed-digit system (BSD) representation
uses the digit set {-1, 0, 1} to represent binary numbers.
The BSD number system is also called redundant because
a given integer number may have more than one
representation. For example, the radix-2 integer, (7),,, can
be represented in several ways, .2, [0 11 1]4,[100 -
Hpsp, or [1 -1 1 1] 4. Based on the BSD redundancy
property, addition rules can be devised so that carry
propagation is limited to only one digit position, thereby
eliminating the possibility of a carry from the LSD (Least-
Significant-Digit) to the MSD (Most-Significant-Digit). In
a RB adder circuit implementation, the addition time is
fixed and does not depend on the word length. Also, no
explicit mechanism to handle the overall sign of a

@

Corresponding Author: Guoping Wang, Department of Engineering,

Indiana University Purdue University, Fort Wayne 2101 E.

Coliseum. Blvd. Fort Wayne, IN 46805, USA Tel: (260)481 6036 Fax: (260)481 6281

901

A L

Asian J. Inform. Tech., 4 (10): 901-906, 2005

signed-digit number is required since it is determined by
the most significant non-zero digit. Since the
multiplication of two numbers is generally performed by
the addition of partial products, the carry-propagation-
free feature of the RB arithmetic can be used to design
high-speed multipliers!,

The conversion of 2’s-complement to redundant binary:
A limited precision BSD number, A, can be derived from
the addition of a pair of N-bit 2’s-complement numbers A

| and BY.,

(A+B),c =A-(-B),,
=A(B+1)
=A-B-1
N-2 _ N2]
= [-aN_lz"“ +y aiz'] + [bN_lzN" -3b, 2‘] B
i=0 — i=0

b

N-2 i

=(-ay, +by,)2 ﬂt[z(ai -E)zi]-l

N-2
= [SN_,Z"" +3 8, 2']- 1

i=0

Vel &)

where

Sy =-ay,+ mﬁ =a;-b,

1

for 0 < I < N -2, 2¢ is the 2’s-complement operations,
is the 1’s-complement operations, is the bit-
complement. ‘

The binary-signed digits can be encoded into binary
in several ways. The binary signed digits{-1, 0, 0, 1} can
be coded as positive/negative flag encoding {00, 01, 10,
11}, respectively, (Table 1).

Examining Eq. 3, beginning with the 8, term, the
signed digits are encoded using the relationship, 8=a;-b,
where O, is a binary signed digit, 8¢ {-1, 0, 1}. The
mapping equations for §',and &', are*?**!1

0, =g
& =b,for0 <i< N-2

Similarly, in the Most Significant Digit (MSD) term of
Equation, 8y, is encoded with the mapping equations

@

na =y, 8y, = by, ®)
The structure of mapping the sum of two 2’s-
complement binary numbers to a BSD number using
positive/negative flag encoding (Fig. 1).
For example, a 2’s-complement number (00000101),.
is converted directly into a BSD number (01 01 01 01 01 11
01 11)ygp.

902

Table 1:Positive/Negative Flag Coding for BSD

« value Encoded o a*
-1 0 0
0 0 1
0 1 0
1 1 1
Table2: Sign-Amplitude Coding for BSD
a value Encoded af a®
-1 1 1
0 0 0
0 1 0
1 0 1
Table 3: Mapping table from a; t085 8,
A b; 8 & [N
0 0 1 0 1
0 1 0 don’t care 0
1 0 0 don’t care 0
1 1 -1 1 1
aN-1 BN'1 aN2 bN2 a, b,
LI B NN B A
v
SN1 §N1T gN2 §5+N2 3, &

Fig.1: Mapping from binary numbers to a BSD for
positive/negative encoding

The binary-signed digits can also be encoded into
a sign-amplitude format®, (Table 2).

Similarly, from Eq. 3 , Table 3 shows the mapping
from a, b, to §,,8, and the equations for 8,and & , using
sign-amplitude encoding can be derived as

3, =a;, 8, =2,® b,
0< 1< N2

The MSD term of Eq. 3, , is encoded with the mapping
equations

©

Oy =ayy, Oy, = ay, ® by, 7
Carry-save format representation: In the carry-save
format, a binary number is represented in carry and save
format. For example, the following carry-save redundant
format as in Fig. 2 corresponds to the binary number
1100100.

The carry-save redundant representation format was
used for high-speed multiplication implementation® 4,
The Wallace-tree method is commonly used to realize
high-speed multiplication®*'® . The basic cell in carry-save
addition is 3-to-2 or 4-to-2 CSA (Carry Save Adder), also
called 3:2 or 4:2 counter. A 3:2 counter can be realized by

Asian J. Inform. Tech., 4 (10): 901-906, 2005

Table 4:Encoding of BSD Digits

Sign-amplitude Encoding Positive/negative Encoding
BSD digits (signz*,ampz*) (z'.2)
-1 11 01
0 00 or 10 00or11
1 01 10
Table S:Conversion from Sign-Amplitude to Positive/Negative Encoding
BSD Digit = z z* z
0 0 0 0 0
1 0 1 1 0
-1 1 1 0 1
invalid 1 1] X X

Table 6: Conversion from Positive/Negative to Sign-Amplitude Encoding

BSD Digit z z z z
0 0 0 0 0
1 0 1 0 1
-1 1 0 1 1
invalid 1 1 X X
011110
1000110
Fig. 2: A CS binary number example
Binary partial products

y 3
[3:2cs4 10

32084 |

—]

3:2CsA

3:2CSA

L Carry look ahead adder j

Product

Fig.3: 3:2 Counter based 4x4 multiplier

a full adder, which reduces three numbers to two
numbers. Fig. 3 and 4 are 4x4 multipliers, using 3:2
counters and 4:2 counters.

The traditional Wallace-tree method uses a 3:2
counter. This scheme results in a complicated
interconnection between three-input/two-output
counters. This makes the VLSI layout difficult and
inefficient. The extended layout process increases the
design complexity. As the multipliers increase in bit
length, the interconnection becomes exponentially
complicated. To solve this problem with conventional
Wallace-trees, the 4:2 counters could be used instead of

903

Binary partial products

bl 1

4 : 2 Counter 4 : 2 Counter

y 4

4 :2 Counter

y y

Carry look ahead adder

;

product

Fig. 4: 4:2 counter based 4x4 multiplier

7 7
z Z
.
Fig.5: BSD conversion from sign-amplitude to

positive/negative encoding

3:2 counters. The use of 4:2 counters simplifies the
interconnection drastically because the partial products
are added using a binary tree.

BSD ENCODING AND CONVERSIONS

Digit sets{-1,0,1}are used in the BSD representations,
thus, two bits are required to encode each BSD digit.
There are two popular encodings for the BSD digits:
sign-amplitude™ and positive/negative flag encoding!”,
(Table 4).

With the sign-amplitude encoding, the code 10 may
be considered an alternate representation of 0 or else
viewed as an invalid combination. In this study, 10 is
considered as another representation of 0. This also
applied to the encoding 11 for positive/negative flag
representations. In the following, we look at the
conversion algorithms between these two BSD
encodings. Table 5 shows the conversion truth table from
sign-amplitude to positive/negative flag encoding and
Table 6 is the truth table for conversion from
positive/negative flag encoding to sign-amplitude
encoding. Equations 8 and 9 are the logic equations
accordingly, while the logic diagram are shown in Fig 5
and 6.

dsian J. Inform.

=2 Q®27*,7=2° ®)

$=7"7"=7"® Z-)

CONVERSION FROM CS TO BSD

From Eq. 3, a BSD , can be considered as the sum of
two 2’s-complement 4 and B plus 1, which is, 4, thus, a 3:2
counter can be used to obtain 4+B+1 and . Equation 10
is the logic equation for full adder to add x and y, cin and
get the sum: s and carry-out: cout to realize such 3:2
counter.

S=X®Y®C,

10)
C,. =XY +YC, +XCy,

Thus, the sum of 4+B+1 can be obtained using a
simplified 3:2 counter as shown in (Fig. 7).
Where u and v are the sum and carry format for 4+B+1,
and —_—
u,=a, ®b,,v,=0
u =a @®b,v,=a +b,
u=a ®b,v,=a, b, (2<i < N1 (11)

Uy Suyy =ay, @ by, vy, by,

U+V can be mapped into a BSD number according to
Eq 4 and 5 or 6 and 7 depending on the BSD encodings:
sign-amplitude or positive/negative flag encoding.

Figure 8 shows the diagram for the conversion from
CS format into BSD.

CONVERSION FROM BSD TO CS

Consider the positive/negative flag encoding for the
BSD representation, let

Ni
Zgy = Zzi 2
1=0
and we have
Z,=72'-7-
(12)
therefore,
N-l N —
Zw=Y22 =Y (2 -Z7) 2
1=0 I=0
N-1 Nl 13
=322 .Yz 2 13)
i=0 i=0
E) NI)
Zt=) z*2 Zr=» 22
Let i=0 and ; then
Zyy=2"-7 (19

904

Tech., 4 (10): 901-906, 2005

Table 7:Overhead of CS to BSD Conversion for N-bit Word Length
Total Number of Gates Propagation Delay
2N 2 Gates

Table 8:Overhead of BSD to CS Conversion for N-bit Word Length

Total Number of Gates Propagation Delay
2N 2 Gates
zZ Z z
7 j
Zl

Fig. 6: BSD Conversion from Positive/Negative Flag to
Sign-Amplitude Encoding

Die s & o o o %

o o o o 0 o §

1

S o % 8 8 o8 w

e & & & #» » o e ¥

Fig. 7: Simplified 3:2 counter to realize A+B+1

where Z'and Z' are unsigned binary numbers, thus, ,can
be computed as
Zow =2 -Z =Z' Z +1 (15)
where £~ is the complement of Z" with a sign flag
‘1’ extension before the most significant bit. The
simplified 3:2 counter structure in Fig. 7 and Eq. 11 can
also be used for the computation of Z* =+Z" +1¢ o
convert the Zg, BSD representation into a CS
representation. For the sign-amplitude encoding for BSD,
first Eq. 8 can be used to convert the sign-amplitude
encoding into positive/negative flag encoding, then BSD
can be converted into CS format according to Eq. 11 and

Fig. 7. Figure 9 shows the diagram for conversion from
BSD to CS format.

CONVERSION OVERHEAD

From Section 3, the conversion from CS into BSD
involves two steps and the propagation delay for each
step is only one gate which is independent upon the word
length and N gates is required for each step for N-bit word
length, so the total conversion overhead for this
conversion is listed as Table 7.

Similarly, the overhead of BSD to CS conversion from
Section is listed as Table 8.

Asian J. Inform. Tech., 4 (10): 901-906, 2005

Carry-save format numbers A and B

Mapping into Rb using sign-
amplitude or pos/neg flag encoding

!

Fig. 8:Conversion Diagram from CS to BSD

Binary Sign Digit Format 22+, L)

Z+ L

7

3:2 Carry Save
Adder

v

Carry S8ave Format

Fig. 9:Conversion Diagram from BSD to CS Format

EXAMPLE OF CONVERSION
ALGORITHM APPLICATIONS

An area-time efficient sign detection technique for
BSD was proposed by Srikanthan et al. The proposed
method can be easily adapted to be used for carry-save
format representation. The procedure is described here.

* Add 1 to the carry-save format according to Eq. 11,
and this procedure adds only an extra gate delay and
it is not dependent on the wordlength of the
operands.

* Convert this carry-save result from step 1) to BSD
format using Equation - and this conversion adds
another gate delay. This delay is also independent of
word length.

* Apply the sign-detection algorithm to this binary
sign digit.

CONCLUSION

While the binary sign digit and carry-save
representations are treated differently in the previous
research, we have shown that the conversion algorithms
and implementation between these two redundant
representations without any carry-propagation delay
problems. The important implications are that any
advance in the algorithm and implementation in one
redundant representation can be easily applied to the
other.

REFERENCES

1. Takagi, N., H. Yasuura and S. Yajima, 198S5. High-
speed VLSI multiplication algorithm with a redundant
binary addition tree IEEE Transaction on Computers,
34: 789-796.

2. Makino, H., Y. Nakase, H. Suzuki, H. Morinaka,.H.
Shinohara and K. Mashiko, 1996. An 8.8-ns 54x54-bit
Multiplier with high speed redundant binary
Architecture. IEEE J. of Solid-state Circuits, 31: 773-
783.

3. Vuillemin, J.,1983.A very fast multiplication algorithm
for VLSI implementation, The VLS] J. Integration, 1:
39-52.

4. Huang, X., W. Liu and B.W.Y. Wei, 1994. A high-
performance CMOS redundant binary Multiplication-
and-Accumulation (MAC). IEEE Transactions on
Circuits and Systems, 41: 33-39.

5. Iteh, N., Y. Naemura, H. Makino, Y. Nakase, T.
Yoshihara, and Y. Horiba, 2001. A 600-MHz 54x 54-bit
multiplier with rectangular-styled Wallace tree. IEEE
J. Solid-State Circuits, 36: 249-257.)

6. Fadavi-Ardekani, J., 1993. MxN Booth encoded
multiplier generator using optimized Wallace trees.
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 1: 120-125.

7. Gustafsson, O., A.G. Dempster and L. Wanhammer,
2004. Multiplier blocks using carry-save adders. In:
Proceedings of the 2004 International Symposium on
Circuits and Systems, 2: 473-476.

8. Verma, AK.andP. Ienne, 2004. Improved use of the
carry-save representation for the synthesis of
complex arithmetic circuits, In: ICCAD IEEE/ACM
International Conference on Computer Aided Design,
pp: 791-798.

9. Junhyung, U. and K. Taewhan. An optimal allocation

of carry-save-adders in arithmetic circuits. IEEE
Transactions on Computers, 50: 215-233.

10. Ciminiera, L. and P. Montuschi, 1996. Carry-save
multiplication schemes without final addition. IEEE
Transactions on Computers, 45: 1050-1055.

11.
12

13,

14.
15.

16.

17.

18.

Asian J. Inform. Tech., 4 (10): 901-906, 2005

Herrfeld A. and S. Hentschke, 1995. Conversion of
redundant binary into two's complement
representations. Electronics Letters, 31: 1132-1133.
Walter, C.D., 1997. Analysis of delays in converting
from a redundant representation. IEE Proc. Comput.
Digit. Technol., 144: 219-221.

Montalvo, L.A. and K.K. Parhi, 1996. Radix-2 over-
redundant digit set converters. In: 1996 IEEE
International Symposium on Circuits and Systems,
Atlanta, G.A., 4: 81-84.

Komerup, P., 1994. Digit-set conversions:
Generalizations and applications. IEEE Transactions
on Computers, 43: 622-629.

Yen, S, C. Laih, C. Chen and J. Lee, 1992. An efficient
redundant-binary number to binary number
converter. IEEE J. Solid-State Circuits, 27: 109-112.
Phatak, D.S., T. Goff and I. Koren, 2001. Constant-
time addition and simultaneous format conversion
based on redundant binary representations. IEEE
Transactions on Computers, 50: 1267-1278.

Lang T. and J.D. Bruguera, 1999. Multilevel reverse-
carry computation for comparison and for sign and
overflow detection in addition. In: Proceedings IEEE
International Conference on Computer Design: VLSI
in Computers and Processors, pp: 73-79.

Srikanthan, T., S.K. Lam and M. Suman, 2004. Area-
time efficient sign detection technique for Binary
signed-digit number system. IEEE Transactions on
Computers, 53: 69-72.

906

19.

20.

21.

22.

23.

24.

Avizienis, A., 1961. Signed-digit number
representations for fast parallel arithmetic. IRE
Transactions on Electronic Computers, EC., 10: 389-
400.

Shin K.W. and HW. Jeon, 2000. High-speed
complex-number multiplications based on redundant
binary representation of partial products. Intl. J.
Electronics, 87: 683-702.

Shin, K.W., B.S. Song and K. Bacrania, 1998. A 200-
MHz complex number multiplier using redundant
binary arithmetic. IEEE J. Solid-State Circuits, 33:
904-909.

Kuninobu, S., T. Nishiyama, H. Edamatsu, T.
Taniguchi and N. Takagi, 1987. Design of high speed
MOS multiplier and divider using redundant binary
representation. In: Proceedings of 8th Symposium on
Computer Arithmetic, pp: 80-86.

Wallace, C., 1964. A suggestion for a fast multiplier.
IEEE Transactions on Electronic Computers, 13: 14-
17.

Parhami, B., Computer Arithmetic: Algorithms and
Hardware Designs. Oxford University Press.

