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Abstract: The selection of learning rates to obtain satisfactory performances for neural network controllers is
a challenging problem. In order to skip any time consuming experimentation for the choice of an appropriate
value of the learning rate, this paper is concerned with an online adaptive learning rate algorithm derived from
the convergence analysis of the usual gradient descent method. Based on the feedback linearization method,
a multilayer neural network controller approximates online the unknown dynamics of the system including the
non-linear behaviours. The proposed controller does not require any preliminary off-line training. A stability
proof of this control scheme is given. Simulations and a comparison with a PD controller and several fixed
learning rate neural controllers illustrate the effectiveness of the proposed algorithm in case of adaptive control

for robot trajectory tracking.
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INTRODUCTION

In the past decade,he application of intelligent
control techniques (fuzzy control or neural- network
control) to the motion control for robot manipulators have
received considerable attention ™. A control system,
which comprises PID control and neural network control,
was presented by Chen et al., ¥ for improving the control
performance of the system in real time. Clifton et al., ™ and
Misir et al., ™ designed fuzzy-PID controllers which where
applied to the position control of robot manipulators.
Huang and Lee ' suggested a stable self-organizing fuzzy
controller for robot motion control. This approach has a
learning ability for responding to the time-varying
characteristic of a robot manipulator. However the fuzzy
rule learning scheme has a latent stability problem.
Yoo and Ham " presented two kinds of adaptive control
schemes for robot manipulator via fuzzy compensator in
order to confront the unpredictable uncertainties. Though
the stability of the whole control system guaranteed,
some strict constrained conditions and prior system
knowledge are required in the control process. On the
other hand, Kim and Lewis ! dealt with the application of
quadratic optimisation for motion control of robotic
systems using cerebellar model arithmetic computer neural

networks. Lewis et al., " developed a multilayer neural-net
controller for a general serial-link rigid robot to guarantee
the tracking performance. Both system-tracking stability
and error convergence can be guaranteed in this neural-
based control system ",

Several works related to the use of artificial neural
networks (NN) in identification and control applications
are reported in the literature"*'". One challenging problem
of the usual back-propagation algorithm for multilayer NN
1% is the determination of the learning rate (LR), which has
to be made with care. A lot of methods are based on fixed
LR. If the LR is large, learning may occur quickly, but it
may also become unstable. To ensure stable learning, the
LR must be sufficiently small. However, with a small
learning rate, the NN may adapt reliably, but the learning
may take quite a long time. It is thus difficult to select a
suitable fixed LR for different initial values of the NN
parameters and for different NN structures. This difficulty
is a basic characteristic of the NN learning rule that results
from the gradient descent (GD) method "*'¥. Such method
is known for its slowness and its tendency to become
trapped in local minima. To reduce these shortcomings, a
number of faster NN training algorithms have been
developed, such as adaptive learning algorithms ** and
other improved algorithms "'\, One may also use second-
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order non-linear optimising methods to accelerate the
learning, such as the conjugate gradient algorithm ¥ or
the Levenberg-Marquardt based method ", In spite of
their better convergence, these methods are not based on
the optimal instantaneous learning rates of the GD
approach. Moreover, some critical drawbacks of such
methods have to be noticed: the ill conditioning of the
Hessian matrix in many applications and the
computational complexity related to the Hessian
calculation. In addition, most of these algorithms are
developed only for off-line NN training.

Our approach concerns the investigation of adaptive
learning rate algorithms. The main contribution is to
extend the results obtained by D. Sha and V. B. Bajic for
the modelling of SISO non-linear systems 2 to the
modelling and control of MIMO ones . For this
purpose, multilayer NN will be used to model the
unknown non-linear behaviours of the system to be
controlled. The adaptive control design results from the
neural model in order to track a reference trajectory.
Simulations and comparisons with a PD controller and
several fixed LR neural controllers illustrate the
effectiveness of the proposed algorithm in an adaptive
control for robot trajectory tracking.

Preliminaries: Consider a mn th order multi-input multi-
output continuous time system given by cmpas et al., *
by:

X, =Xy, Ky =X, X, =£(X) +u(t) +d(t), y=x, o
with x =[x] x;..xI]"e R™ x,()e R™ i =1,2,...n,
u(t)e K™ d(t)e K™ £(x): R™ > K™ and y(t)e K™ »
is the state vector, u(t) is the input vector, d(?) denotes
the unknown disturbance, f{x) is an unknown smooth
function and y(?) is the output vector. Many physical
systems, such as robotic ones can be represented in this
form. It is assumed that the non-linear function f{x) and
the external disturbances d(?) are unknown to the
controller. Given a desired trajectory and its derivatives
values x4()=[ys ¥5 y"PTIT, et us define the
tracking error as  e(t) = y(t)—y,(t)e R™ which captures
the performance of the closed-loop system output y(?) in
tracking the desired trajectory y,(t). It is typical in robotics
to define a so-called filtered tracking error as r(t)e R™.
1) =e" () + A, " 2(t) +...+ Ae(t) ; (¥)]
Where ™ V(1),...,eM (t) are the derivative values of the
error e(t), and A,,...,A , are constant values selected so
that | n-1 Ay S +y is stable. The performance

measure r(¢) can be viewed as the real-valued
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Fig. 2: NN controller

instantaneous utility function of the plant performance:
smaller r(#), better the system performan ce.

The single output of a two-layer NN with a linear output
activation function is given by (Fig.1) :

Ny N;
Yan = Zvjo(z:wjk.(pk +0, )+ 6,
j=t k=1

where @,...,@ are the NN inputs, of) is a sigmoidal
activation function, w, are input-to-hidden layer
interconnection weights, and 6, 0,,,m =1,2 ,... are bias. N,
N, are the numbers of neurons in the input and hidden
layers. By collecting all the NN weights w,, ,v; and bias
0,0,,, into matrices W", V" (the bias are included as the
first column of the weight matrices V" and WT) equation 3
may be written in terms of vectors as yy (9)=V" ¢(WT.¢)
with @ = [1,q,,..., ,]"e RNi+Dx1 For a suitable number of
hidden neurons N,, there exists constant weights and bias
such that the estimate of any smooth non-linear function
g(p) from RNi+1 to R is given by

g(9) = VTo(WT.¢) whereW, V  are estimates of the ideal
NN weights w,v 420,

&)

NN controller: The control scheme consists of a PD
feedback controller and a multilayer neural controller
(Fig.2). In the feedback loop, the fixed gain PD controller
makes the overall system stable along a desired trajectory.
The NN is used to approximate the unmodeled dynamics.

The use of an on-line variable LR algorithm, makes
the adaptation process less complicated than other NN
schemes, and improves the error convergence speed.
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Using equation 1 the dynamics of the performance
measure signal Eq 2 can be written as:

RV W U U WO, P o

@
According to the approximation properties of NN, the

i(t)=f(x)+u(t)+d(t)

continuous non-linear functions f; (x) components of the

vector f(x) can be estimated by f, {(x)= VTO’(WT P)where:

o-nDT T

o= x] % --xf va Vi yP e

9‘1+m(2n+l)

is the NN input vector, and ,(/i € SR] +Np are the estimates
of ¥,and W, A robust compensation scheme is provided
by selecting the control input u(?) as !
u(t) =Kyr—f(x)+ ¥ = €@ e ® ®
where K, e R™™ is the control gain matrix such
that K= K', > 0. The determination of the feedback control
gain matrix K, is well known and not detailed in this work.
Letus deﬁne the estimation errors as V =V, v s
W, =W;-W, and &=o(W,".g), with. &) =0()-6()
Using Eq 5, we can rewrite the closed-loop performance
measure dynamics Eq 4 as:

t=Kyr+g(x)+d(t) )

where the functional estimation error is defined as,
e(x)=f(x)— f (x)with ||£(x)|| <gp(x) for some known
bounding functional error gy(x) .

Adaptive learning rate algorithm: Let us consider the
error equation in discrete time, with a sampling period At:

Agi(t) = & (t+ At) — (1) = Afy (x(1) — A, (x(1)) »

where: g(t) = f;(x(t)) - f;(x(t)) , and
Af(x(1)) = f;(x(t + At) - £; (x(t))

Let us assume that | Af,(x(t)) |[<< | Af;,(x(t)) | , ®* (i.e. the
variations of the function to be estimated are slower
compared to the variations of the NN .output). This
assumption is realistic for many processes. Then, during
the parameters adaptation of the NN, the error equation is
given by:

Ag;(t) = —((c(\ivi%))T (A%)+ VT (W o). (aW; )T .(p) 1))
with:

0 0
- 6'(‘3’i,1T(P) 0 0 YN,
o'(W, p)= 0 .. 0 e R
0 0 o'(W,,'9

929

and: BePue

(1+ B ")

Considering a criterion J, = 1/2.(€,(t))’, the standard GD
method **!, leads to:

o'(W,,'¢) =

A\A’i = ﬂrG(WiT'(P)liiAt I=1,...m (8a)

A AT A
AW, =n.0(V) oW @)eAt  I=1..m (8b)
Replacing AV (t) and AWi(t) by their expressions given

byEq8, weobtain  Ae,()~—n,®).LO£() Wik
3 ==AL((0(V‘Vf'<p))T SO )+(V) 0N 9 (60W )’ -Y(pT-(p) ©)

Thus g;(t+At)= [1 w;(t).G; (t)] £;(t) As a consequence,
the error €;(t) tends to 0 when ¢ tends to 1nfm1ty if the
condition 0<m;()<24 (®or M®|<2E'®)= TIM is
satisfied. Let us notice that the upper bound 2 C, (t) of
the leammg rate 7),(¢) is variable because the value of
() depends on the input @ and the current values of
the NN parameters V and W . In order to obtain the
fastest learning, the LR and the weights are adapted
according to M;(t)=¢; 1© , and:

AV () =2 oW e () | i=1,...m

a0) (102)

AW =5<p(t)(wt)) AW OG)E®, i=1,...m(10b)

These on line updating rules are used in the simulations
of section 6.

Stability Analysis: For the neural network training
algorithm to improve the tracking performance of the
closed-loop system it is required to demonstrate that the
tracking error, 1, is suitably small. Theorem 1 provide
sufficient conditions for stability

Theorem 1: The system (1) with control input defined as
in (5) and (10) is stable if the following conditions are
satisfied:

g 28, +0;20

e]-costk,;, 1y < _(Ii:]‘:"d‘) ifr, > 0 and
“ if 7, < 0.(11)
—(g+d;)
rji.cos(k,;,r) = —1—1~
i ]

Proof: Let us define the Lyapunov function for the i*
output :
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12, 1 Tyl oTo
Li=5t +o e (W W)+ (910 (12)

where #r(.) stands for the trace of (.), hence
L; =i + (W W,) + (VT.V,)
with §(t) given by equation (6) we obtain
L = (kyjr +&(x) +dy(0)g + te(WT.W) + (VT V) ;
ky, is the i" row of matrix Ky
AT 2
Since W = —W = ""i"p'_(vi) 681 with

constant (s1mnlarly for \7l ==V = -n;6¢; ). Substitution of
the training rules gives

L =(kyi o+ +d)g + (W (. 076
with tr(4.B)=tr(B.A), we have:

65)+ VI (-n6g)

L; =ky;rr + (g +dp)g — g, (tr (VI8 W ) + VT .6)

13)
5TA T .
Where V; 6.W, ¢ is ascalar, then
L =kyrg + (& +d)g —ngi (V6% 0+ ¥16)  (14)

with & =V;'o(W; @)~ Vi a(W 9) + 03(e)

where the functional estimation error (x .(p) is bounded.

Adding and subtracting VT‘ and V G to & leads to:
€; =‘/iT6'+\A/iT6'+ \"/iT6'+0ci(<p) (15)
The Taylor series expansion of o(W,”. @) for a given ¢

may be written as:

o(W;"9) =o(W"9) + (W "9).WTo+o(WTe)  (16)
with:d(\i’ftp) as defined by Eq 10. Equations 16 can be
rewritten as:

5(W;T9) = 6(W,T9)W; "o + o(W; ) (17)
Substituting Eq 17 in Eq 15 the functional error €;
becomes

=VT6+VTo(W.0). W0 +5; + () (18)
Where; = V;".5+ V;T.o(W;Tg) corresponds to high-order
terms in the Taylor series and is bounded by positive
constant 0,, (i.e, |6] < 6,,).

It is important to note that the neural network
reconstruction error €, the plant disturbance d, and the

930

high-order terms &, in the Taylor series expansion of fall
act as disturbances in the error system. From Eq 18 we
have: STA G =T a

e V6 W o+ VT 5=¢, -8 - ¢

so we can rewrite Eq 14 as :

Li =kyy.rg + (& +di)g ~nig;(€; - §; — 0y) (19)
Thus L; is negative as long as:
-Nigi(g; -8 —a;)<0 20)
and kvi.r.ri + (Si + di)fi <0 (21)
Equation 20 is satisfied as long as €;and ¢, - 6, - a,

have the same sign. A sufficient condition is given

according to
€i28i+ai20 (22)

Similarly, equation (21) is satisfied as long as r, and

kyir+(e;+d;) have opposite signs. A sufficient
condition is given according to

e +4d.
Je-cos(k,;,r) < % ifr,>0 (233)
|Ie-costk,;,r) = _(|E|:1l(—+||dl) ifr,s0 (23b)

In order to satisfy Eq 23a and Eq 23b the error vector r
must remain in a convex domain included in R™

Simulation Experiments: To illustrate the performance
of the proposed NN controller, a two-link robot arm
(Fig. 3.) is simulated. The dynamics equation for such a
manipulator is given by:

M(@)4 +Vm(q,9)q+G(@) +F(@ +14 =7 (24)

\0,

Fig. 3: Two-link robot arm.
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Fig. 6: Position (left) and velocity (right) tracking errors for link 2 in function of time

where q(t)e ®? is the joint variable M(d) vector, is the
inertia matrix, Vm(q,q) ) is the Coriolis / centripetal matrix,
G(q) is the gravity vector, and F(q) is the friction.
Bounded unknown disturbances (including unstructured,
unmodeled dynamics) are denoed by T¢ and the control
input torque is  Tq . The Equation 24 can be written in the
Brunovsky form 25.

Assuming that is known, u(#) can be computed as in
Eq 5. It is important to notice that non-linear terms such as
friction, gravity, and Coriolis terms are unknown. The
system parameters are a,= 1.0, a,= 1.0, m; =1 and m, =
2.3. The controller is composed of two NN that
approximate f(x)=[f;(x) f,(x)]" plus aPD feedback gain.
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The NN input vector is given by ¢=[1 q* q" q} 4} 4177
The NN have N,= 10 hidden-layer nodes. The controller ]

parameters are chosenas A =5 ,K,~diag{20,20}. The"

reference signals used for each joint are qy,(t) =sin(t) ,
qq2(t)=cos(t) with initial conditions q(0) = q4(0)

and  §(0)=q4(0).

xl = XZ

X =f(x)+u+d
x=[q @I, x,=[q ¢I"
u=M"Y@r, d=MT@.1,
£ =-M" (@[ Vaa(a,4) + G(@)+ F(@)] @)
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The Fig. 4 and 5 show the adaptive LR and the
performance criterions J1 for NN1 and J2 for NN 2. The
adaptive LR increases as the inverse of the performance
criterion, and the non-linear function f7x) is quickly well
approximated by NN 1 and NN 2.

The tracking performances (position and velocity) of
PD control design, PD gain plus a fixed LR NN controller,
and PD gain plus the adaptive LR NN controller have
been compared for link 2 (Fig. 6). The tracking
performance of the PD control design is not satisfactory:
a steady-state error results from the non-linear dynamics.
The tracking errors obtained with the fixed LR NN
controllers, converge to smaller values, but the best value
is obtained with the adaptive LR NN controller. Similar
results were obtained for link 1. As a conclusion, the
proposed algorithm is suitable to cancel the non-linear
behaviours.

The Fig.7 compares the performance criterions
obtained for fixed LR NN controllers and the adaptive LR
NN controller. The variable LR algorithm achieves similar
or better results than the others directly, without any
requirements for tuning the learning process.

To test the robust characteristic of the proposed
control system we first consider a parameter variation
condition : at #=2s, 1kg is added to the mass of link 2, i.e
m2=3.3kg, and then we consider a disturbance : at t=2s,
external forces are injected into the robotic system
according to

T,(t) =[0.1sin(t) 0.lsin(t)]"

Morcover, friction forces are also considered in this
simulation and are given as ©!:

F(q)=[0.3q, +0.2sgn(q,) 0.3q, +0.2sgn(q,)I"

Tracking errors for link 2 are depicted in fig.8.in the
case of parameter m2 change, and in Fig.9 in the case of
injection of external disturbance in the robot system.

Since all the parameters and weights of the NN are
randomly initialized, the tracking errors are gradually
reduced through on-line training methodology of the PD
plus NN with adaptive LR control system.

In case of joint friction, parameter variation and
external disturbance, the tracking errors remain relatively
small for the system with PD plus NN. On the other hand
for the system with PD alone one notes a relative increase
in the error.

Moreover, the robust control performance of this
control scheme, in case of joint friction, parameter
variation and external disturbance are suggested as
shown in fig.8 and Fig.9, compared with the simulated
results of the PD position control, the proposed control
scheme is effective and yields superior tracking
performance.
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CONCLUSIONS

In this paper, multilayer NN with adaptive LR are

investigated to control non-linear continuous-time

systems. The adaptive LR algorithm has an improved
convergence that is useful to model the unknown non-
linear dynamics of the system to be controlled. Such an
algorithm is based on the analysis of the convergence of
the GD method. Compared to a fixed LR algorithm, it
makes the tuning process less complicated than other NN
schemes, and results in similar or better performances in
terms of learning speed and training error.

Our perspectives are to investigate further the
indirect adaptive control schemes with NN. Stability
issues and noise sensitivity will be studied according to
the LR updating rule.
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