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Abstract: The aim of this study is to use discrete wavelet transform (DWT) for ECG signal processing,

specifically for reduction of ECG baseline wandering. The main reasons for using discrete wavelet transform
are the properties of good representation nonstationary signals such as ECG signal and the possibility of
dividing the signal into different bands of frequency. This makes possible the detection and the reduction of

basing on the PQ-segment level.

ECG baseline wandering in low frequency subsignals. For testing presented method, were used two original
ECG signal types; ECG signals recorded in our university and ECG signals taken from MIT-BIH arrthythmia
database. The method has been compared with traditional methods such FIR and on-line averaging method and
more advanced method such as wavelet adaptive filter (WAF)™. It was noticed that presented method is
superior to WAF in terms of signal quality and ST-segment distortion, because it cuts the drift from each beat
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INTRODUCTION

When an Electrocardiog gam (ECG) is recorded, many

- kinds of noise are recorded!’, such as:

Baseline wandering, which is caused by low pass
noise.

50 or 60 Hz power line interference.
ElectromyoGram (EMG), which is an electric signal
caused by the muscle motion during effort test.
Motion artifact, which comes from the variation of
electrode-skin contact impedance produced by
electrode movement during effort test.

These noises can make clinical diagnosis very
difficult and thus, several algorithms have been created.
DWT has been described as a good tool for the reduction
of ECG signal baseline wandering. The wavelet functions
(mother and its scaled version) are used as orthonormal

‘bases for representing other functions (signals) in DWT

in time and frequency domains. The DWT is a linear
operation, which decomposes a signal into different
components'”, which appear at different scales or
resolutions. In this study the. authors show how DWT
coefficients, by using the modified on-line averaging
method™, can reduce the baseline wandering in ECG
signal without signal distortion, even when the signal is
Very noisy.

Reduction of ECG baseline wandering is very
important for measurement of the S-T segment with high
accuracy (Fig. 1), which is used for diagnosing ischemia,
myocardial infarction and indicating an imbalance of
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Fig. 1: A typical electrocardiogram

myocardial oxygen supply. The American Heart
Association (AHA) recommended that to preserve linear
phase, the cut-off frequency of high pass filters, may be
chosen equal to the fundamental frequency of the heart
rate or lower (< 0.8 Hz)®%, Several filters have been
designed for the reduction of baseline wandering such as:
*  FIR and IIR filters, by fixing cut-off frequency. These
filters have the disadvantage that the signal is
deformed as the cut-off frequency increases™,

Cubic spline filters, without effect of deformation®,
These filters make several errors when the sampling
rate is low or when the baseline suddenly changes.
Adaptive filters, which determine the signal and
adaptively remove the noise uncorrelated with the
deterministic signal®®. The disadvantage of these
filters is the distortion of S-T segment.
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DISCRETE WAVELET TRANSFORM (DWT) AND
CONTINUOUS WAVELET TRANSFORM (CWT)

The orthonormal wavelet functions (bases) are
analogous to trigonometric sine and cosine. These
functions are fundamental functions for building the
signals. As with sine and cosine, are oscillated about zero..
However the oscillation for wavelets damp down fast to
zero.

The f(t) continuous approximation by wavelet
orthonormal basis can be defined as

Where, J is the scale, k the translation parameter, sJ,
k, dJ, k are the wavelet approximation coefficients, ¥, , (t)
and ¢,, (t) are wavelet approximation functions. Wavelet
functions have two forms: ¥, mother wavelets (wavelet
function) and ¢, father wavelets (scale function)™ (Fig. 2).
Roughly speaking, ¥ (t) represents high frequency parts
of signal and ¢ (t) represents smooth and low frequency
parts of signal. The generally used wavelet types are
Haar, Daubechies, Symmlets and Coiflets. Functions
Y, (t) and ,, (t) are the scaled and translated version of

Y and ¢:

V. (D)=2""y(2t-k),0,()=2""¢(2"t—k) )

Discrete wavelet transform is used to calculate the
wavelet approximation coefficients. For example, for
discrete and finite signal = (f,, f,, ..., f), DWT calculates
m coefficients vector w = (w,, w,, ...,w,), which consists of
wavelet approximation coefficients sicandd, j=1,2, ...,
J. In mathematical terms DWT is derived by:

w=Wf 3)
Where, W is DWT matrix.

To calculate the wavelet approximation coefficients
we apply the known Mallat’s Algorithm (MA)®™. This
algorithm applies decimation operation and after that,
convolutes the signal with wavelet function and its scaled
version as low pass and high pass filters (H, L)®. By
Mallat’s algorithm we decompose the original signal into
subsignals (d,, d,, d, ..., d,, s,, whered,.(d,,, d;,, ..., dine)
and s,. (S;), Sz +-» Spyv’ ) With different bands of signal
frequency (Fig. 3a and b).

The second Mallat’s algorithm is inverse discrete
wavelet transform (IDWT)"¥., This algorithm applies zero-
padding operation (Fig. 4), which gives zero between
samples to double sampling frequency f. Afterwards,
convolutes the signal with wavelet conjugate function
and its scaled conjugate version (H', L")
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Fig. 2: The wavelet functions a: The scaled version
(father) of symmlets and b: Mother of symmlets
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Fig. 3a: Mallat’s Algorithm, f,- original signal. b: Wavelet
approximation subsignals of ECG signal
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Fig. 4: Reconstruction of one beat ECG signal from its
wavelet approximation subsignals by IDWT

H =H(-n), L'=L(-n) @

The Continuous Wavelet Transforms:is defined as

FCWT(!(«).J.klz:rf(t) \V.j.k (t)dt (5)

Where, jeR', keR+ and §” is algebraic dual of mother
wavelet ¢y, which must satisfy an admissibility condition:
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 This condition guarantees the existence of the
-inverse wavelet transform.

3 MATERIALS AND METHODS

.~ The wavelet reduction baseline wandering system
. has three steps (Fig. 6): the first step is DWT signal
. decomposing, the second is Wavelet Averaging Filtering
(WAF) and the last step is reconstruction the original
ignal by IDWT (Fig. 7). The ECG signals used in this
point has standard deviation ' = 0.88:0.91 mV and
sampling frequency f, = 400Hz, or ' =200:330 mV and
" =100Hz.

“DWT decomposing: The first step of the system is
_decomposing the ECG signal using DWT into two
tomponents d, s,. To get two subsignals (Fig. 4 and
- Fig. 5), the first subsignal d, is responsible of high
* frequency and the second s, is responsible of low
. frequency (Fig. 3 can be noticed, that s, is reconstructed
_from d,, d,, d, and s,). s, has the low frequency noise,
- which should be filtered. The decomposing of ECG signal
" into two components d, s, assists greatly in the detection
of the main ECG parameters, when the signal is
” contaminated by high frequency noise. This is particularly
observed in s,.

Wavelet averaging filtering: The first step of wavelet
averaging filtering is to divide s, into windows of one beat

- (T, - Tioromer interval, where i is the consecutive index of
the window in s,) or into R-R windows and to detect in

" each window the isoelectric line level. In this study the
authors propose the average of P-Q segment as a value
(A), which represents isoelectric line level, because P-Q
segment has always been used to detect the isoelectric
Tine. After averaging of P-Q segment, the reduction of the
«drift in each window in s, is accomplished by:

F,(n)=f, (n)-A,, n=1,2,..,N Q)
“and A,can be found by:
A =UMY L, , (m) ®

- Where:
' F,(n) the filtered sample in i window,
f,(n) the sample with the drift in the window,
f,.o(m) P-Q segment m-sample.
m the index of samples in P-Q segment in the window,
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N the number of samples in the window.
(when it is not possible to detect P-Q, the T-P interval
can be used).

The second step is to link the windows F; (n) to get
the entire filtered S, signal

S,= [F\(n), F,(n), ..., Fy(n)] &)
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Where F, (n) is the nth filtered sample in the last
linked window in s, and S, is s, without baseline
wandering or drift.

Reconstruction: The last step of this system is to
reconstruct the original signal from S, and d, by the

inverse discrete wavelet transform as the output of WRBS

(Fig. 7).
ECG SIGNAL FIDUCIAL POINTS DETECTION

It was shown by Mallat", that the zero crossing of
CWT using the mother wavelet as the second derivative
of a smoothing (scaled) function, detects the peak of the
signal such as R peak. Authors create ECG signal
parameters detection method using CWT for testing and
showing CWT possibility of detecting (Fig. 8) the fiducial
points of ECG signal. For this aim, CWT with wavelet
function db1 (Haar) (Table 1) at suitable scale (2/) is used,
which detects the peak of the signal as the first sample
after zero crossing point. It is one of Daubechies
wavelets, generally, have the following properties:

Compactly supported.

Wavelet with extreme phase and highest.

Associated scaling filters are minimum-phase filters.
Far from symmetry.

Orthonormal and bioorthonormal.

The detection of fiducial points is based on maxima;
minima and zero crossing CWT curve™*'"'3,  For
symmetric waveforms like P, R or T waves, the first
positive point after zero crossing point between its CWT
minima and maxima (two double waves) (Fig. 8) using
wavelet function dbl (Haar) at scale 2' (for £=100Hz and
2° for £=400Hz), will correspond to the peak of P wave.
The onset of the negative waves (the first sample of the
negative slope), will correspond to the onset of the P
wave and the offset of the positive wave (the last sample
of the positive wave), will correspond to the offset of the
original wave,

Detection of isoelectric level: Detecting the PQ interval
always has signified the isoelectric level. It can be
detecting by CWT at scale 2' (Fig. 9) as the flat portion
between the offset of P and the onset of Q. The onset of
Q is detected as the onset of the first wave after P offset
at CWT curve.

SIMULATION AND GRAPHICAL VERIFICATION
OF WRBS

The filter presented in this study, based on DWT and
the concept of an on-line averaging method, but with
some modification of the choice of the interval window to
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Table 1: The low and high pass filters of Haar function coefficients

L 0.7071 0.7071
H -0.7071 0.7071
0.2
0.1
0+ T Y 1
0 100 200 300
P wave
Offeset of P
0.021 l
-0.02 T .\\ 1
0 100 200 300
Zero crossing
CWT (P wave)

Fig. 8: The detection results of P wave, where i is the

index of fidutial point
\/_/T\

Fig. 9: Detection fiducial points by CWT at scale 2!

ECG

CTW (2"

be filtered and the method of detecting the isoelectric
level in the unfiltered windows Thakor et al!'" was
detected as the average of all samples of ECG signal.

To get exact results, the authors select the one beat
window interval to be filtered in this study as T, ju.-Ts,
oma OF R-R interval (Frankie wicz and pietka'” were filtered
the all samples in the signal in the same time) and P-Q
segment as the isoelectric level in the unfiltered windows.
Because P-Q segment presents the rest phase of heart
work, should have zero potential. So using WRBS, the
drift is cut and P-Q segment comes back to zero level,
where naturally, should be (Fig. 10).’

The problem is more difficult in (Fig. 11b), where the
drift is not additive in time scale (baseline wandering). In
this case, it’s difficult to eliminate this wandering without
smoothing QRS complex. WRBS reduces the drift in each
window without deforming the signal (Fig. 11b, the third
beat), by cutting the drift in the window.
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Fig. 11: Two examples (a b) of baseline wandering reduction by WRBS

To show the disadvantage of high pass filter FIR, we arthythmia database, time 1.6-2.1min (Fig. 12a and b) and
use this filter of cut-off frequency equal to 5 Hz for  the same signal was filtered by WRBS and OLA. The
filtering ECG signal taken from Record 124-MIT-BIH FIR, . is very deformed, where S and Q waves are longer
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Fig. 13: Baseline wandering elimination of ECG signal from record 234-MIT-BIH arrhythmia database, (a)

than in original ECG and T wave is smallest than in
original ECG (Fig. 12¢). The performance of FIR could be
better by using more special type created for this need,
but always many problems in output signal could appear.
In OLA filter as explained above, the signal is filtered in
the same way; by cutting the mean value of the signal
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from each sample. So it doesn’t eliminate the non additive
drift. The designed filter WRBS was superior of these two
filters (Fig. 12d).

The designed filter guarantees better results than
standard adaptive filters, cubic spline and IIR, FIR,
because it doesn’t require a cut-off frequency, it doesn’t
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. distort the signal. WRBS works even when the signal is
- very noisy (high band pass noise), because of using the
' low frequency subsignal s,, where the high band noise
~ doesn’t exist (Fig. 9).
Park et al", it has presented a Wavelet Adaptive
- Filter (WAF) for reduction of baseline wandering in ECG
. signal. WAF consists of two parts; in the first part the
signal is decomposed into DWT subsignals of J=7 and in
- the second part the seventh lowest band subsignal s, is
- adaptively filtered. It has proven that, adaptive filter was
~ superior to those of WAF and standard filter in terms of
- low pass noise elimination (baseline wandering
reduction). But the WAF was superior to standard filter
and adaptive filter in terms of signal quality and signal
distortion in ST-segment. We can notice that in WRBS is
superior to standard filter, adaptive filter and WAF in
terms of signal quality and ST-segment distortion,
because WRBS cuts the drift from each beat basing on
the PQ-segment level.
The system was tested for signals of MIT-BIH
database (Fig. 13).

RESULTS

It was noticed after testing WRBS using program,
which was written by authors in Matlab environment
using wavelet Toolbox that:

+ Using DWT assists greatly, because it divides the
signal into components of deferent bands of
frequency, then the component of low pass
frequency (s,), which alone has the baseline
wandering, will be achieved without the high pass
frequency noise, which makes the analysis very
difficult. Consequently, WRBS works even when
signal very noisy.

¢ Using T, e Tiromse init€rval as a window to be filtered
in s, is better than using R-R interval, because it
distorts the points of linking (R peak) the windows,
as a result of different PQ segment average (A)
values. What happens, when the baseline wandering
in the signal has descending or rising shape?

*  WRBS is ideal for signals with additive (in time scale)
isoelectric line drift, but it doesn’t entirely eliminate
strong baseline wandering (Fig. 11a and b). In
references, also there are no methods, which can
eliminate entirely strong baseline wandering without
distorting of the ECG signal®.

*  This algorithm doesn’t require a cut-off frequency;
the low pass noise is eliminated, by cutting the drift
in each window alone, so there is no deformation of
the main signal parameters such as QRS complex or
the S-T segment, which has very important
diagnosing role.
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WRBS has decomposed the signal into just two
components (s,, d, where J = 1) to eliminate the
baseline wandering, but Park et al.), where combined
DWT with adaptive filter was used J = 7. This means
that WRBS has less computational complexity.
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