Asian Journal of Information Technology 5(5) : 504-511, 2006
© Medwell Online, 2006

Parsing Algorithms for Bengali Parser to Handle Affirmative Sentences

Mohammad Zakir Hossain Sarker, Shaila Rahman and M.A. Mottalib
Department of CSE, East West University, 43, Mohakhali, Dhaka-1212, Bangladesh
Department of CSE, The University of Asia Pacific, Road # 3/A, Dhanmondi, Dhaka-1209, Bangladesh
Department of CIT, Islamic University of Technology, Boardbazar, Gazipur, Dhaka, Bnagladesh

Abstract: This study embodies the design of parsing algorithms tangibly for a Bengali parser. To design
parsing algorithms a detailed study on linguistics and grammar has been performed. A detailed study also has
been made on the various techniques and algorithms of the parsers which have been designed for various
languages such as English, Arabic, Hindi, Warlpiri(an Australian language) etc. Finally, Bengali sentences have
been analyzed according to Chomskyan grammar. Bottom-up parsing technique and Context-sensitive rules
have been used to design parsing algorithms. The designed parser can parse simple affirmative sentences for
all types of tense i.e., Present, Past, Future and Habitual past tense together with all types of person i.e., First,
Second and Third person. The algorithms can maintain the agreement of Person + Class between Verb form and
Subject which 1s available in Bengali sentences. Words are stored into the dictionary (lexicon) together with
lexical categories. Using these algorithms it would be possible to parse the Bengali sentences to let the users
know whether those sentences are syntactically correct or not.

Key words: Bengali parser, bottom-up, context-sensitive, natural language processing, chomskyan grammar

INTRODUCTION

According to D.W. Patterson'"!, Artificial Intelligence
(AL, the field of computer science that studies how
computers can be made to act mtelligently, is emerging
from the laboratory and is beginning to take its place in
human affairs. There are several sub-areas of Al research.
Robotics, Medical diagnosis, Character
recognition, Natural Language Processing (NLP) etc.
Natural Language Processing (NLP) which is one of the
most precursory areas of Al research allows people to

Such as

communicate with computers mn a human language such
as, Bnghsh, Bengali, Hindi etc. as easily as it 13 to
communicate with other people.

According to T. Allen”, Natural Language (NL) is
simply the language of human being. Developmg
programs that understands a natural language 1s a difficult
problem. Natural language is the most versatile
communication medium of mankind. Natural languages are
very large. They contain mfimty of different sentences.
No matter how many sentences a person has heard or
seen, new ones can always be produced. We speak to
each other in a human language from our childhood and
take most of its complex characteristics. Even, sometimes
when we speak natural language mcorrectly 1.e., not
strictly in accordance with rules of grammar and syntax,
we can still make sense out of it. However, these

situations create great problems for computers to
understand people. This makes the creation of programs
that understand a natural language, one of the most
challenging tasks in AL

In general, a language-understanding program must
have considerable knowledge about the structure of that
natural language including what the words are and how
they combimne mnto phrases and sentences. It must also
know the meanings of the words and how they contribute
to the meanings of sentences and to the context within
which they are being used. Finally, a program must have
some general world knowledge as well as knowledge of
what a human lknows. So, the component forms of
knowledge needed for a natural language understanding
program is sometimes classified as, Phonological,
Morphological, Syntactic, Semantic, Pragmatic and World.
This paper focuses on Syntactic knowledge. For example,
the construction of the word khaben can be derived from
khabo and en ie., khaben= khabo + en Syntactic
knowledge relates to how words are put together or
structured to form grammatically correct sentences n the
language. To achieve this goal sentences are broken
down into their component parts, (technically it can be
said that, sentences are parsed mto their component
parts) and then the structures of those sentences are
analyzed with the help of those component parts.
Breaking down a sentence into its component parts is also

Corresponding Author: Mohammad Zakir Hossain Sarker, Department of CSE, East West University, 43, Mohakhali, Dhaka-

1212, Bangladesh

Asian J. Inform. Tech., 5(3) : 504-511, 2006

known as parsing. To parse a sentence of a language it is
needed to know the grammatical rules and grammar of that
language. In this paper we have designed few parsing
algorithms for Bengali parser. For doing so, we have to
understand the Bengali grammar and its various rules very

clearly. Few of the rules are also incorporated in
this study.

MATERIALS AND METHODS

This research is basically based on literature study.
A detailed study on the existing techniques and
algorithms for Bengali parser has been carried out from
MM. Hoque and M.M. Ali", Z H. Sarker, S. Rahman and
M.A. Mottalit®, 7 H. Sarker, S. Rahman and M.A.
Mottalib”, Z. Khan™ A detailed study also has been
made on the various techniques and algorithms of the
parsers which have been designed for various languages
such as English, Arabic, Hindi, Warlpiri (an Australian
language) etc. from C. Huyck™, D.I. Feriozi'”, M.
Kashket!"!, R. Sangal and V. Chaitanya". After analyzing
various parsing techmques Bottom up parsing techmique
has been used to design the parser in this dissertation.
An extensive study on the background of linguistics and
languages, on Chomskyan grammar (grammars that have
been developed by Noam Chomsky, one of the greatest
linguist of this century) and on non-Chomskyan grammar
(grammars that have been developed by linguists
excluding Chomsky) from A. Aho, J. Hopcroft and
T Ullman™®, C. Hockett"™, H. Andrew!"”, N.A. Chomsky™®,
N.A. Chomsky and H. Allen', P. Culicover¥,
V.I. Cook!. Censidering all, Chomskyan grammars have
been used to design the present parser. But Chomsky
described his grammars with respect to English language
and English sentences have been analyzed according to
these grammars. As a Bengali parser i3 gomg to be
designed, it is needed to analyze Bengali sentences. For
this reason, Chomskyan grammar and grammatical rules
have been converted for analyzing Bengali sentences. For
doing a detail study on Bengali grammar and grammatical
rules has been made from H. Azad“™* 1. Mehedy,
N. Arifin and M. Kaykobad™!, M.A. Islam, M.A. Mottalib
and L. Rahman®, M.Z. Igbal and MR. Selim"?,
P. Sengupta®, 8. Chatterji®, S. Monir'®, Z. Khan and
A. Radhakrishna™, Z. Khan and R. Berwick™™. Finally
various algorithms have been designed using Context
sensitive rules. As far as literature is concerned, these
rules have not been used to design such algorithms
before. As bottom up parsing technique and context
sensitive rules are used, the various algorithms, which
have been designed to develop the Bengali parser, are
called Bottom up context sensitive algorithms. These
algorithms are generally called parsing algorithms.

505

The workhorse of a natural language parser is the
lexicon (dictionary). There is no way to use a natural
language parser without a lexicon. A lexicon has been
designed to store the Bengali words after studying
P. Sengupta, R.A. Hudson"". A Bengali text editor is
needed to accept Bengali sentences to be parsed. For the
convenience of the work, a simple Bengali text editor has
also been designed.

Parsing and parsing techniques: The activity of breaking
down a sentence into its constituent parts 15 known as
parsing. Tt is found that most parsing methods fall into
one of these two classes, named as Top-down parsing
method and Bottom-up parsing method. These terms refer
to the order in which nodes in the parse tree are
constructed. Tn Top-down parsing method, construction
starts at the root and proceeds towards the leaves i.e., this
method works from sentence symbol to the sentence. In
case Bottom-up parsing method, construction starts at the
leaves and proceeds towards the root i.e., this method
works from the sentence to sentence symbol. Parsers,
which are designed using Top-down parsing method, are
known as Top-down parser and Parsers, which are
designed using Bottom-up parsing method, are known as
Bottom-up parser. The aim of this work is to parse given
sentences, not to generate sentences. It can easily be
found that, for this purpose Bottom-up parsing method 1s
more appropriate than Top-down parsing method.
Because, Bottom-up parsing method deals with the given
sentenices, 1t does not generate sentences. For this
reason, Bottom-up parsing techmque 1s used in this
present worl.

Parse tree: A parse tree 13 a structural representation of
the sentences being parsed. In Figure 1 a parse tree 1s
shown for the sentence Bipul Boi Porche. A parse tree
represents the sentence in a hierarchical fashion, moving
from a general description of the sentence (at the root of
the tree) down to the specific sentence being parsed (the
actual tokens) at the leaves.

HOW THE SYSTEM WORKS TO PARSE
SENTENCES

To parse a sentence the system accepts that
sentence with help of a text editor. A Bengali text editor
has been used in this thesis to accept a Bengali sentence.
Then the first phase(a programme module) of the system
which is called lexical analyzer (also called scanner or
tokenizer) reads and converts the input sentences into a
stream of tokens i.e., words. A lexicon (dictionary) is used

Asian J. Inform. Tech., 5(3) : 504-511, 2006

|Nmmphrn=l"" hesh 1)| |ka fn'm(Kriymm)l
1
[o |

| Por |
Tree

=

Fig. 1: Parse tree

Parsed tree
ext editor generator
Input T Parsed token
hd Token
Lexical analyzer
i Get token

Fig. 2: Position of various program modules

here that contains these words along with their lexical
categories (noun or pronoun or verb or adjective etc.).
The lexical analyzer or scanner scans each token to test
whether it 18 a member of the lexicon or not, if so then
what lexical categories it belongs to. So the output of the
lexical analyzer is a list structure called the token list. Then
the parser accepts this token list and verifies the validity
of 1its syntactic structure. At last a tree generator
generates a parse tree if the sentence has the wvalid
construction. Figure 2 shows the entire process
graphically.

INTRODUCTION TO LANGUAGE AND
LINGUISTICS

The question what is language? is comparable with-
and, some would say, hardly less profound than-what 1s
life? the presuppositions of which circumscribe and unify
the biological science. Great Noam Chomsky™ said that:
When we study human language, we are approaching
what some might call the human essence the distinctive
qualities of mind that are, so far as we know, unique to
man. According to P. Culicover!” Language is a purely
human and non-instinctive method of communicating
ideas, emotions and desires by means of voluntarily
produced symbols. V.J. Cook!"? said that A language is a
system of arbitrary vocal symbol by means of which a
social group co-operates. These definitions of language
quoted above are concerned with natural language.
Linguistics is usually defined as the science of language
or, alternatively, as the scientific study of language.
C. Hockett" described linguistics as a science and used
the term linguistic science instead of linguistics.

506

Brief history of grammar: Several break-through have
occurred several times in the history of grammar.
According to V.J. Cook!! the different periods are:

[A] Traditional grammar
[B] Structural grammar
[C] Generative grammar
[C.1] Finite state grammar
[C.2] Phrase structure grammar
[C.3] Transformational grammar
[D] Transformational Generative grammar
[E] Transformational grammar of Aspects model
[E.1] Standard theory
[E.2] Extended Standard theory
[F] Government and Binding (GB) theory
[G] Universal grammar

All grammars in between [C] and [G] have been
developed and analyzed mainly by Noam Chomsky, one
of the greatest linguists of the century. So this era (from
the Generative grammar to Universal grammar) can be
considered as Chomskyan era. Besides, some other
linguists developed some other grammars after the
development of Chomsky’s Extended Standard theory™®!.
These are:

[a] Generative semantics
[b] Transformational case grammar

After the development of Chomsky’s Extended
Standard theory some other linguists, like George Lakoff,
M. Postal, Robert Ross, D.J. McCawly, Stockwell
introduced another kinds of grammar, like Generative
Semantics, Transformational Case Grammar etc!'™. Not
only these grammars, there are some other types of
grammar by which natural language can be analyzed for
designing of parsers. But among so many different kinds
of grammar Chomskyan grammar is used in this thesis to
analyze Bengali sentences. Because, it is found and
observed that, Chomskyan grammar is more powerful,
universality (capability of analyzing all kinds of languages
of this world) is better than any grammar. Tt is easy to
understand, learn and use. Sentences can be analyzed
without complexities. Under these considerations,
Chomskyan grammar is used in this present work to
analyze Bengali sentences for developing parsing
algorithms.

AN INTRODUCTION TO BENGALI
GRAMMAR

Since the principle objective of this paper is to bring
out a Bengali language parser thus tenses, verbs, persons
etc. of Bengali grammar should be described. All of these
are going to be described next.

Asian J. Inform. Tech., 5(3) : 504-511, 2006

Tense(kal): The word tense comes from the Latin word
tempus which is meant time. So the tenses show the time
of action and its degree of completeness. In fact, the tense
is a form of the verb showing the time of the happening of
an action. There are four kinds of tenses in Bengali
grammar. These are-1.Present Tense (Bortoman Kal) 2.
Past Tense (Otit Kal) 3. Future Tense (Bobhishot Kal) 4.
Habitual Past Tense (Nittobritto Otit Kal). Again each of
these tenses has three forms. These are-1. Simple
(Sorol) 2. Continuous (Ghotoman) 3. Perfect (Ghotito)

Person (Purush) and class (Shreni): There are three kinds
of person in Bengali grammar. These are given below with
examples

First Person (Prothom Purush) -Ami, Amra

Second Person (Ditiya Purush) -Apni, Tui, Tumi,
Tora

Third Person (Tritiyo Purush) -Se, Tara, Tini

There are three types of classes in Bengali grammar.
These are given below with examples-
¢+ Honorable (Sommanito) -Apni, Tini
General (Shadharon) -Tumi, Tomra
Negligible (Hino) -Tui, Tora

Classes are not applicable for all kinds of person.
Such as-

First person does not have any class.
Second person consists of all three classes.
Second Person Honorable -Apni, Apnara
Second Person General -Tumi, Tomra
Second Person Negligible -Tui, Tora
Third person consists of two classes

Third Person Honorable -Tini

Third Person General -Se

Verb forms (Kriyarup): The word verb comes from the
Latin word verbum. it is so called because it is the most
important word in a sentence. In fact, it is the core or
backbone of every sentence. Tt is the word used for
stating something about a person or a thing. The Bengali
verb form can be segmented into two parts. These are-

1. Verbroots (Kriyamul)
2. Auxiliary (Kriyasohayal)

Verb roots can not be analyzed further and the other
part of verb forms that can be analyzed further is known
as Auxiliary. Such as- Korechi — Kor (Kriyamul) + Echi
(Kriyasohayak)

More about auxiliary: Auxiliary can represent-Tense,
Aspect and Person + Class. For example, from

507

Echi—Ech +T1 it is found that, Ech represents Tense (here,
it is present tense) and Aspect (here it is perfect aspect).
On the other hand 1 represents Person + class (here it 1s
First person + No class).

Agreement of person+class between verb form and
subject: It is said that, In a Bengali sentence there is an
agreement of persontclass between verb form and
subject. Tt is already known that auxiliary can represent
person + ¢lass of a Bengali sentence. Keeping this in mind
we can say that if subject (Korta) 13 Apm then
persontclass of auxiliary should be en or for Tumi it
should be ‘0 or ‘a” and so on. Such as
Apni Korchen—Apni + Kor + ch + en. But it is not
possible to write Apm Korcho—=Apm + Kor + ch + o
Because o does not agree with the subject Apm. This
agreement of persontclass between subject and verb form
can be represented only by Context-sensitive Phrase
Structure. It 1s not possible to represent this agreement by
Context-free Phrase Structure rules. So, Context-sensitive
Phrase Structure rules have been used to design the
algorithms for the present work.

>

ANALYZING BENGALI SENTENCES USING
CHOMSKYAN GRAMMAR

In this section Bengali sentences have been analyzed
according to the Chomskyan grammar. Only Context-
sensitive phrase structure grammar has been used to
analyze Bengali sentences.

Context-sensitive phrase structure grammar: As per the
discussion, it 1s considered that verb forms in Bengali
language are divided into two parts Verb roots and
Auxiliary. No further division is allowed here. Auxiliary
indicates tense-aspects-persont class as a umt. But the
most important characteristics of Context-sensitive phrase
structure grammar, which actually makes this grammar
different from Context-free phrase structure grammar is
those auxiliaries, are depended on subjects. The category
of persontclass for both the auxiliary and subject should
be the same i.e., there is an agreement of persontclass
between the auxiliary and subject. Such as if the subject
1s Ami then Korchi or Porchi ete should be used, there are
no ptions to use korcho or Porcho ete. Now considering
all these conditions Phrase Structure Rules for Context-
Sensitive Phrase Structure Grammar are written below for
Present Tense only. In the same way it could written for
other tenses also.

1. Sentence —BisheshyaPod + KriyaPod

2. KriyaPod —Kriyarup

3. Knyarup—Kriyamul + Kriyasohayak

Asian J. Inform. Tech., 5(3) : 504-511, 2006

4. BisheshyaPod—Purush
5. Purush— Prothom Purush (PP)
Ditiya Purush (DP)
Tritiyo Purush (TP)
6. Ditiya Purush #DP-Somman
DP- Shadharon
DP- Hino
7. Tritiyo Purush = TP-Somman
TP- Shadharon
8. Knyasohayak —Kriyariti + Kal + Songoti
9. Kal —#Bortoman

10. Kriyariti Ghotoman—Sorol
Ghotito

11. PP —Ami, Amra

12. DP-Somman —Apni, Apnara

13. DP-Shadharon = Tumi, Tomra

14. DP-Hino —Tu, Tora

15. TP-Somman —Tim

16. TP-Shadharon —Se

17. Kriyamul —Kor, Por, Likh

18. Bortoman —®@

19. Sorol =@

20. Ghotoman —Ch

21. Ghotito —FEch

22. Songot1 -PP— 1

23. Sengoti - DP-Somman —En

24, Songoti - DP-Shadharon— o

23. Songoti —DP-Hino —Ish

26. Songoti - TP-Somman —Een

27. Songoti - TP-Shadharon —a

An algorithm can be written according to this Context-
sensitive phrase structure grammar which 1s given below.
It 1s for Present Tense only. In the same way it could be
written for other tenses also.

ALGORITHM

This algorithm can handle verb, noun and person and
this can be implemented for present tense. Tt works under
a menu-driven system. A function Menu () returns the
mteger value to an mteger variable Pochonder Rong,
according to which either function Parser () or function
Tree Generator () works. Parser () uses a lot of variables
like, FP, SPH, SP@G, SPN, TPH, TPG, T, Q, Tr, Tv, Ta, Tp,
Tr, VP, NP, NP1 etc. FP, SPH, SPG, SPN, TPH, TPG are
used to confirm the agreement of Person + class between
Subject and Verb form. T is used to store the lexical
categories of the words. Q 1s used to keep the word from
the top of stack. VP, NP, NP1 are used to check Verb

508

phrase and Noun phrase. Tn, TV, Tp, TR, Ta are actually
used by the fimction Tree Generator (). A stack S 1s used
to store the words and lexical categories. The editor mode
is set to Bengali at the beginning and again set to English

just before closing the program. This algorithm is

developed according to the grammar described above.

+ Set the Editor mode in Bengali

s Clear the screen

* Do Menu

» If Pochonder Rong =1 then Do Parser ()

¢+ Else If Pochonder Rong =2 then Do Tree Generator ()

» Else If Pochonder Rong =3 then Set the Editor mode in
English and Exit(0)

» Else Print Sothik no. din

+ Set the Editor mode in English

» Exit

Menu (): This function returns an integer value which
selects the function to be executed

» Print 1. Bakkya Bislesion

» Print 2. Tree Tairikoron

¢ Print 3. Ber Hon”

¢ Print Sathik no. din

» If Pochonder Rong < 1 or Pochonder Rong > 3 then
goto Step 4

+ Return

Parser (): This function returns the message whether
sentences are correct or not

» FP="F", SPH="F", SPG="F", SPN="F", TPH="F", TPG="F"

* Push “NULL” to the stack S

» Load the Dictionary

¢ Tokenize the Input sentence

» Repeat steps until all the tokens are taken

» Search the Token into the dictionary

» a) If found then store the lexical categories n the
variable T

{If T= Bisheshya then push (Bisheshya) to the stack 3
and store the Token in Tn

Else If T= Kriya then push (Kriya) to the stack 5 and
store the Token in Tv

Else If T=1 then push (1) to the stack S and store 7 in Ta
Else If T= en then push (en) to the stack S and store en
inTa

Else If T= 1sh then push (ish) to the stack S and store
1shin Ta

Asian J. Inform. Tech., 5(3) : 504-511, 2006

Else If T= o then push (o) to the stack S and store o in
Ta

Else If T= a then push (a) to the stack S and store a n
Ta

Else If T= Prothom Purush then push (Prothom Purush)
to the stack S and FP="1", Tp=FP

Else If T= Ditiya Purush Somman then push (Ditiva
Purush Somman) to the stack S and SPH="T", Tp= SPH
Else If T= Ditiya Purush Shadharon push (Ditiya
Purush Shadharon) to the stack S and SPG="T", Tp=
SPG

Else If T= Ditiya Purush Hino then push (Ditiya Purush
Hino) to the stack S and SPN="T", Tp= SPN

Else If T= TritiyoPurush Somman then push (Tritiyo
Purush Somman) to the stack S and TPH="T", Tp= TPH
Else If T= Tritiyo Purush Shadharon then push (Tritiyo
Purush Shadharon) to the stack S and TPG="T", Tp=
TPG

Else If T= F then print Shadharon Bortoman Kal and
Tr=F

Else If T= ch then print Ghotoman Bortoman Kal and
Tr=ch

Else If T= ech then print Ghotito Bortoman Kal and Tr=
ech}

b) Else
Exat(0)
[ii] Enter the word into the lexicon and start again

[1] Print Dictionary-te Nai and

* VP="F" NP="F" NP1="F" Flag="F", Te="F" andstore the
top element of stack 3 into Q

* Repeat steps while(Q!="NULL’> && (VP && NP !=
)

» If Q= Bisheshya then NP1="T"

» Else If Q= 1then If FP!="T" then print Bakkyati Sathik
Na and Exit(0) Else Flag="T"

¢ Else If Q= en then If SPH or TPH !="T" then print
Bakkyati Sathik Na and Exit(0) Else Flag="T"

» Else If Q= o then If SPG |="T" then print Bakkyati Satluk
Na and Exit(0) Else Flag="T"

¢ Else If Q= ish then If SPN !="T” then print Baklkyati
Sathik Na and Exit(0) Else Flag="T"

* Else If Q=athen If TPG I="T" then print Bakkyati Satluk
Na and Exit(0) Else Flag="T"

¢ Else If Q= Kriya then VP="T"

¢ Else If Q= Prothom Purush then NP="T"

» Else If Q= Ditiya Purush Somman then NP="T"

¢ Else If Q= Ditiva Purush Shadharon then NP="T"

¢ Else If Q= Ditiva Purush Hino then NP="T"

» Else If Q= Tritiyo Purush Somman then NP="T"

» Else If Q= Tritiyo Purush Shadharon then NP="T"

» Store the top element of the stack S in the variable Q
» If VP && NP="T" then print Bakkyatir ghoton sathuk na
and Te="T"
Else If VP I="T" && NP ="T then print Bakkyatte
Kriya nei
Else Print Bakkyatir ghoton sathik na
s Return

Tree Generator (): This function will work if the variable
Te="T"; Otherwise Exit (0)

* Move the cursor to (2, 24) and print Bakkya

» Move the cursor to (7, 11) and print BisheshyaP od

» Move the cursor to (7, 41) and print KriyaPod

» Move the cursor to (10, 11) and print Bisheshya

* Move the cursor to (10, 33) and print BisheshyaPod

* Move the cursor to (10, 53) and print Kriyarup

» Move the cursor to (13, 11) and print Purush

» Move the cursor to (13, 33) and print Bisheshya

s Move the cursor to (13, 43) and print Kriyamul

* Move the cursor to (13, 62) and print Kriyaschayak

» Move the cursor to (15, 55) and print Kriyariti

» Move the cursor to (15, 62) and print Kal

* Move the cursor to (15, 69) and print Songoti

* Move the cursor to (17, 11) and If Tp=
FP/SPH/SPG/SPN... then print Purush Purush/Ditiya
Purush- Somman.. ..

s Move the cursor to (17, 55) and If Tr= F/ch/ech then
print F/ Ghotoman/ Ghotito

» Move the cursor to (17, 62) and print Bortoman

* Move the cursor to (17, 69) and If Ta= 1/ish/a.. .. then
print Ditiyva Purush-Hino / Tritivo Purush-Shadharon..

» Move the cursor to (23, 11) and print Token of Purush
» Move the cursor to (23, 33) and print Tn

s Move the cursor to (23, 44) and print Tv

* Move the cursor to (23, 55) and print Tr

» Move the cursor to (23, 69) and print Ta

» Join all of the necessary points

¢ Return

CONCLUSION

The aim of this study was to design and develop
algorithms for the Bengali parser. Tt is amazing that a lot of
works have been done m designing the parsers for
English language, but unfortunately (as far as literature 1s

concerned) no satisfactory worl has been done in this
field for Bengali language so far. The aim of the entire
worl was to design parser for Bengali language since it’s

Asian J. Inform. Tech., 5(3) : 504-511, 2006

almost an untouched field. For deing so an extensive
knowledge on linguistics and languages (especially on
Bengali language) was required. The summary of the
knowledge which was gathered is discussed in section

5, 6 and 7. Finally algorithms are developed for Bengali
parser and discussed in section 8. To complete the natural
language processing system a few more steps such as,
Semantic, pragmatic, Natural Language Generation (NLG)
etc. should be accomplished and this makes the whole
process very difficult to develop. In fact it is proved that
NLP 15 the most difficult task for AT technology. To many
AT researchers, NLP is the most important and crucial of
all AT goals and developing a complete computational
model for NLP will be the final Al task to be performed.
Since it’s only a starting point of designing and
implementing various algorithms for a Bengali parser there
are ample scope for improvement. The algorithms which
are discussed in this paper are only applicable for simple
affirmative sentences. At present we are trying to develop
algorithms for Interrogative, Negative, Exclamatory
sentences of the Bengali language. After doing so we will
be hoping to design more algorithms for Compound,
Complex sentences.

REFERENCES

1. Patterson, D.W., 1990. Introduction to Artificial
Intelligence and Expert System, Prentice-Hall of India
Pvt. Ltd., New Delhi, India.

Allen, J., 1990. Natural Language Understanding, 1
and 2, Benjamin Publishing Company.

Murshed, M.M., 1997. Design and Implementation of
a bilingual natural language Parser (For Bengali and
English sentences), M.Sc. Thesis, Department of
Computer Science, University of Dhaka.

Murshed, MM, 1998. Parsing of Bengali Natural
Language Sentences, Proceedings of International
Conference on Computer and Information
Technology (ICCIT), Dhaka.

Hoque, MM. and M.M. Ali, 2003. A Parsing
Methodology for Bangla Natural Language
Sentences, Proceedings of International
Conference on Computer and Information
Technology (ICCIT)- Jahangimagar, Dhaka, 1:

277-282.

Sarker, Z.H., S. Rahman and M.A. Mottalib, 2003.
Design and Implementation of Bottom-up Context-
sensitive Algorithms for Bengali Parser in Natural
Language Processing, Proceedings of International

Conference on Computer and Information
Technology (ICCIT), Jahangimagar, Dhaka, 1:
332-337.

510

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

Sarker, Z.H., S. Rahman and M.A. Mottalib, 2005.
Bottom-Up Parsing Algorithms for Bengali Parser to
Maintain the Freeness of Word Order, Proceedings
of National Conference on Computer Processing of
Bangla (NCCPB), Dhaka, pp: 65-75.

Khan, 7., 1995. Parsing system design in Bengali
using Pappi’s grammar, M. Eng. Thesis, MIT.
Huyck, C., 1996. PLINK: An mtelligence natural
language parser, Ph.D. Thesis, University of
Michigan, USA.

Feriozi, D.I., 1998. A practical methodology storing
LL{(k) parsing, PhD. Thesis, Florida Atlantic
University, USA.

Kashket, M., 1996. A parameterized parser for English
and Warlpiri. PhD. Thesis, University of Maryland
College Park.

Sangal, R. and V. Chaitanya, 1999. Natural
Language Processing: A Paninian Perspective,
Prentice-Hall of India Pvt. Ltd., New Delhi,

India.

Aho, A, T. Hoperoft and J. Ullman, 1980. The Theory
of Parsing, Translation and Compiling, Prentice-Hall,
Englewood, Cliffs NT, USA.

Hass, A., 1997. A parsing algorithm for unification
grammar, Computational Grammar, 15: 219-232.
Andrew, H., 1998. A parsing algonthm for umification
grammar, Computational Grammar, 15: 219-232.
Chomsky, N.A., 1972. Language and Mind, NewYork,
Harcourt Brace, USA.

Chomsky, N.A. and H. Allen, 1977. Some
methodological remarks on Generative grammar,
Readings in Applied English Lingwstics, Indian Edn.,
Amerind publishing Company, New Delhi, India,
pp: 36-45.

Culicover, P., 1976. Syntax, 3rd Edn., Academic Press,
New Yorlg, USA.

Azad, H., 1978. Reciprocal Structures in Bengali,
Jahangimagar Rev., 2: 171-190.

Azad, H., 1979. Balkkya Sorbonamiyokoron, Bhasha
SahittyoPatro, Dhaka, Year 4: 107-138.

Azad, H., 1980. Rupantormuluk Sristyshil Balcoron,
Borsha, Dhaka, pp: 23-196.

Azad, H, 1994 BakkyaTatto, 2nd Edn., Dhaka
University, Dhaka.

Mehedy, L., N. Arifin and M. Kaykobad, 2003. Bangla
Syntax Analysis: A Comprehensive Approach,
Proceedings of International Conference on
Computer and Information Technology (ICCIT)-
Tahangirnagar, Dhaka. 1: 287-293.

Islam, M.A., M.A. Mottalib and L. Rahman, 1997.
Development of Machine Translation: An overview,
Proceedings of National Conference on Computer
and Information System-Dhaka, pp: 67-72.

Asian J. Inform. Tech., 5(3) : 504-511, 2006

26. Igbal, M.Z. and M.R. Selim, 1999. Syntax Analysis of

27

28.

Pharases and Different Types of Sentences in
Bangla, Proceedings of International Conference on
Computer and Information Technology (ICCIT),
Sylhet, pp: 183-186.

Sengupta, P. 1993, On lexical and syntactic
processing of Bangla language by computer, Ph.D.
Thesis, Indian Statistical Urnt, Calcutta, India.
Chatterji, S. The Origin and Development of Bangla
Language, Calcutta, India.

511

29.

30.

31.

Monir, 8., 1989. Bangla Students
Publications, Dhaka.

Khan, Z. and A. Radhakrishna, 1996. Verb classes
and alternations in Bengali, MIT AT Memo.

Khan, 7Z. and R. Berwick, 1998. A computational
linguistics analysis of Bangla using GB theory,
Proceedings of the International Conference on
Computational Linguistics, Speech and Document
processing, Calcutta, India.

Bakoron,

