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Strengthening Ecdsa to Be More Suitable to Mobile Networks
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Abstract: The primary objective of the paper is to augment the efficiency of signature process in Elliptic Curve
Digital Signature Algorithm(ECDSA), which turns out to be a bottleneck in mobile devices due to its heavy
consumption of resources. An improved algorithm for strengthening the speed of verification process in
ECDSA 18 proposed and evaluated. Also the recent research studies have demonstrated collision attacks on
popularly used hash functions, including the widely deployed MD35 and SHA-1 algorithms. To overcome this
threat, this paper attempts to present a few novel solutions to reinforce the ECDSA signature against such

attacks. Several simple and efficient message pre-processing techniques have been suggested, which can be
combined with SHA-1 so that applications are no longer vulnerable to the known collision attacks. A detailed
analysis on the results of implementation of these techniques has also been presented.
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INTRODUCTION

Elliptic Curve Cryptography (ECC) has gamed
mcreasing popularity in public key cryptography since it
was first proposed by Miller™ and Koblitz®., While
implementing ECC, there are many factors that need to be
considered with respect to mobile networking. The factors
mclude:  Security  considerations, methods  for
implementing EC arithmetic, methods for computing
EC  scalar multiplications, application  platform
(hardware or software), computing environment
(processor speed, memory size, power consumption) and
constraints of the communication environment
(bandwidth, response time). Compared with other public
key cryptography such as RSA, ECC utilizes shorter key
sizes for the same level of security, which translates into
fast computation and less demands on memory and CPTJ.
These advantages make ECC ideal for use in embedded
systems and mobile devices where storage, power and
computing resources are at a premium.

A major component in ECC iz point
(or scalar) multiplication. ECDSA algorithm computes kP
(k times the EC Pomt, P) during key generation and
signature generation phases and also expends the system
resources while computing multiple scalar multiplications
such as (u,P + 1,Q) during signature verification. Tt was
reported by Scott Vanstene™ that the signature
verification of ECDSA takes twice the time taken for
signature generation considering the same security level.
Hence it is a primary concern to devise methodologies for
reducing verification time so that ECDSA could be more

adaptable to mobile devices. Section-2 of this study
analyzes the possible improvements on joint scalar
multiplication to meet the demand of mobile devices such
ds Tesource conservation.

The recent advances in cryptanalysis on hash
functions MD5 and SHA-1 have been incredible and the
collision attacks are of particular practical importance as
these algonthins are extensively deployed m applications.
Wang et al ™ presented the first attack on the full SHA-1,
where they show that finding collisions is at most of
complexity 2%, Other recent papers on cryptanalysis of
collision-resistant hash fimctions (CRHF)Y®* focus mainly
on the attacks against MD3 and SHA-1. Section-3 of this
paper draws out the feasible strategies
strengthening the message blocks.

towards

ENHANCING THE SPEED OF ECDSA
SIGNATURE VERIFICATION

Many efficient algorithms on point multiplication
have been developed such as binary, non-adjacent form
(NAF) and several window methods that play tradeoffs!”
between storage space and execution time for scalar
multiplication. M~ oller’™? introduced a binary method
called interleaving, which aims at reducing the number of
ECDBL(EC Point Doubling) operations required for a
multi-scalar multiplication. Another popular method called
comb algorithm proposed by Lim and Lee"”, uses a binary
matrix, which can dramatically speed up the computation
of point multiplication keeping the pre-computation space
the same as other window methods.
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SIMULTANEOUS MULTIPLICATION
[SIMUL] ALGORITHM

ECDSA signature verification consumes more time
than its generation due to the presence of multiple scalar
multiplications. To reduce this, the computation is divided
mto two stages namely, pre-computation stage and
evaluation stage. Most researchers focused on reducing
the evaluation time of multiplication’>™. Recent studies
also look at plausible recommendations on faster
execution methods for scalar multiplication®™**1.  Only
very few works in optimizing the
pre-computation time, which devours predominant level

are available

of resources of the system. An improved algorithm for
multiplication called SiMul,
therefore, designed and evaluated its strength.
Algorithm-1 lists out the steps involved in the design.

efficient simultaneous

1s

STRENGTHENING PRE-COMPUTATION
PROCESS

The pre-computation process of SiMul is made
stronger by using window non-adjacent form (w-NAF)
multiplication. The scalar multiplier k is represented in
window-NAF format and the length of w-NAF(k) is at
most one longer than the binary representation. Pomt
multiplication kP or kQ is done using w-NAF during
pre-computation stage. The runmng time of w-NAF 1s
approximately [(1ECDBL + (2*%-1) ECADD) + (m/Aw+1)
ECADD +mECDBL)], where m 1s the bit-length of k, w 1s
the window size, ECADD represents EC pomt addition
and ECDBL represents EC point doubling. The amount of
storage is brought down to 2" number of points with a
two-Table implementation.

Algorithm 1:
multiplication
Input: Window width w, k= (k... ki, ko) 1=y,
1. 1)), P.Q & E(Fp)

Output: kP + 10

[SiMul] Simultanecus multiple point

Pre-computation:
1. Pre-compute iP +jQ for all 1, j € [0, 27 ]
2. Wrtek = (k... k kpandl=,,,..., 1, 1;) where
each ki and li 15 a bitstring of length w and d = m/w
Evaluation:
3X«0
4.For i from d - 1 downto 0 do
41X« 2"X
42X« X+ kP+1LQ)
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where (kP + 1,Q) are computed using Shamir
method
Return(X)

Simultaneous inversion: Generally, points are pre-
computed and stored m affine co-ordinates to speed up
the execution during the evaluation stage. The problem
faced in this mode is that every operation in affine
co-ordinates requires an inversion. The inverted list of all
points 1s alse prepared simultaneously after the
pre-computation Table 1s constructed. Inversion 1s

embedded as a part of the pre-computation process.

Pre-Computed points for simultaneous multiplication:
Table 1 shows a sample of pre-computation Table for a
window width of 3 used in SiMul. The Table is
constructed by omitting certain points from storage
during pre-computation process. For example, the
diagonal elements (2P + 2Q), (3P + 3Q)... (P + nQ) are
excluded from storage except (P + Q). The scalar
multiplication of type (nP + nQ) which is equal to n(P +
), for n = 2,3... 13 postponed to evaluation stage.
Evaluation of n(P + Q) will consume only one scalar
multiplication if necessary, whereas storing (n-2) diagonal
points spends out (n-2)ECADD operations. Also, while
preparing the pre-computation Table, the following steps
are adopted:

Step 1: Points O, P and Q

Step2: (P+Q), 2P, 2Q, 3P, 3Q,..., multples of
Pand Q

Step 3: Rest of the matrix except diagonal elements

Evaluation of siMul algorithm: The evaluation stage of
simultaneous multiplication (kP + 1Q) uses Shamir’s trick,
which is explained through Example-1. Here, scalars k and
1 of m-bit length are divided into d number of portions by
window width, w. Each porttion of k and 1 1s
simultaneously evaluated using Shamir’s method and
the intermittent result is obtained by multiplying with 2¥¥
for 1 =1,2.. d and adding them leads to the final result. Tt
expects a runming time of (2*°~ 3)ECADD +((d ~ 1)
(2~ 1%22w ECADD + (d ~ 1)w * ECDBL) and a storage
for 2* points. Storage increases compared to Comb
algorithm as it requires both points P and Q in multiples.
Saving in storage 1s also achieved as discussed mn section
2.2.2 by reducing it to (2%-2%),

Example-1: To compute 33P + 130Q simultaneously using
Shamir method. The parameters for the algorithm are: m =
6w=3.d=m/w=2
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K+ 1 0 0 0 1
I 1 0 1 0 0 0
x2 x2 x2
X4 0+o 2P+2Q—>4P+4Q Op0iiy 0229 0
+
P+Q 4P+5Q P
Table 1: Pre-Computation Table for window width w =3
o P 2P 3P 7P
Q P+Q 2P+Q 3PHQ 7P+Q
20 P+20 2P+20 3P+20 7P+20Q
30 P+3Q 2P+3Q 3P+30Q 7P+30)
70 P+70 2P+7Q 3P+70 7P+70

Message pre-processing techniques: The message
pre-processing techniques for mnproving the collision
resistance assume that the underlying hash function is
not to be modified. Let M be a message string to be
hashed and H be a standard hash function SHA-1. A
message of an arbitrary length is converted into a hash
value of 160 bits by the one-way hash function, SHA-1.
The following are the formal notations used throughout
thus paper to represent the parameters of SHA-1 algorithm
i ECDSA signature:

M1, M2,... Mn 512 bit blocks of a message to be

hashed

mO, ml,...ml5 sixteen 32-bit message words for
each Mi

W the expanded message block of m

w0, .. . ,w79 eighty 32-bit message words of w

C compression fumetion

H hash function

SIG Signature algorithm using ECDSA

An Overview of collision attacks: Focusing on a single
block, the general common strategy behind these collision
attacks involves finding a message difference A(w) =
(w-w") between two expanded messages such that the
probability that C(m) equals C(m') 13 higher than
expected. This is possible when it can be arranged such
that during the round computations of the blocks M and
M, the state vectors never deviate significantly and can
be cormrected with high enough probability. Local collision
is a series of a few rounds in which certain small
differences in the expanded message words will be
absorbed with reasonable probability. Due to the message
expansion there will be many different words of M and
M, so these local collisions must be strung together.
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Disturbance vectors describe how the local collisions are
joined. The entire sequence of differences in the state

vectors is called a differential path. The overall success
probability depends on the simultaneous satisfaction of
a set of conditions for each local collision.

The structure of the various attacks consists of
analysis of the local collisions, search for a low Hamming
weight disturbance vector and a brute force search on
input messages. A variety of methods are used to boost
the success probability, including specifying concrete
conditions for the differential path, message modification
so that some conditions always hold and usage of two
blocks to construct collisions from near collisions.

There are several strategies, which one might employ
to prevent the success of these approaches. The most
obvious approach is to prevent the existence of any
differential path that leads to (near) collisions and holds
with probability greater than 2"°. An additional
precaution would be to restrain the power of the message
modification techniques, thereby significantly reducing
the success probability of the attack. A third possibility
1s to consider situations in which the Merkle-Damg® ard

iterative structure!™!

cannot be exploited; for example if
single message bits were to affect multiple blocks. Easy
and a feasible solution would be to randomize the wnput
message before hashing 1s applied.

Randomization of block:  Message
randomization in a single block defines a derived hash
function H* which calls H as a subroutine. The proposal
1s to preprocess the message before it is hashed in a
standard way. Let @: M 7 M* be a preprocessing function
mapping strings to strings. For such function, a derived
hash function H* may be defined by H*(M) = H (©(M)),
where we assume that @ 1s a relatively simple function
and the derived hash function H* is collision resistant
with respect to known attacks, even if H is not. The
function @ must be chosen appropriately for a particular

message

H to ensure that H* 1s secure. For sigming a message M,
the signer chooses a 512-bit random value r and computes
SIG(r,H*(M)). Here, the pair (r,H*(M)) represents a
standard encoding of the concatenation of the values r
and H*(M). Randomization 1s applied to the hash input
before the hash function is called. The random value r is
XORed with each 512-bit block of M. If M is not an exact
multiple of 512-bit blocks then the shorter last block 1s
XORed with an appropriately truncated r. H*(M) 13 now
defined as H*(M) = HMl @&, . .., Mn & 1) where (Mi @ 1)
will result in giving the same length as the Mi. The
random value r 1s prepended with the hash value such as
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(r|HMler, ..., Mn &r)). The signature on message M
now consists of the pair (r, SIG(r,H*(M))).

Another variant of tlus approach s to XOR a
different random r with each block instead of the same
value r. However, this method poses high overhead on
communication since all the random values are to be
transferred to the recipient apart from high computation
cost on generating random numbers of length equal to the
length of the message. Randomization could also be
achieved by having the first block of the message XORed
with r, the next block with byte-wise circular rotated
(left or right) random wvalue and so on. For resource
constrained devices such as mobile devices, lower-bit
random value could be chosen such as 128 bits and
r could be built by concatenating four times to create
a 512-bitr.

Message interleaving: In this approach, the basic idea is
to duplicate each message word so that each bit appears
twice after the preprocessing. Assuming the i® block of
message M is broken up into some number of 32-bit
words: Mi = (m0, ml, . . .mk), then the preprocessed
message would be @(Mi) = (m0, m0, m1, m1,..mk, mk),
where each word appears twice. Another variant of this
approach would be to interleave the 512-bit random r
between any two blocks of the original message, thus
providing an TV randomization feature for each application
of the compression function. The obvious drawback of
interleaving method is the added computation i.e.
doubling the cost of the original hash function.

Pre-processing with SHA-1 function: For the existing
implementation of SHA-1, the ECDSA signature
generation is generally carried out for a given input
message by three functions as described below:

Sign Tnit(context)

// context pertaining to the algorithm and the provider
Sign Update(context, msg_input)

// message input of arbitrary length

Sign Final(hash, context)

// hash is being used for signing at the final stage

The proposed implementation for the improved
ECDSA signature with the same sequence of functional
calls is as follows:

Sign Tnit(context)

// same as original ECDSA

Sign Update(context, randomized input)

// modified structure of the call

{

newMsglnput = MsgPreProcess(process id, msg_input)
/fuses the named pre-process

Sign Update(context, newhMsgInput)
/f for randomization

i
Sign Finalthash, context)
/f same as ECDSA

The pre-processing step is done as a private function
call that is invisible to upper layer protocols using ECDSA
signature. The computational overhead on preprocessing
on message mput 1s negligibly small.

EXPERIMENTAL ANALYSIS OF THE
PROPOSED SOLUTIONS

The proposed algorithm for  Simultanecus
Multiplication, SiMul is tested under Pentium-T'V, 3.2Ghz,
Windows XP system on JSDK2 platform and its
performance is compared with comb algorithm The
implementation considers only the NIST prime curves
namely, P-192, P-224, P-256, P-384 and P-526 varying the
window width w from O to 13. It 15 found that the
execution cost for these curves increases exponentially as
the window size mcreases. The results are based on the
hash function, SHA-1 with al 60 bit hash value.

Figurel the performance of signature
verification comparing comb and SiMul algorithms in
different co-ordinate systems. Though the process is

shows

repeated for window sizes ranging from 8 to 13, this study
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Table 2: Comparing ECDSA and RSA with message pre-processing under
the same security level

ECDSA RSA
Key Sign time Verify time  Key Size  Signtime  Verify
Size ms ms ms time ms
192 31 47 1024 15 0
224 15 31 2048 78 0
256 16 47 3072 235 0
384 47 125 7680 3187 31
521 125 328

presents only the output for the window size 10 as a
sample. Tn all cases, SiMul achieves a much faster
execution time than the comb, especially when 1t 13 used
for higher prime curves such as P-384 and P-521. Tn mixed
mode, time reaches zero for the lower end curves.
Generally, ECDSA signature verification uses twice the
time taken for signature generation. This implementation
demonstrates that the time difference between signature
verification and signature generation could be controlled
and thereby achieving better efficiency and speed.
Signature generation i comb extibits relatively the
same speed as the counterpart on different co-
ordmate systems. The reason being that the signature
generation involves only a single scalar multiplication, kP.
Figure 2 shows this attitude of comb following SiMul very
closely. For mixed mode, the signature time almost reaches
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zero neglecting the inconsistencies of Java compiler.
Also it 1s found that key generation in mixed mode tends
to be a heavy-duty process than the other two co-
ordinate systems and it is due to the preparation of
a large pre-computation Table and a simultaneous
inverted list. Bach prime curve stabilizes itself during
signature verification mrespective of the window size
under SiMul and this is illustrated m Fig. 3. Affine 1s
found to be much costlier than mixed co-ordinate system
as per Fig. 4.

SiMul algorithm 1s also studied for improvement in
performance after message block randomization. The
outcomes of the experiment on two popular signature
schemes namely ECDSA and RSA are compared in
Table 2 keeping the same security level. Signature
verification of RSA seems much faster than that of
ECDSA whereas the signing 1s vice versa. Figure 5 and
Fig. 6 illustrate that the ECDSA signing and verification
with randomized message input have not cost much
additional computation. By optimizing the code further,
the degradation in the performance could be
compensated.

CONCLUSION

This study has attempted to reduce the processing
mandatory solution for resource constrained mobile
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devices. The study imparted few effective methods on
SiMul, a proposed algorithm to reduce the time for
validating the signature during execution by augmenting
the pre-computation process. SiMul, has
significant progress in the verification process by
reducing the computation overheads but at a penalty of
large storage compared to comb algorithm. The study has
revealed that SiMul m mixed mode gives a better
performance than in the other two co-ordinate systems
especially for high-end prime curves. Randomizing and
mterleaving on each message block have been suggested
onn SHA-1 algorithm for securing ECDSA  signature
against block collision attack. These methods exploit
simple methods of enhancing message mixing to increase
security. The drawback is the additional computational
cost. The proposed solutions can be viewed as a general
purpose, safer, collision resistant way of using SHA-1.
Due to their simplicity, the proposal can be appealing for
practitioners who wish to increase security m a short term,
without changing the underlying hash function at all.
Further strengthening of ECDSA with respect to the
storage of pre-computed pomts will be considered as an
immediate future work. The objective would be to reach an
optimized level between evaluation time and pre-
computation time.

shown

REFERENCES

1. Miller, V.5., 1986. Use of Elliptic Curves in
Cryptography,  Advances in Cryptology-
CRYPTO'85, LNCS 218, Springer-Verlag, pp: 417-426.
Koblitz, N., 1987. Elliptic Curve Cryptosystems,
Mathematics of Computation, pp: 203-209.

3. Rivest, RL., A. Shamir and L. M. Adleman, 1978. A
Method for Obtaining Digital Signatures and
Public-Key Cryptosystems,
ACM, pp: 120:126.

Scott Vanstone, 2005. Deployments of Elliptic Curve
Cryptography, %th workshop on Elliptic Curve
Cryptography, ECC-2005, at URT, http://www. cacr.
math.uwaterloo.ca/conferences/2005/ecc2005/vanst
one.pdf

5. Kuang,B., Y. Zhuand Y. Zhang, 2004. An Improved
Algorithm for vP + vQ usmg ISF, Applied
Cryptography and Network Security-ACNS LNCS
3089, Springer, pp: 467-478.

Antome Joux, 2004. Multicollisions m Iterated Hash
Functions-Application to Cascaded Constructions,

Crypto.

Communications of

554

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Damg®ard, 1.,1990. A Design Principle for Hash
Functions, m Advances m  Cryptology Crypto’89,
Springer-Verlag.

El Biham and Rafi Chen, 2004. Near-Collisions of
SHA-0, Crypto.

Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault,
Christophe TLemuet and William Jalby, 2005.
Collisions of SHA-O and Reduced SHA-1,
EUROCRYPT.

Xiaoyun Wang and Hongbo Yu, 2005, How to Break
MD5 and Other HashFunctions, EUROCRYPT.
Hiaoyun Wang, Hongbo Yu and Yiqun Lisa Yin,
2005. Efficient Collision Search Attacks on SHA-O,
Crypto.

Xiaoyun Wang, Yiqun Lisa Ym and Hongbo Yu,
2005. Finding Collisions in the Full SHA-1, Crypto.
Blake, LF., G. Seroussi and N.P. Smart, 1999. Elliptic
Curves in Cryptography, Cambridge Univ. Press.

M oller, B., 2001, Algorithms for Multi-
exponentiation, Selected Areas in Cryptography-
SAC 2001, LNCS 2259, Springer, pp: 165-180.
Lim, C. and P. Lee, 1994 More Flexible
Exponentiation with Precomputation, Advances in
Cryptology- CRYPTQ'94, LNCS 839, Springer-Verlag,
pp: 95-107.

Cohen, H., A. Miyaji and T. Ono, 1998. Efficient
Ellipic Cwve Exponentiation Usmg Mixed
Coordinates, Advances in Cryptology-ASIACRYPT
LNCS 1514, Springer, pp: 51-65.

Morain, F. and T. Olives, 1990. Speeding Up the
Computations on an Elliptic Curve using Addition-
Subtraction Chains, Theoretical Informatics and
Applications, pp: 531-543.

Dahmen, E., K. Okeya and T. Takagi, 2005. An
Advanced Method for Joint Scalar Multiplications
on Memory Constraint Devices, 2nd FHuropean
Workshop on Security and Privacy in Ad hoc and
Sensor Networls-ESAS 2005, LNCS 3813, Springer,
pp: 189-204.

Dahmen, E., K. Okeya and T. Takagi, 2005. Efficient
Left-to-Right Multi-Exponentiations, Technical
Report TT-2/05, at URL http://www.cde.informatik.
tu-darmstadt. de/reports README. TR html.

Solinas, TA, 2001, Low-weight  binary
representations for pairs of integers, University of
Waterloo, Techmical Report CORR 2001-41, at URL
http:/Awww.cacr.math uwaterloo.ca.

Merkle, R., 1990. One Way hash Functions and
DES, in Advances in cryptology Crypto’89,
Springer-Verlag.



