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Image Compression Via Embedded Coder in the Transform Domain
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Abstract: Embedded Zerotree Wavelet (EZW) coder has become very popular in image compression
applications, owing to its sinplicity and high coding efficiency. In this paper, we first illustrate the Shapiro
algorithm (EZW). In second, we combine the Discrete Cosine Transform (DCT) with an embedded zerotree
quantizer in order to obtain the Xiong ef al. algorithm (EZDCT). Our aim is to improve the bit rate gotten by
EZDCT algerithm while changing the resolution level and to make a comparison with the EZW algorithm. The
experiments show that the DCT-based embedded image coder gives higher Peak Signal-to-Noise (PSNR) than
Toint Photographic Expert Group (TPEG) and almost similar than Shapiro’s EZW coder.
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INTRODUCTION

Transform coding is one of the most efficient
methods for image compression. In a transform based
compression system two-dimensional iumages are
transformed from the spatial domain to the frequency
domain. An effective transform will concentrate useful
mformation mto a few of the low frequency transform
coefficients. Human visual system 1s more sensitive to
energy with low spatial frequency than with high spatial
frequency. Therefore compression can be achieved by
quantizing the coefficients so that important coefficients
(low frequency coefficients) are transmitted and remaimng
coefficients are discarded. Very effective and popular
ways to achieve compression of image data are based on
Discrete Cosine Transform (DCT) and Discrete Wavelet
Transform (DWT).

Recently the application of wavelets in image
compression has received significant attention and
several very efficient wavelet-based image compression
algorithms have been proposed. This 1s due to the fact
that the wavelet transform can provide a multi-resolution
representation for an image or a signal with localization in
both time and frequency domams. In addition, the
coarse-to-fine representation of mmages matches the
characteristics of the human visual system and malkes it
possible to achieve both high compression ratio and good
subjective quality for the decoded image for image
compression. EZW (Embedded Zerotree Wavelets)™ uses
a zerotree data structure to characterize the selfsimilarity
of zeros across different scales. Tt can provide better
mmage quality than DCT especially on higher compression
ratio. But the implementation of the DCT 13 less expensive
than that of the DWT. For example, the most efficient

algorithm for 2-D 8x8 DCT requres only 54
multiplications™ while the complexity of calculating DWT
depends on the length of wavelet filters, which is at least
one multiplication per coefficient. In this context, we give
a comparative study between EZW and EZDCT
{Embedded Zerotree Discrete Cosine Transform)¥ where
the DCT is coupled with an embedded zerotree quantizer.
In our study, we propose to vary the size of DCT blocks
of 4x4 up to 64x64 nstead of 8x8 only in order to have
several resolution levels.

DISCRETE WAVELET TRANSFORM

The theory of continucus and discrete wavelet
transforms™? has inspired much basic and applied
research in signal and image processing, as well as
revitalizing the study of sub-band filtering™™. The
Discrete Wavelet Transform (DWT) is obtained by
repeated filtering and sub-sampling into two bands with
low- and high-pass Finite Impulse Response (FIR) filters
called the analysis filters. The inverse process makes
use of the synthesis FIR filters and gives perfect
reconstruction if the wavelet is biorthogonal. Fig. 1
and Fig. 2 show one stage of subband
decomposition/reconstruction with 2-D separable filters.

This decomposition/reconstruction derives the
principle of the multiresolution introduces by™. A
multiresolution analysis of L(R) is defined as a set
M={V.}.; of embedded subspaces vector that exhibit the
following properties:

1. {V}, 1s an approximation spaces sequence, 1.¢:
* Vs aclosed subspace of
» VoV, jEZ
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Fig. 1: One stage of subband decomposition with 2-D
separable filters

Fig. 2: One stage of subband reconstruction with 2-D
separable filters
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From the last expression, one can define a scaling
function ¢(t)cV, exists such that the set {¢p(t-k)},; is a
Riesz basis of V.

These properties imply the existence of a sequence
fh,} for which the scaling function satisfies the
refinement equation

®(0) =2 Y h,@(2t k) ey

Tt also follows that the functions
_1 .
Vie Zg, =2 *o(27t -k}, -
keZ
constitute a Riesz basis  of V.
Define now W, as complementary space of V, in V,,,,

such that:
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A function Yr(x) is a wavelet if the set of functions
fWr(t-lo)} . 18 @ Riesz basis of W, Simce the wavelet 1s also
an element of V, a sequence {g,} exists such that:

Wit =2 g,0(2t-k) (2)

The set of wavelet functions {¢,.}, .- 1s now a
Riesz basis of LXM). The coefficients in the
expansion of a function in the wavelet basis are

given by the inner product with dual wavelets
) _1 such that:
Ve Zy, =2 Z\TJ(Z’Jt 71<)
keZ
£ty = 3 (00, ;. (0 3)
1.k

Likewise a projection on V; is given by:

PE( =3 (£,5,,)9,,() (4)
k

are the dual

-1 .
Where {Vje 2,6, =2 2("p(2”t k)}
keZ
scaling fimctions. The dual functions have to satisfy the
biorthogonality conditions:

<(pl""¢’lvk‘> =3k and (”’j,k=‘T’j;k‘> =88

They satisfy refinement relations similar to (1) and (2)
involving sequences {h,} and {8} In case the basis
functions coincide with their duals, the basis s
orthogonal.

DISCRETE COSINE TRANSFORM

In JPEG-DCT method™ 8x8 sub-block is employed
because of the coding efficiency. Hence image should be
divided into 8x8& sub-blocks and 8x8 two-dimensional DCT
is taken for each sub-block. The Eq. (5) and (6) are the
defimtions of a two-dimensional discrete cosine transform
and the inverse discrete cosine transforms respectively.
Form these equations we can see easily that a DCT
coefficient is real and the transform itself is an even
function-expansion of a signal. It means that the signal is
evenized implicitly. Hence from the point of view about
aliasing DCT 1s much favorable to transform a signal.
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Fig. 3: Decomposition results from the third stage
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Where f(m,n) is the image signal and F(u,v) is the
DCT coefficient.
C(k) iz a normalizing coefficient as

fim,n) =

J_

6
COS{(2m+1)u1rc ©)

2M

k=0

(k) = }/ N7 (7
1

otherwise

The discrete cosine transform is the most widely
used transform in many applications such as image
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Fig. 4. (a) Structure of zerotrees and (b) Scanning order
of subbands for encoding
transform coding, image processing and pattem

recognition. This is because of ity near optimum
performance with respect to the redistribution of signal
variance into a few low-order coefficients. The DCT is
characterized by its superior energy compaction compared
with other fransforms.

EZW CODING SCHEME

The Embedded Zerotree Wavelet (EZW) coding
scheme was proposed by Shapiro™. As the name
suggests, this coding method has the embedding
property. Eszentially, there are three key elements to the
EZW scheme:



Asian J. Inform. Tech., 5(6): 633-639, 2006

Input coeflicient

insignificant
dont code

A 4 v

Code Code
positive negative
gymbol symbol
Code Code
isolated zero zerotrec root
symbol symbol
Fig. 5. Flow chart for encoding a coefficient of the
significance map
0 1
4
2 3
L]
5 6
7 9
Fig. 6. 8x8 DCT block taken as three-scale tree with

ten-subband decomposition

The wavelet transform is used to form a hierarchical
subband decomposition of an image.

The absence of significant information across scales
18 predicted by exploiting the self—similarity inherent
in images.

Successive approximation quantization is combined
with arithmetic coding"™'!  to the
compressed bit stream.
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Fig. 7. Comparison results between EZW and EZDCT at
scale 4 (a) Barbara (b) Peppers

The second point above is arguably the most
important. The EZW scheme encodes the wavelet
transform coefficients in bit significance order.

Normally, this would also require that the coefficient
positions be explicitly coded. By predicting the absence
of significant information across scales, however, the
EZW scheme 15 able to avoid encoding individual
coefficient positions explicitly. Not having to explicitly
encode the position of each coefficient saves bits and
leads to excellent compression results. The way of
constructing a zerotree is as follows:

Initialization: Compute the wavelet transform of the
image. As an example, Fig. 3 represents the Wavelet
transform for a three stages bank filter for the image
Barbara, where H represents High frequency and T
represents Low frequency.
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The low-frequency sub-band images are more
important than the high-frequency ones. Furthermore, the
coefficients of the low-pass umages are large compared to
the coefficients m the high-frequency mnages. The
zerotree technique depends on this fact in designing the
set of quantizers to be used at every stage in the
encoding process. At the very beginning, the large
coefficients are quantized by a coarse quantizer. At every
next stage in the decoding process, a refinement 1s added
to represent these coefficients more precisely in addition
to represent the small coefficients that were ignored in a
previous stage.

Next, we Determine the threshold *T,” so that it is equal to
the greatest power of two lower than the maximum value
of the wavelets coefficients.

T, = gllealonel] (7)

0

Dominant pass: We traverse the wavelets coefficients
according to the way represented on Fig. 4(b), so that the
zerotree are most effective possible (Fig. 4 (a)).

For each coefficient we affect one of the four
following symbols by comparing them with the current
threshold T;:

Positive Significant (POS): if the absolute value of the
coefficient 1s greater than the threshold T, and positive
SIgIL

Negative Significant (NEG): if the absolute value of the
coefficient is greater than the threshold T, and negative
SIgIL

Isolated Zero (IZ): if the absolute value of the coefficient
15 lower than the threshold T, having one or more
descendants which are not negligible in front of T

Zerotree Root (ZTR): if the value of the coefficient 1s
lower than the threshold T, having only neglgible
descendants.

The flow chart for the decisions made at each
coefficient is shown in Fig. 5.

Moreover, all the descendants coefficients of a
coefficient which has symbol ZTR are not coded. When
the decoder receives a coefficient noted ZTR it will know
that all the descendants are negligible. We transmit only
for part of the coefficients the four symbols above.

Subordinate pass: The second part of the algorithm for
this scan 1s to quantize the coefficients with symbols
POS/NEG. For all the significant values given in the
preceding stage, we emit the bit corresponding to 2! to
increase the precision of the transmitted significant
values.

Subordinate pass is used to make the coefficients
significant at the current stage negligible at the next stage
to merease the chances to have zerotree.

We start again the algorithm at step B on the residue
of the image by mcrementing ‘1° of one and by dividing
the threshold *T; by two. We reiterate the process until
the quality standard of the image is reached or which the
transferable number of bits is exceeded.

EZDCT CODING SCHEME

Typical images can be described as a set of smooth
surfaces delimited by edge discontinuities. This is shown
in the DCT domain by two facts.

»  Signal energy due to smooth regions 1s compacted
mostly mto DC coefficients, thus resulting m
negligible contributions to coefficients m the higher
frequency bands.

»  Due to the small compact support associated with
DCT, edges can only contribute energy to a small
number of AC coefficients.

The simplest form DCT-based encoder can be
thought of as essentially compression of a stream of 8x8
blocks of image samples. Each 8x8 block makes its way
through each processing step and yields output in
compressed form into the data stream.

In™, block-based DCT coding can treat as a depth-3
tree of coefficients. After reorgamzation can be further
utilized to DCT-based coder in order to obtain better
compression performance as EZW did i the wavelet
domam. So as to improve the results obtained by the
EZDCT, We opted to vary the size of the DCT blocks. So
the algorithm of EZDCT is as follows:

*  An nput mmage 15 first partitioned mto blocks,
where,.

»  Eachblock is then transformed to the DCT domain!”
and can be taken as an L-scale tree of coefficients
with subbands decomposition.

+ After that, the same subbands for all DCT blocks are
grouped and put onto their corresponding positions.
Fig. 6 demonstrates a DCT block taken as three-scale
tree structure with ten-subband decomposition.

* An embedded zerotree quantizer 1s then applied to
quantize the tree-structured DCT coefficients as was
done to the wavelet coefficients in™.

EXPERIMENTAL RESULTS AND
PERFORMANCE COMPARISON

The performances of our algorithms  are
evaluated on several standard images. All the images
are of 512x512 pixels, 8 bitpixel As usual, the
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(b
Fig. & Performance of the two coding algorithms at scale 4 and 0,25 bits/pixel (a) Original 512x512 8bpp Barbara image,
(b) PSNR =27,13 dB (EZW), (¢) PSNR = 28,09 dB (EZDCT)

Fig. 9: Performance of the two coding algorithms at scale 4 and 0,125 bits/pixel (a) Original 512x512 8bpp Peppers image,
(b) PSNR = 29,55 dB (EZW), (¢) PSNR = 29,15 dB (EZDCT)

Tahle 1. PENR resultsin (DB for different scales and di ferent rates obtained with EZW and EZDCT

PSNR (dB)
EZW EZDCT
Scale 2 3 4 5 6 2 3 4 5 6
Barbara 0,125 22,06 24,06 24,39 24,48 24,48 22,26 24,26 25,39 25,80 25,54
Bitrate (bpp) 0,25 25,26 26,98 27,13 27,17 27,16 24,33 27,01 23,09 23,44 27,90
0,50 29,55 30,89 31,02 31,03 31,03 27,45 30,87 31,73 31,54 31,23
0,75 31,95 33,77 34,21 34,24 34,26 30,72 33,12 35,13 35,14 34,58
1,00 35,25 35,67 35,80 35,81 35,82 33,22 35,69 36,51 36,63 35,83
Peppers 0,125 22,06 24,06 24,39 24,48 24,48 22,26 24,26 25,39 25,80 25,54
Bitrate (bpp) 0,25 25,26 26,98 27,13 27,17 27,16 24,33 27,01 25,09 25,44 27,90
0,50 29,55 30,89 31,02 31,03 31,03 27.45 30,87 373 31,54 31,23
0,75 31,95 33,77 34,21 34,24 34,26 30,72 33,12 35,13 35,14 34,53
1,00 35,25 35,67 35,80 35,81 35,82 33,22 35,69 36,51 36,63 35,83
Lena 0,125 22,06 24,06 24,39 24,48 24,48 22,26 24,26 25,39 25,80 25,54
Bitrate (bpp) 0,25 25,26 26,98 27,13 7,17 27,16 24,33 27,01 23,09 23,44 27,90
0,50 29,55 30,89 31,02 31,03 31,03 27,45 30,87 3,73 31,54 31,23
0,75 31,95 33,77 34,21 34,24 34,26 30,72 33,12 35,13 35,14 34,58
1,00 35,25 35,67 35,80 35,81 35,82 33,22 35,69 36,51 36,63 35,83
Caldhill 0,125 22,06 24,06 24,39 24,48 24,48 22,26 24,26 25,39 25,80 25,54
Bitrate (bpp) 0,25 25,26 26,98 27,13 7,17 27,16 24,33 27,01 28,09 23,44 27,90
0,50 29,55 50,89 31,02 31,03 31,03 27,45 30,87 31,73 31,54 31,23
0,75 31,95 33,77 34,21 34,24 34,26 30,72 33,12 35,13 35,14 34,58
1,00 35,25 35,67 35,80 35,81 35,82 33,22 35,69 36,51 36,63 35,83
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distortion is measured by Peak Signal-to-Noise Ratio
(PSNR) defined as:

255
PSNR(dB) = 20log,, ———— @®
(dB) Su RMSE

Where RMSE is the root mean-square error between
the origmal and reconstructed unages.

Table I shows EZW and EZDCT coding results with
different scales and different rates. Fig. 7 compares for the
Barbara and the Peppers images, the peak-SNR vs. bits
per pixel results obtamed by an EZW coder and an
EZDCT coder when four scales dyadic are used.

Similarly, Fig. 8 and Fig. 9 show performance of the
two coding algorithms for the same images and the same
scale at 0,25 bpp and 0,125 bpp, respectively.

Note that the 7/9 bi-orthogonal filters in'” are used in
EZW case.

For Barbara image, EZDCT is better than EZW, while
for Peppers image, EZW 1s slightly better than EZDCT.
According the results obtamned, we can say that the
block-based DCT by proper reorganization and
representation of its coefficients can have the similar
characteristics to wavelet transform, such as energy
compaction, cross-subband similarity, decay of magnitude
across subband, etec. Also, if we rise the level of
decomposition at four and five, the compression quality
(PSNR) m will be improved by 1,18 dB and 1,4 dB,
respectively for Barbara image compared with™. The
increase of the level of decomposition to four and to five
permits us to have some zerotree in more without affecting
the DC components.

For all images the PSNR obtained at each bitrate 1s
found to be better than JPEG coders™ and our
contribution also  brought an improvement in
comparison tol'?,

Generally speaking, the DCT decomposition based
image coder has comparable PSNR performance with
wavelet coder, yet with lower complexity.

CONCLUSION

We presented results from a comparative study of
wavelet-based and DCT-based immage compression
systems using objective PSNR quality measures. These
two methods use an embedded zerotree structure.

In this study, we show that the block-based DCT
with proper organization and representation of its

coefficients can have similar characteristics to wavelet
transform. The experimental results show that the
DCT-based embedded image coder presents a low
complexity that is better than JPEG and almost similar then
Shapiro’s EZW coder. DCT is capable of delivering much
better performance than TPEG, just as it is for the wavelet
transform.
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