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Abstract: This study presents a Lyapunov based switclhing controller design method for non linear systems
using Takagi-Sugeno fuzzy models. The basic idea of the proposed approach is to represent the fuzzy model
as a set of uncertain linear systems. The switching controller consists of local controllers obtained by solving

the corresponding set of Algebraic Ricatti Equations

(AREs). A stabilizable switching strategy is proposed to

guarantee the global stability. A simulation example 1s given to illustrate the effectiveness of this study.
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INTRODUCTION

In recent years, Fuzzy Logic Control (FLC) has
attracted considerable attention from scientists and
engineers. FL.C design methods are generally based
on a fuzzy model composed by a set of if-then rules.
Fuzzy modeling 13 an efficient method to represent
complex non-linear systems by fuzzy sets and fuzzy
reasoning. By using a Takagi-Sugeno fuzzy model, a
non linear system can be expressed as a weighted
sum of simple subsystems. This model gives a fixed
structure to some non linear systems and thus
facilitates their analysis. There are two ways to
obtain the fuzzy model:

by applying identification methods with input-output
data from the plant,

or directly from the mathematical model of the non
linear plant!"*. Recently, there have been appeared a
number of systematic stability analysis and controller
design results in fuzzy control literature. Tanaka et al.
discussed the stability and the design of fuzzy

control systems inf"l.

They gave some checking
conditions for stability, which can be used to design
fuzzy control laws. Unfortunately, the stability
conditions require the existence of a common
positive defimte matrix for all the local inear models.
However, this 15 a difficult problem to be solved mn

many cases, especially when the number of rules is

large. Representation of fuzzy models by a set of
linear uncertain systems has been suggested by
Cao et al”, based on linear uncertain system theory
several control design approaches has been
proposed. The drawback of the precedent
approaches 1s that the LMIs or the algebraic Riccati
equations used to check the stability can be
infeasible. Based on the representation of Cao et al.™
" we propose, in this study, a switching control
design approach. The proposed approach 1s based
on the resolution of a set of independent algebraic
Ricatti equation. The fulfillment degree of each rule
1s incorporated in the algebraic Riccati equation to
overcome the problem of infeasibility. A mmimization
program 1s used to compute the mimimal rule degree
for which the local algebraic Ricatti equation has a
solution. If the stability covering condition is fulfilled
than the global stability can be assured by using a
suitable switching strategy. One of the advantages of
this approach is that we can minimize the number of
the local controllers.

Takagi-sugeno fuzzy model: Many physical systems are
very complex in practice so that rigorous mathematical
models can be very difficult to obtain, if not impossible.
However, many of these systems can be expressed in
some form of mathematical models. Takagi-Sugeno fuzzy
models have been largely used to model complex non
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linear systems!”

. The continuous-time Takagi-Sugeno
fuzzy dynamic model 153 a piecewise mterpolation of
several linear models through membership functions. The
fuzzy model 15 described by a set of fuzzy if-then rules.

The ith rule of the fuzzy model takes the form:

Rule I:
If z (t)is F,---,and z,(t)is F, Then
X(t) = Ax{t)+ Bu(t)

M

where x (t) € R" denotes the state vector, u (t) € R "the
control vector, y (t) € R? the output vector, F' is the j"
fuzzy set of the 1" rule, A; € R"" and B, £ R™™ are the state
matrix and the input matrix for the i* local model, r is the
number of if-then rules and z, (1), z; (t)...., z, (t) are some
measurable system variables. The final output of the
fuzzy model can be expressed as:

x(t) = Eotl(z(t)){Aix(t) +But)) @

where
0 ety =) )
2 (b
and
o (z(0) = [ [Fz(0) )

i=1

I, is the grade of membership of z (t) in IV},
The scalars «, (z (t)) are characterized by:

0<a (zZ(t) <1, iotl(z(t)):l (3)

The T-S fuzzy model (2) has strong non-linear
mteractions among its fuzzy rules which complicate the
analysis and the control. ITn order to overcome these
difficulties, the TS fuzzy model can be represented as a set
of uncertain linear systems™. The global state space QcR®
is partitioned into r subspaces, each subspace is defined
as:

1

| ©)

Q, ={Qfo,(2(t))>0

801

Each subspace £ is the union of two subsets:

Q = Lan, )
where
& ={Qlou (2(1)) =1} (®)
and
Gle} :{Q‘ 0<O‘L1(Z(t))<l} )
These subspaces are characterized by:
Ua =2 (10)
e

If the rules i andj can be inferred in the same time
then:

Q Q=9 a1

If the rules i and j can't be inferred in the same time
them
QN =0 (12)

In each subspace the TS fuzzy model (2) can be

o g

(13)

represented as:

%(t) {

Where

At Y o (zt)A,

R;eH,;

B+ 3 o {z(tHB,

Re®y

B (14

A11:A1_A1’ 11:B1_Bl

and JM;is a rule subset containing rules that can be inferred
in the same time as the rule R,. Since

Y o) =1- oy (7(1)

R;eHy

(15)

The TS fuzzy model can be written as:
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(1) =[A; + (1- oy (ZODAA, (2(1)]x(D)

(16)
+[B, + (1 o (z(t)DAB, (z()] u(t)
Where
AA(z(1)) = Y of(zh)A, - A)
R (17
AB(z(t))= ¥ a/(DXB - B)
and
b olz(t)) 18
20 = (o) s

If @ (z (t)) = 1 then the fuzzy system can be
represented by the corresponding linear local model. In
each subspace, the fuzzy model consists of a dominant
nominal system (A, B) and a set of interacting systems
representing the effect of other active rules.

In this study we suppose that the state vector is
measurable.. The fuzzy system can be represented by:

x(0) =R (alAn))x(e)+ Blal=n)u 09
with

A{odz(1)))= A= (1-au (z{t)))Ar ol z(1)))

B (o(2(1))) = B+ (1o ((1))JaBy (a(2(1))) O

We assume that the matrices AA, (e’ (z (1)) and AB,
(¢’ (z (), 1=1,..., r are bounded and their bounds are
known a priori.

AA () [AA (0 ()] <AAI-AAS 20

AB (o (1)) - [AB, ((#(0)]” < AB: -ABY (22)
Those bounds can be computed by:

AAl = max A, A, (23)

AB; =maxB, - B, (24)

R;eT
CONTROLLER DESIGN

We assume that the fuzzy system (1) is locally
controllable, that 15, the pairs (A, B)I=1,2,...1, are
controllable. The basic idea is to design local feedback
controllers that maximize the stability region of each

closed loop local model. The switching controller,
represented in Fig. 1 consists of 1, linear state feedback
controllers linear state feedback controllers that will be
switched from one to another to control the system. The
number of controllers may be different from the number of
rules. The switching controller can be described by:

(1) = S L (a1l (5)
with:
K, =—pB/R (26)
and
Sol()=1 Gle(n)e o1} @D

1=1

K, is the local state feedback gain in subspace € to
be designed. It can be seen that (25)-(27) 1s a linear
combination of 1, linear state feedback controllers. At each
moment, only one of the linear state feedback controllers
is chosen to generate the control signal.

Theorem 1: If there exist symmetric positive defimte
matrix Q € R™ and positive scalars p,;> 0, u* >0, u®>0 and

0 < gy < 1 such that the following algebraic Ricatti Eq.

AJR+RA ~BSR+T =0 (28)

has a sclution P1 = P, where:

N 0.0
/" ]
1, ()
—> ufp) X
[ ]
®
®
u, (1)
_’ -y

Fig. 1: Structure of the switching controller
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5 =p [2_(1_91)M1BJB1B1T +(1_a1){“1AIn +F)113ABABT}

1

(29
T,=Q,+ 1_% AAAA
(30)
then the state feedback control law :
u(t) = —p,BIPx{t) (31)

quadratically stabilizes the fuzzy system (19) for oz
(1)) such that:

o, (z(t)) >ao (32)

Proof: Consider the following Lyapunov function
candidate:

V(6 =x" (t)Px({t) (33)

where P, 1s a symmetric positive defimite matrix. The time
derivative of V (t) along the trajectory of the fuzzy system
is given by:

For simplicity of notation ¢z (t)) and t will be omitted
from matrix and function expressions.
Vit)=x"A{Bx+x"BAx +u'B/Bx +x'PBu
=x"[A +(1-a)AA, | Bx
+ xR A +(1-0)AA, [x
+u'[B+(1-a)aB ] Px
+x"B[ B +(1-a,)AB, Ju
=x"[ A/R+ BA, +(1-0, )(AATR + BAA, ) [x
+x"[K{BP + RBK,
+(1-,)(KTAB[P + RABK, ) [x
V(t)=x"[ AR+ BA, + K[B/E + BBK, [x

+(1-,)x"[AA[P, + BAA, + K/AB[P, + PABK, |x

V(t)=x"[ATR + BA, ~2pPBB[R |x
+(1-0,)x"[AATP, + BAA, + KTABR + PABK, |x
—p(1-a)xR [BIABIT +ABRB] ]Plx

Since for any positive scalar 1y and real matrices Y and 7,
we havel™:

ZYT+YZT <uYYT + Loy (34)

u

It follows that:

1
AATP + BAA, U PP + - AAJAA
1

1
BABT +ABBT <ufB B + EABIABIT

T A 1 =T
AA'E +BAA SRR+ —AAIAA
I

1

1 - _
BART + ABBT <W’BB + - AB AR,
T

Vit)<x’| AR +PA, ~2pRBB/R |x

1, —r. —
+(1-oy )x" |:;..Lf‘P1Pl + “TAAI AA1:|X
1

+p(1-a xR {MIBBIBIT + H}ABITABI}PIX

Since:

aze = l-o =1-09

V(1) <x[ AR + BA, - 2pRBB[P, |x

1 — J—
F(1-0, )% {MAPIPI + EAATAAI

EnnT. L AGTAT
+p,P| U BB +FABI ABI P |x
|

1-g
A
1

V(t)SXT{API +PA + AKITAKI}X
-x'P, [p1 (2 7(1 791))“13]31]3;

-0, )[Mf‘ln + %AETAEI HPIX

803



Asian J. Inform. Tech., 5(8): 800-808, 2006

V(t)<xT(AP +PA, -PSP +T -Q)x

Since:
AP +PA, -PSP +T, =0
Tt vields
V(1)< e ({1 <0 3
Tn each subspace, the command is given by:
u(t)=-pB/Px(t) (36)

In order to maximize the region of stability of each
subregion (¥, the minimal value hat guarantee the
stability is obtained by solving the following minimization
program:

Minimize o,
FL QL Ry b
Suject to P =P >0,Q > 0,p, >0,u" >0,u° >0 (37)

AR +RA ~PSP+T =0

Note that this minimization program has always a
solution gy < 1 since we assume that the local systems are
controllable.

Definition 1: We say that the stability covering condition
1s verified ift

(38)

Lemma 1: The stability covering condition is verified if
there exists, at each moment t, at least one integer k €
{1,2,...,r} such that:
o, (7(1)) > o, (39)
Proof:
vt 3ka, (2(t)) 2 o, > vt 305 [x(t)e

vtag; k(e ol = o =0
1=1
The resolution of the r independent minimization

programs (37) leads to three possible cases as shown in
Fig. 2

804

An(t)
s (1) o ) @ (1)
20
|
K’ L 1
I 3 { @
' K,
5
K, | 1
K,
11 1 L {c
K, ' K, K,
; K, K,

Fig. 2: Possible casas

Case 1: Several orall ¢, = 0,1=1,2,.. 1, Fig. 2a, a local
controller can be used to stabilize the fuzzy system in its
own local sub-region and in adjacent sub-regions. The
number of controllers can be reduced. The number of
controllers is inferior to the number of rules. In Fig. 2a, the
state feedback gain K, is sufficient to control the fuzzy
system.

Case 2: If the number of controllers can't be reduced and
the condition (38) 1s fulfilled then the number of
controllers is equal to the number of rules, Fig. 2b.

Case 3: If the condition (38) is not fulfilled, the global
system may be instable. To solve this problem, we can
add new rules to the model since we know exactly in
which regior, in the state space, we need new ones. Or we
can add new controllers, K, and K, in Fig. 2¢, without
changing the model by using new nominal local systems,
which 13 equivalent to the addition of new rules to the
model.

Let & = ¥, the state subspace associated with the
state feadback K, and t, T=1,2,..., N the i time instant at
which the state meets the boundary of a sub-region (X7, ]
=1,2,....,r. We assume that the state x (t) does not jump at
the transition time T, that is!”

(40)

), i=12,.. N

Lemma 2: The fuzzy system (19) is globally stable if the
transition time instants are finite (N < <) and the stability
covering condition 1s verified.
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Proof: Consider the following piecewise quadratic
Lyapunov function candidate:

VO =SGAR (e @D

where:

1 x(t)e &y

0 otherwize

(42)

G(x(V)=

if 1, 1s the time instant at which the state leaves the
subregion (°, and enters in the subregion (0% then:

V() =x"()Px(T ) = x"(T)Px(t) (43)

v ('c+ 44

1

)= (T)Rx(c! )= x(1)Bx(7)

The local symmetric positive matrices P, 1=
1,2,...r, are determined so as to guarantee the local

stability:

MUPRAO AU
V()T S(Rs(y)

x(t)e &, T/ <t<

:)\‘min(Ql)
;\'rnax(Pi)
i=1,2 .N

1= -1

(35)=

T1+1=

V{t)>0, x(t)#z0 =

V()< V(rf)e_c'(t_ﬁj, T <t <T,

1412

i=12,.,N

Since:

1412

Mo (BICO] V () <R (B ()]

T <t<T

s

It follows that:

(v e e e

Vraa(P)
()

, T <t<t, i=12, N

1

Since the number of transition is finite, N < o then:

_iu(t_tﬁj +
()| =c, [x(m)le 27, teT

At the N® transition (t = T7) the state enters into the
sub region £2°, containing the origin and converges to the
origin at t — e .

805

x(t)e Q. t>1y Hx(t)”%O

t—pes
The fuzzy system 1s globally stable.

Switching strategy: In order to guarantee the global
stability we need to impose restrictions on switching. A
stabilizable switching for a particular controller is to let
switching the switching occurs on a point m state-space
whose Euclidean norm is less than Euclidean norm of the
point-state space when the same controller was used last
time™. The following lemma gives the switching strategy
assuring global stability.

Lemma 3: If the stability covering condition 15 verified
and the switching states are chosen such that:

(45)

(T <[x(x)

where T, is the time instant in which the states enters into
the sub region Q° and T, 1s the next tume mstant in which
the states enters into the same sub region £J°.

Proof: Consider the piecewise quadratic Lyapunov
function candidate given by (41)-(42).

At t = 1, the state enters into the sub region €), we
have:

x(t)| < C x(T e_%(t_r:), tTetet, i=12,...,
(0] = €. x(x) T<t<t

NP (P)
P (B)

N

1

The state leaves the sub region Q) att =1, with:

(e e sl = <o x|

If the state enters into the sub region (X a second
time att = T,., and leaves this region at t = 1., , we have:

HX(Tﬁkﬂ) <G HX(T‘”‘ )H

If the condition (43) is verified than:

()| <[x(w)] = lx(ma ] <cx(wa)l <c fx(w)

If we assume that the transition time instants are
finite (N < o<) then the fuzzy system (19) 15 globally stable,
otherwise if the condition (45) is verified we have:
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<2
cl
= Hx(t)”% 0

t—3en

el <ls(e) < <l | < <ho)

| <[(z)

and the fuzzy system (19) is globally stable.

Simulation example: To show the effectiveness of the
proposed method, we simulate the control of the chaotic
Lorenz system. The control objective is to drive its
chaotic trajectory to the origin. The Lorenz equations are

as Tollows!™:

% (t) —ox, (1) + ox, (1)
X, (1) =] (1) =%, (1) —x, (1) x;(t) (46)
%, (t) x (t)x, (t) —bx, (1)

The nominal values of (o, r, b) are (10,28,8/3) for
chaos to emerge. An exact fuzzy modeling 1s employed to
construct fuzzy models for chaoctic systems. It utilizes the
concept of sector nonlinearity!!. Assume that x; (t) € [—d,
d] then we can have the followmng fuzzy model which
exactly represents the non-linear Eq. under x (t) € [-d,

d].
*  RU:ifx,(t)isabout —d Then %{t) = A;x(t)

*  R%:if x,(t)isabout d Then x(t)= A x(t)

Where
-6 o 0 - o 0
A=lr -1 d|,A=1r -1 d (47)
0 -d -b 0 d -b
and
d=30 (48)

The membership functions, shown m Fig. 3, are
chosen as:

L(th% if —d<x(t)<d

2
if x,(t)<—d (49)
0 if x,(t)>d

F Yolis]
o, 1) 11 o0
A0
-d 0 d Ll
X i
: K,
Fig. 3: Membership functions
t
x(t) 1 if —d<x (t)<d
2d 2
o, (x(t))=1 1.0 if x,(t)>d (50)
0 if x, (t) < d
The input matrices B, and B, are chosen as:
1 00
B =B,=|0 1 0 (1)
0 01

The fuzzy model can be decomposed imto two
subsystems:
s+ Subsystem 1 :

x(t)=[ A +(1-a)AA, |x(t)
+[B,+{1-0,)AB, Ju(t)

-10 10 0 100
A=[28 -1 30 [B=/010
0 30 -2.6667 00 1
0 0 0
AA = (1) (A, -A)=al(t) 0 0 60
0 60 0

AB, =0

s+ Subsystem 2:
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x(t)=[A, +(1-a,)AA, ]x(1)
+[B, +(1-0,)AB, Ju(t)

10 10 0 100
A,=| 28 -1 =30 [B,=|0 1 0
0 30 —26667 001
00 0
AA, = (1)(A, —A,) =d(1) 0 0 =60,
0 60 0

AB, =0

The bounds AA, and AA” are:

0 0 0]
AAI=A,—-A, =0 0 60
0 60 0|
0 0 0]
AAy=A -A,=[0 0 —60
0 60 0
and
AB1 =AB: =0

The values obtained after the resolution of the
minimization programs (37):

¢ Subsystem 1:
Pour Q, =0.3L, Mi =2, p,=5

=0

23710 2.8392 0.5717
P =|2.8392 14.8472 0.0069 |,
0.5717 0.0069 14.6598

-11.8548 -14.1958 -2.8587
K, =|-14.1958 -742360 0.0344
-2.8587  0.0344 -73.2992

*  Subsystem 2:

Q, =0.5L,. Mlzzzs p, =10

a,=0

Fig. 4. The phase trajectory of the controlled lorenz
system

20—

100+

¥ OR\ A b t A

=20
0

or—T—"T—1T T T 1 T 1

Fig. 5: Controlled lorenz system states

1.0808 1.3530 -0.1938
P,=[13530 9.9298 0.0013 |,
-0.1938 0.0013 9.8523

-10.8078 -13.5300  1.9376
K, =]-13.5300 -99.2982 -0.0126
19376  -0.0126 -98.5225

The initial values of states are x (0) = [10 10 10]". The
simulation time is 20s. The control input is activated at t
= 10s. Before the activation of the control the phase
trajectory of the Lorenz system was chaotic. However,
after the activation of the control the phase trajectory is
quickly directed to the origin as shown in Fig. 4 and 5. In
this example the boundary of the two sub-spaces are
determined by o, o, Fig. 3, which means that the chaotic
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system can be controlled using only one state feedback
um=Kxt)oru(t) =Kx (1)

CONCLUSION

In this study a Lyapunov based method has been
proposed to design a fuzzy model based switching
controller for non linear systems. The fuzzy model is
represented as a set of uncertain linear systems. A local
controller 1s designed such that the stability region of the
corresponding local subsystem 13 meaximized. If the
stability covering condition is fulfilled and a suitable
switching strategy is used than the switching controller
has the ability to stabilize the non linear system. The
control of the chaotic Lorenz system has been used
demonstrate the effectiveness of thus approach.
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