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Abstract: The present study describes a comparative study of genetic algorithm and neighbourhood
techmiques used for off-line identification of three phase asynchronous machine parameters. All the methods
are then tested on two distinet machines and the influence of the start time of identification, with reference to
the time of startup of machine, is studied. Results show the superiority of genetic algorithm for low values of

the start time of 1dentification.
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INTRODUCTION

In the few past decades, the important growth in
power electronics, control theory and data processing has
caused mutation in the field of electrical machines. So,
robust, low cost three-phase asynchronous machine has
conguered industrial areas traditionally reserved for direct
current machine. Simultaneously, asynchronous machine
control depends on machine parameters'”. Although
on-line 1dentification appears useful for the enhancement
of the performances of contrcl”; meanwhile, it is
dependent on the imtial values of parameters and it is
concemed only with some parameters (usually rotor
parameters) and for small variations (within 10%)M.
However, off-line identification is essential for simulation
and the correct initialisation of the algorithm of adaptation
of parameters. Tn literature, several methods are advocated
for off-line identification of asynchronous machine
parameters. These methods are either analytical
(determinists)*? or heuristics (approximates )™,

ASYNCHRONOUS MACHINE MODEL

The  mathematical model of  three-phase

asynchronous machine referred to «p axes fixed with the

stator can be expressed by the following equations™:
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where V, 1, @, represent the stator voltage vector,
stator current vector and transformed rotor flux vector,
respectively. T,, T,, w, denote the electromagnetic torque,
load torque and rotor frequency, respectively. T, f, and f,
denote the rotor inertial moment, viscous friction
coefficient and dry friction coefficient, respectively. The
equivalent resistance R, equivalent inductance L, and

rotor time constant T, are related to the machine
parameters as shown below:

. =L /R,.R, =R, +1 /1’ L =L -1>/L  (©

where R, and R, are the stator resistance and rotor
resistance, respectively. L., L. and L represent the stator
self-mductance, rotor self-inductance and magnetizing
inductance, respectively and p 1s the number of pole
pairs. Equations (1-5) are solved by fourth order Runge
Kutta method. Since the rotor {lux carmot be measured in
normal production motors, the behaviour of the system
in term of stator current vector and velocity is
expressed through the transformed rotor flux vector.
Simulation starts with the time of standstill t = O, where
the values of currents, flux, and rotor angular speed are
nil.  Objective function (generally cost function) is
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computed only upwards the time t,. The vector of
machine parameters to be identified 1s: X =[R, L. T, L, f, f;
I.]. The number of simple cage three-phase asynchronous
machine parameters 1s, then, n= 7.

OPTIMISATION TECHNIQUES
GENETIC ALGORITHM (GA)

The main steps of the canonical floating-point-coded

genetic algorithm are reported in the following!™™:

. is

A population of M individuals
generated. Each individual 1s

randomly
composed of
concatenated sub-strings describing the genotypes.
The phenotypes (decision variables) x, are obtained
by decoding the sub-strings.

All the individuals of the population are evaluated by
means of the fitness function [ derived from the
objective function C, as following:

f=1/1+C) @)

¢ The genetic operators are applied:

Selection: Individuals of the old population are selected
and put in the new one, according to a rule that favours
those with higher fitness. The selection can be stochastic
or deterministic.

Crossover: Two randomly selected strings, among those
selected in the previous step, are mated. A position along
one string is again randomly selected and all the alleles
following this position are swapped with those of the
second string. This operation takes place with a defined
probability p..

Mutation: An allele in the strings of the new population
1s randomly selected, according to a defined probability p,,
and 1ts value 1s complemented according to 1.

* A new population 1s created Steps 1 to 3 are
repeated until there 1s no improvement of the best
fitness.

NEIGHBOURHOOD TECHNIQUES

The neighbourhood of a solution is defined by
elementary  transformation.  One
transformation is considered as elementary (or local) if it
does not modify the structure of the solution with which
we applies but shightly.

means of an

855

Our neighbourhood system N is based on the
following stochastic mechanism of visit:

x,=x(1-8) if rand<1/3
X'\ =X, if 1/3<rand <2/3, i=12,....n
xi=x,(148,) if rand>2/3 ®

where, ; denotes the step size of the movement of the ith
parameter, rand is a random number in the range (0, 1).

STOCHASTIC DESCENT (SD)

The principle of stochastic descent consists in
generating one solution x°, neighbour of the current
solution x, according to the neighbourhood system N. If
the cost C(x”) 1s better or equal to C(x), then the solution
x’ is accepted The procedure finishes when no
improvement 1s observed in the wvalue of objective

function.
KANGAROO ALGORITHM (KA)

In the context of one stochastic descent, when
objective function was the same value since a long time,
the algorithm allows the acceptance of one or more
transitions  in the current neighbourhood system
whatever the value of objective function may be; then,
the stochastic descent is restarted!). The number of
iterations without improvement before a jump 1s given by
the below formula:

@)

where p, is the probability of the absence of
configurations better than the current one, at the moment
of jump.

In practice, the formula (9) 1s simplified to:

p, = 0.7card{N), (10)

with: card(N)=3"1.
SIMULATED ANNEALING (SA)

Simulated ammealing 1s an extended version of
stochastic descent that search more reduced cost
configurations by accepting, on a controlled manner, the
configurations that degrade the wvalue of objective
function. So, at every iteration. a mneighbour x’
belonging to N(x) of the current configuration x 1s
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randomly generated. Tf C(x) is better or equal to C(x), then
the solution X’ is systematically accepted. In the opposite
case, x” 18 accepted with the probability:

_ac
p(AC,T)=e T, (11

where K 15 known as the Boltzman constant. This lack of
aggressiveness that 13 made possible avoids the
entrapment m a local mimmum and can provide a globally
optimal solution.

The temperature is controlled by a decreasing
function that defines the cooling scheme:

T(k+1)=aT(k), (12)
with ¢ denotes the temperature coefficient.

Generally, authors reproach simulated anmealing for
having a fixed step length®™ In order to refine
optimisation with the later iterations, the number of
iterations at given temperature 1s chosen lmearly
mcreasing from L, to L, ...

TABU SEARCH (TS)

Close to one stochastic descent, when examining the
neighbourhood of the current solution x, the procedure
can escape local optima by executing the least bad
movement. In order to eliminate the resulting phenomena
of cycling, tabu list is mtroduced (short term memory of a
given size)'. The movements whose the attributes are
similar to those in the tabu list are forbidden during some
mumber of iterations equal to the list length. The rule of
tabu list can be violated if the aspiration criterion 1s
satisfied. We choose the movement sign as attribute:
positive for progress, negative for reverse and nil for
persistence. The improvement of the objective function is
selected as an aspiration criterion.

In the aim to improve the performances of the
method, diversification and intensification strategies are
introduced; diversification procedure of is included within
intensification procedure!”. The intensification procedure
consists 1n applymg the Nelder and Mead method.
Diversification procedure is realised by a long term
memory based on movement frequency; so, objective
function 1s penalised:

" = C(1+af) 13
with F denotes the frequency of the sign of the
movement, a 15 a weight.

RESULTS

The identification is performed in visual C++ 6
compiler runming m 1.7-GH Pentium-based-PC. The
sampling frequency is 2 KHz. Voltage signals in the
range [-10, 10] V are acquired by means of three resistive
voltage dividers, realised with resistors having accuracy

Table 1: Results of parameter identification of machine-1

GA SD KA SA TS
R, (O 9355 8.2 9.708 8.2 8.503
L, (mH) 4546 39 39 39 46.86
8,(ms) 28.59 52.52 24 3541 4749
L, (mH) 254.6 439.9 264 264 424.1
£.107 (Nms) &7 28 37 41 84
£,107° (Nm) 1244 1333 7 1227 379
1107 (Nms?) 1166 999 999 999 836
C 417.7 323 439.7 303.5 3025
Time (5) 448 926 00 56 177

Table 2: Results of parameter identification of machine-2

GA sD KA SA TS
R. (1) 0.614 0.820 0.829 0.828 0.938
L, (mH) 4.648 .088 .088 .088 10.22
&,(ms) 191.1 214 214 214 214.2
L, (mH) 93.32 108.1 108.1 108.1 62.21
£.107° (Nms) 28 11 11 133 11
£,107° (Nm) 525 416 416 5514 754
1,107 (Nms?) 238 2073 2073 2073 3655
C 2007 2040 2040 2041 3113
Time (s) 50 596 39 18 41

equal to 0.1%. Two stator currents are acquired by means
of two Hall transducers which generate voltage signals in
the range [-5,5] V. DC tachometer generates a voltage
proportional to the velocity which, by means of a
calibrated resistive voltage divider, is converted into a
signal in the range [-10,10] V and, then, acquired.

In order to test optimization techniques, we use two
three-phase asynchronous machines:

Machine-1, having the following characteristics: Power
rating P = 0.63kw, supply voltage V, = 380V, nominal
angular speed U= 2900rpm, power factor cosd,= 0.737,
frequency f = 50Hz, number of poles pairs p = 1. The
machine 1s supplied by a reduced balanced system of
sinusoidal voltages Vg = 88 V. The start time of
identification t, = 0.71 s, load torque T = 0. The
preliminary electrical parameters are obtained by classical
tests (using DC step supply): R,, = 8.612 U, L, =392
mH, 1, =257 ms, L,, = 259.2 mH. The step sizes are
selected as: &, = 0.005, 8, = 0.001, &, =0.005, &, =0.001,
8, =0.0001, &, = 0.001, &, = 0.001.

Machine-2, with the characteristics: Power rating
P = 5HP, supply voltage V,= 220 V, nominal angular speed
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Fig. 1: Machmnes outputs. a), b) Machine-1 currents

resulting from identification using stochastic
descent; ¢), d) Machine-2 currents resulting from
genetic algorithm identification.
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U, = 1750rpm, frequency f = 60Hz, number of poles pairs p
= 2. The machme 1s supplied by a balanced system of
sinusoidal voltages of V, = 380 V(peak value). The start
time t, = 0.05 s, load torque T, = 0. Preliminary electrical
parameters are: R, = 0.626 U, L,=13.6mH, T, =321
ms, L, = 72.1 mF. The step sizes are selected as: &, = 0.05,
8, = 0.005, &, =0.001, §, =0.01, & =0.0001, §, = 0.001,
8, =0.001.

As performance criterion, we choose the weighted
absolute cost function:

C= Eka (ial _isal)
j

where 1, 1, 1, 1; and w; dencte the measured variables;

1oy s 1 L and wy denote the variables obtained by
simulation. These quantities are useful for the vector
control. Where the weights are chosen as: k, =1, k, =1
and k= 0.5.

The parameters resulting from the application of
different methods to parameter identification of
machine-1 and machine-2 are reported m Table 1 and 2,
respectively.

For machine-1, the best results, those compromise the
values of objective function and computation time, are
given by simulated amealing and tabu search.
Nevertheless, stochastic descent gives the best cost, but
execution time is very high. The worst results are given by
the genetic algorithm. Electrical parameters obtained by
different techmques are close to those given by the DC
step supply method.

For machine-2, the best results are given by the
genetic algorithm. The worst results are given by the
techmque of stochastic descent. Electrical parameters
obtained by different techniques are far from those given
by the DC step supply method. As the results indicate,
optimisation techniques give advantages over classical
techmques only if the value of the start time of
identification t, 1s low. Experumental and simulated results
obtained with the parameters resulting from the
application of stochastic descent and genetic algorithm
are given n Fig. 1. a, b and ¢, d for machine-1 and
machine-2 respectively. Regarding the

+k, ‘(ibj _isbj)‘ +k, ‘(Wi Wy ) (14)

shiz

discrepancy
between experimental and computed currents of machine-
2, with respect to machine-1, we can conclude that the
obtained parameters of machine-1 are more accurate than
those of machine-2.

More mature conclusion can be carried out taking
into account the fact that asynchronous machine
parameters vary according to the test conditions!'™
thereby, overfitting of machine-2 parameters 1s avoided.
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GENETIC ALGORITHM

It has been observed that small populations exhibit
large fluctuations in both the average and best fitness!™.

When the size of the population increases, the
variability of the results decreases and the choice of
crossover and mutation probabilities become significant.
High values for crossover and mutation probabilities
mcrease the fluctuation of the average fitness and
obstruct the best results to be reproduced. In the other
hand, a low crossover probability causes contracted
search that can be ineffective. While a high mutation
probability produces many mutated strings in the new
population which can alter the selection process of the
algorithm.

The most effective performance of the genetic
algorithm technique seems to be obtained by the
stochastic selectiory, population size M = 100, crossover
probability p, = 0.9 and mutation probability p,, = 0.1.

When the value of the start time t, is low, the inrush
mformation allowed by the stator currents and rotor speed
(persistent excitation) contributes to the enhancement of
the quality of solution, in such a manner that the two
offspring resulting from a crossover have not had only
inherited old information from their parents but a new
information is inserted in the population. From Table 2, it
1s noticeable that the value of the equivalent inductance
1., resulting from the application of genetic algorithm is
clearly distinct from those resulting from the application
of neighbourhood techniques. This 18 due to the
diversification effect of the operator of mutation; which
causes further increasing the value of the fitness function.

The poor mformation allowed by a high value of the
start time t, does not permit genetic algorithm to exhibit
good performances. Possible remedy could be the resort
to the compact genetic algorithm™®. In this case, although
the low sensitivity to initial estimates is approved, but the
value of the fitness function is no longer improved.

STOCHASTIC DESCENT

The algorithm 1s run ten times, the best results are
kept. The performances of the stochastic descent are
dependent on the initial parameters of machine.

KANGAROO ALGORITHM

The results obtained from the application of kangaroo
algorithm are better than those obtained when reiterated
stochastic descents are applied. The jumping mechanism
allows kangaroo algorithm to reduce the execution time,
with respect to stochastic descent, namely for a low value
of the start time t,.

SIMULATED ANNEALING

The number of configurations necessary to determine
the mitial temperature 1s fixed to 30. When a low value 1s
attributed to the temperature coefficient ¢, premature
convergence is observed; while a low number of iterations
at given temperature does not allow Markov chains to be
irreducible. The parameters of the algorithm that give the
best results are the followings: the mitial temperature T, =
10°, final temperature T; = 10 7 limits of the number of
iterations at given temperature L., = 80 and L, = 40 and
temperature coefficient o = 0.9.

Bearing in mind that simulated annealing is a single-
solution based optimisation technique, its transition rule
(Equation 11) is stochastic, thus, the information allowed
by the stator currents and rotor speed is not guaranteed
to be fully exploited by the algorithm. Consequently, the
quality of the solution obtained is less good than that
given by the genetic algorithm. Tt is observed that
simulated annealing, well known by its lateness,
converges faster than the other methods. Furthermore, the
algorithm behaviour appears analogous to that of the
evolutionary strategy. Thus, one can claim that linearly
increasing the number of iterations at given temperature
is a fruitful procedure.

RESULT

It is clear that the size of the tabu list can not exceeds
2; elsewhere, all the movements are forbidden.

The performances of the algorithm are not greatly
affected by the size and length of the tabu list. Bearing in
the mind that the cardinal of the neighbourhood is so
large, the number of procedures of diversification before
an intensification procedure and, especially, the number
of stochastic descents before a procedure of
diversification, that exceeds the value of 5 causes
execution time to dramatically mcreasing. To mamtain the
execution time within reasonable level, a relaxation
procedure 1s adopted. It consists in the restriction of the
number of descents before diversification to 100,
anywhere the resulting costs, the best element among
them is kept. The best results are shown for the list size
and length having both the value 2, diversification weight

a = 0.1 and the number of diversification procedures
before intensification and the descents before
diversification within 5.

In its original version, tabu search was designed to
escape from limit cycles. Being so, with a fixed list size,
tabu  search 1s not well adapted for asynchronous
machine identification. However, with a high start time
ty, the untied pattern of machine characteristics make
the search less effective; meanwhile, the high nonlinearity
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generated by a low value of the start time t; seems out of
the capacity of the algorithm; which makes the adaptive
version its mnatural alternative. Intensification and
diversification strategies contribute to slowing down
the algorithm without noticeable improvement of the
solution quality.

CONCLUSION

Two classes of optimisation techniques, used for
asynchronous machine identification, were described. All
the techmques have proven their numerical stability. The
choice of the parameters of optimisation technicues is not
trivial, but no longer affected by machine parameters. The
selection of the start time of identification t; is crucial for
the performances of different techniques. However, a high
value of the time t,, representing the permanent state of
the machine, yields optimisation techniques to extubit
poor performances. However, a low value of the start time
to, representing the transient regime of the machime, allow
global search technique, 1.e. genetic algorithm, to give
advantage over the basic stochastic descent.
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