M Asian Journal of Information Technology 6 (10): 1015-1019, 2007
We]l

EAL . AT ¥ [SSN: 1682-3915
Online © Medwell Journals, 2007

A Generic Change Propagation Framework to Enhance Service
Provisioning in a Grid Environment

0. Ekabua, Obeten, O. Olugbara Oludayo and O. Adigun Matthew
Department of Computer Sciences,
Centre of Excellence for Mobile e-Services for Development, University of Zululand, South Africa

Abstract: Software evolution has piloted from functions, to modules, to objects, to components and now to
services. There is a high probability that eventually most software capabilities will be delivered and consumed
as services. The basic operation of software evolution is change. Changing services can provide useful
information regarding the quality of services provided But a change can propagate and this can be resolved
by further additional changes. These additional changes can also create further propagations, which require
further changes until no propagation is left. A propagating change is a ripple effect on service provisioning.
In this study, we present a generic change propegation framework to support change automation m a grid
environment. Additionally, we discuss change impact analysis and maintenance that form the basis for this
framework and propose a change impact analysis factor medel to support the framework.

Key words: Change impact analysis, service provisiomng, service maintenance, service oriented architecture,

erid services

INTRODUCTION

Grid architectures are known for providing flutuating
resources, therefore applications that should run in such
environments must account for occurable changes.
These resources range from processing elements,
storage and network resulting from interconnection
of parallel machines, clusters or even workstations.
Amongst other properties of these resources are their
changing characteristics during application execution
(Buissen et al, 2005). Constructing individual, isolated
and dynamic applications that can operate in a distributed
environment where resources must be shared, offers a
greater challenge. Design 1ssues of diversity, adaptation,
data locality, process locality and control locality must be
of paramount interest (Edmonds et al., 2001).

Changing services can give information regarding the
quality of services provided. Change Tmpact Analysis
(CTIA) shows what impact or effect a change to a service
or service provider will have on the system. It determines
the scope of the change and provides a measure of the
services complexity. Tt can be used during service
maintenance to keep the system at a lhugh level of quality,
avoiding degradation of the system or during
development to ensure that quality of the system is
maintained throughout the development process.

Service Oriented Architecture (SOA) provides
different services ranging from middleware to support
service management, data communication, e-healthcare,
e-commerce and e-marketing support. SOA 18 an
architectural style whose goal 13 to achieve loose
coupling among mteracting software agents. A service
15 a unit of work done by a service provider to achieve
the desired end result for a service consumer. Both the
consumer and the provider are roles played by software
agents on behalf of their owners. The result of a service
15 usually a change of state for the consumer, but
can also be a change of state for the provider or for both
(Hao et al, 2003). SOA has also been regarded as
services exposed using the Web service protocol suits
that include service transportation (such as HTTP,
SMTP and FTP), XML messaging (such as XML-RPC,
SOAP and REST), Description (typically
using Web Service Description Language-WSDL, Web
Service Endpomt Language-WSEL, Web Services
Metadata Exchange-WS-MetaData Exchange and Web
Services Dynamic Discovery-WS-Discovery) and Service
Discovery (a common registry of services such as the
UDDI API, Electronic Business XMIL-ebXML, Directory
Services Markup Language-DSMIL) (David and
Lawrence, 2004).

Service

Corresponding Author: Ekabua Obeten, Faculty of Business, Computing and Information Management,
Centre for Systems and Software Engineering, London South Bank Umiversity,
103 Borough Road, London SE1 OAA United Kingdom

1015

Asian J. Inform. Technol., 6 (10): 1015-1019, 2007

Service related software applications play important
roles m human lives, therefore, products that affect
peoples lives must have quality attributes. Good quality
software 1s required and in order to determine the quality
of software, we need methods to measure it. A key point
to emphasis 1s that the quality of a service product may
change over time and web service related applications are
no exception. In the early days of computing, software
costs represented a small percentage of the overall cost of
a computer-based system. Hence, a sizeable error in
estimates of software cost had relatively little impact.
But, today software 1s the most expensive element in
many computer-based systems. Therefore, steps taken to
reduce the cost of software can make the difference
between the profit and loss of a company. So by
determining the quality attributes of software, more
precise, predictable and repeatable control over the
software development process and product will be
achieved (Luciano et al., 2003).

BACKGROUND INFORMATION

Since software capabilities are being delivered and
consumed as services, to improve the quality of software
during development, we need models of the development
process and within the process we need to select and
deploy specific methods and approaches and employ
proper tools and technologies. We need measures of the
characteristics and quality parameters of the software
development process and its stages. We need metrics and
quality models to help ensure that the development
process 1s under control to meet the quality objective of
the product. Data and measurements are the most basic
prerequisites for the improvement and maturity of any
scientific or engineering discipline. Yet, in the discipline
of software engineering, this area 1s perhaps one that has
many critical problems and one that needs concerted
effort for improvement.

The use of measurements, metrics and models in
software development assumes the availability of good
data. Tn fact, the poor quality of data is a large obstacle in
quality improvement. To enhance data accuracy, a good
tracking system for the entire development process must
be m place and the system must address the data
validation issue. Measurements for software projects,
therefore, should be well thought out before being used.
Metrics that are arbitrarily established could be harmful to
the quality improvement effort of a company and there are
numerous examples of this in industry. Each metric used
should be subjected to an exammation of the basic
principles of measurement scale, the operational
definmition, validity and reliability issues should be well
thought out (Kan et al., 1994).

As software industry is rapidly moving towards
maturity, resources have shifted from being devoted to
developing new software systems to making
modifications to evolving software systems: Software
maintenance. A major problem for developers in a
changing environment is that small changes can
propagate through software to cause major unintended
impacts elsewhere. Therefore, software developers need
mechanisms to understand how a change to a software
system will impact the rest of the system. This process 1s
called CIA. Making software changes without
understanding their effects can obviously leads to
unreliable software products. CTA can be used to reduce
the amount of maintenance required and thereby
increasing the reliability of the software, since fewer errors
would have been mntroduced.

Animpact is the effect or impression of one thing on
another. Tmpact can be thought of as the consequence of
a change. Impact Analysis (TA) is used to determine the
scope of a change request as the basis for accurate
resource planmng and scheduling and to conform to
cost/benefit justification. CIA estimates what would be
impacted during service provisioning and related
documentation, if proposed service change (sometimes
due to a fault or maintenance) is made (Pleeger and
Bohner, 1990; Lee, 1998). CIA information can be used for
plamming changes, making changes and tracing through
the effects of changes. Research into CIA has been
concerned mostly with procedural software: Function-
based programs not serviced-based. SOA is all about
services that are found in the real world. CTA is the task
through which service providers can assess the extent
that a change to a single service will have on the rest of
the services. It determines the scope of a change and
provides a measure of the services complexity (Li and
Henry, 1995). CIA can be achieved by directly finding out
the challenges encountered by consumers while receiving
services from their clients-service providers.

GRID AND AGENT

The core unifying concept that underlies Grids and
Agents systems is that of a service. A service is an entity
that provides a capability to a client through a well
defined message exchange (Booth ef al., 2003) or a service
15 a vehicle by which consumer’s need 15 satisfied
according to a negotiated contract, which includes service
level agreement and the function offered In 3rd
Generation Grids, all entities are services since service
interractions are achieved through web service
mechanisms. Although, while every agent 1s considered
a service, not all grid services are necessarily agents.
Therefore, the autonomous action notion is a function of
how agents and grids interoperate.

101e

Asian J. Inform. Technol., 6 (10): 1015-1019, 2007

The main objective of Grids is that of resource
sharing and coordinated problem solving in dynamic,
multi-institutional virtual orgamzations (Foster et al.,
2001). Gnd therefore, provides an infrastructure for
federated resource sharing across trust domains. Grid
primary concern has been the mechanism by which
commumties form and operate. Thus, gnd effort is
devoted to how community standards are represented via
explicit policy and enforcement and how actions and
commitments by community members are specified,
monitored and enforced through implementation.

Agents are autonomous identifiable problem solving
entities with well-defined boundaries and interfaces. They
are situated in a particular environment, designed to fulfil
a specific role and capable of exlubiting a flexible problem
solving behaviour m pursuit of their design objectives.
They need to be both reactive (reacting to changes in
their environment on time) and proactive (taking
mitiatives) (Foster ef al., 2004). Agent and Grid systems
comsist of dynamic and stateful services. Since it is
possible for new services to be created and destroyed
over the system lifetime, the underlying service model for
agents and grids is dynamic (Foster ef af., 2002).

CHANGE PROPAGATION FRAMEWORK

Changes are endermic to software artefacts and the
services provided by these artefacts. When a change 1s
effected in a particular service connected to grid, it is
often difficult to determine the propagation of this service
changes. We therefore present a change propagation
framework shown in Fig. 1 to support change automation
in any grid engineering methodology.

The Service Detector Engine (SDE) contains all
consumer made available set of grid services (s, 5,, . . .,
s,) under utilization. SDE liases with Business Service Bus
(BSB), a concept developed by Component Based
Development and Integration (CBDI) (David and
Lawrence, 2004) and incorporated into our framework to
form Service Architecture (SA) responsible for providing
a bridge between the implementation and the consuming
application, creating a logical view of a set of services,
which are available for use and mvoke by a common
mterface and management architecture. The Activity
Checker (AC) is responsible for the specification of the
constraints that a well-formed service design should
satisfy in order to check whether the applications design
15 in conformance to the main host design. Violation of the
rules governing the activity checker will trigger a
constraint violation event from the Constraint Activator
(CA) to be returned to the Change Propagation
Mechamism (CPM). This informs the Service Repairer (SR)

| [Businsess service bus (BSD) _,‘::w e

L 4

. Service
Constraint .
activator repatr

Fig. 1: Generic change propagation framework

of a triggered event calling for a way of fixing the violated
constraint by performing actions, which change the
application’s design and keeps record of the ripple effect.
The mechamsm Validator (V) 1s responsible for checking
the consistency of the change to the design (through the
AC), which can result in further actions.

There are three major architectural perspectives for
SOA mnamely: Applicaion Architecture, Service
Architecture and Component Architecture and our
frameworl has these incorporated into it. The architecture
has two perspective views: Consumer and Provider. The
salient aspect of the architecture 15 that the consumer of
a service should not be mterested in implementation detail
of a service, but the service provided. This is because the
implementation architecture could vary from provider to
provider, but still deliver the same service. Additionally,
the provider should not be interested m the application
that the service is consumed in, because new unforseen
application will reuse the same set of services. The
consumer’s main interest is in the application architecture
and the services used, but not in the detail of the
component architecture. The interest is in some level of
details in the general business objects that are of mutual
interest, for example, provider and consumer need to share
a view of what 13 a subscription. But the consumer does
not need to know how the service component and
database are implemented. Also, the provider is focused
on the component architecture and the service
architecture, but not on the application architecture.
Again, they both need to understand certain information
about the basic application inorder to be able to set any
sequencing rules including pre and post conditions.

SOA provides the need to be able to manage services
as first order deliverables. The communication key
between the provider and the consumer is service. There
15 the need therefore, for a service provisioning
architecture mn the form of generic framework, that will

1017

Asian J. Inform. Technol., 6 (10): 1015-1019, 2007

ensure that services are not reduced to the status of
interfaces, but have an identity of their own and can be
managed individually and in sets. BSB as shown m our
framework 1s incorporated to meet this requirement by
providing a logical view of the available services for any
business domain. BSB answers such questions as what
services do I need?, what services are available to me?,
what alternative services are available?, what servicecs
will operate together and what services are connected
to me (Hao, 2003). Present framework is generic because
it can be applied to a general service provisiomng
engineering methodologies to enhance monitoring change
propagation. The most important component of the
framework is the Change Propagation Mechanism (CPM),
which 18 represented and mmplemented within the service
provisiomng architecture and the component architecture.
CPM detects any change service due to the triggering
effect generated and validated. CPM notifies the SR of the
ripple effect for immediate action of fixing the service.

FRAMEWORK IMPLICATION

Maintenance has been recognized as the most costly
phase in the software life cycle (Li and Henry, 1995).
Since software has been consumed as services, service
maintenance effort has been estimated to be frequently
more than 50% of the total life cycle cost (Elish and Rine,
2003). This research has the potential to improve service
provisioning to customers, thereby cutting cost during
service delivery. Using change propagation framework
will help to achieve the following:

¢ Understand the nature of the services needed by a
CONSUITIEr.

¢ Estimate the effort devoted to a project.

* Determine the quality of service.

¢ Predict the maintainability of service with respect to
the derived benefits.

* Validate best practices for service providers m a
frequent changing requirement communty.

¢ Provide optimal maintenance solutions.

By identifying potential impacts before malking a
change, the risks associated with embarking on a costly
change can be reduced, because the cost of unexpected
problems generally increases with the lateness of their
discovery. The more a particular change causes other
changes, the higher the cost. Carrying out CIA will allow
an assessment of the cost of the change and help
management to choose between alternative changes. It
will also allow managers and engineers to evaluate the
appropriateness of a proposed modification. If a proposed

change has the possibility of impacting large, disjoint
sections of a service, the change will need to be re-
examined to determine whether a safer change 1s possible
(Foster ef al., 2001).

Maintenance 1s costly, difficult and is not always
clear what the mmpact of any type of change to service will
have across the whole services. CLA shows the maintainer
what the effect of any change will be on the system. This
proposed generic framework offers the potential to
improve the stability and efficiency of SOA and cut the
cost of maintenance.

CHANGE IMPACT ANALYSIS FACTOR
ADAPTATION MODEL (CIAFAM)

When a change of service 1s considered n a system,
1t 18 worthy to identify system components that may be
impacted after such a change. This would enhance the
system to keep runmng perfectly after a change
implementation. A system absorbs a change easily if the
impacted components is of a small mumber. One effective
method to account for changes in services is to perform
CTA and our framework is accessed by the impact model
described. Our main concern is pivoted on how the
system reacts to changes that lead to propagation.

For a given change K mn a service P, we can describe
a set of impacted services as a boolean expression. The
Impact Analysis Factor (IAF) for such hypothetical
change can be given by (Lee, 1998):

IAF (K.P) = A*(~ p) + A

Where, *, +, ~ denotes the usual boolean operators:
conjunction, disjuction and negation, respectively. K = a
given change, P = a given service, A = there is an
association between K and P, p = K is derived from the
change service, A'= There is an occurence of aggregation
link between K and P and IAF = Impact Analysis Factor.
This expression implies that a service in Association (A)
with K and not derived (~ p) from the change service K or
a service that is i Aggregation link (A) with K is
impacted. It 1s important to state that this impact model
only predicts, which services would be impacted if a
change was really made. If a service is really impacted, it
means there is the propensity of propagation in which
case the TAF becomes 1. We concentrate on changes
that have a synthetic impact, therefore, appropriate
measures are based on impact that are dependent on the
static nature of the provisioning system. This implies
that 1mpacts have a likelthooed of propagation
(Chaumum et al., 1999; Kabail ez al., 2001).

1018

Asian J. Inform. Technol., 6 (10): 1015-1019, 2007

CONCLUSION

Impact analysis needs to be adapted to the type of
systems that become increasingly common today, such as
grid-based applications and publish-subscribe systems.
The fact that repositories can be shared amongst several
distinct systems introduces mteroperability dependencies
that impact analysis strategies especially tailored for these
technologies must address in order to be effective. This
study therefore, descibes a generic change propagation
framework for automate the effect of changes in a service
provisioning environment. Additionally, it identifies the
need for CIA technique extensions to
provisioning by the design of CTAFAM.

service

REFERENCES

Booth, D., H. Haas, F. McCabe, E. Newcomer,
M. Champion, C. Ferris and D. Orchard, 2003. Web
Services Architecture. W3C, Working Draft
http:/Ararw w3, org/TR/2003/WD-ws-arch-20030808/,
2003,

Buisson, I, F. andre and I. Pazat, 2005. Dynamic
adaptation for grid computing. Advances m Grid
Computing-EGC, LNCS, Springerlink.

Chaumum, M., H. Kabaili, R. Keller and F. Lustman, 1999.
A change mmpact model for changeability assessment
in object-oriented software systems. Proceedings of
IEEE 31rd Euwropean Conference on Software
Maintenance and Reengineering.

David, 5. and W. Lawrence, 2004. Understanding service-
oriented architecture. NET Architecture Centre.
Microsoft Architect Journal.

Edmonds, T., S. Hodges and A. Hopper, 2001. Pervasive
adaptation for mobile computing. Proceedings of
15th IEEE International Conference on Information
Networking.

Elish, M.O. and D. Rine, 2003. Investigation of metrics for
object oriented design logical stability. Proceedings
of 7th European Conference on Software
Maintenance and Reeng meering, pp: 193-200.

Foster, 1., C. Kesselman and S. Tuecke, 2001. The anatomy
of the grid: Enabling scalable virtual organisations.
Int. I. Supercomput. Applic., 15: 200-222.

Foster, 1., C. Kesselman, I M. Nick and S. Tuecke, 2002.
Grid services for distributed systems integration.
IEEE. Comput., 35: 37-46.

Foster, 1., C. Kesselman and N. Jennings, 2004. Brain
meets brawn: Why grid and agents need each other.
Proceedings of the 3rd International Joint Conference
on Autonomous Agents and Multiagents Systems,
pp: 8-15.

Hao, H., 2003. What 1s service-oriented architecture. CTO
of SoftTouch Information Technology Pty.
webservices xml.com

Kan, S.H., V.R. Basili and L.N. Shapiro, 1994. Software
quality: An overview from the perspective of total
quality management. IBM. Syst. J., 33: 1.

Kabaily, H, R K. Keller and F. Lustian, 2001. A cchesion

as changeability indicators in object-oriented
systems. Proceedings of ITEEE 3th FHuropean
Conference on Software Maintenance and
Reengineering.

Lee, M.L., 1998. Change impact analysis of object-
oriented software. Techmcal Report ISE-TR-99-06,
George Mason University.

Li, W. and S. Henry, 1995. An empirical study of
maintenance activities i two object-oriented
systems. J. Software Maintenance Res. Practice,
7:131-147.

Luciane, B., H. Reiko, T. Sebastian and V. Damel, 2003.
Modeling and wvalidation of service-oriented
architecture: Application Vs. Style. FSEC/FSE.
Helsinki. Finland.

Pleeger, S.L. and S.A. Bohner, 1990. A framework for
software maintenance metrics. IEEE. Transac.
Software Engineering.

1019

