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Abstract: Cost-sensitive learning is popular during the process of classification. Most researches focus on two
costs for building cost-sensitive decision trees, such as, misclassification costs, test costs. In this study, a
novel splitting attributes criterion 15 proposed firstly. And a test strategy combimng discount costs for
decreasing the misclassification cost is presented with missing values in test set after the cost-sensitive
decision tree are constructed with missing values in training sets. Finally, the experimental results show our
method outperform the existed methods in terms of the decrease of misclassification cost.
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INTRODUCTION

Inductive learning techniques have had great
success in building classifiers and classifying test
examples into classes with a high accuracy or low error
rate. Traditionally, inductive learning built classifiers to
minmimize the expected number of errors (also known as the
0/1 loss). However, in many real-world applications,
reducing the misclassification error 1s not the final
objective, since different error can cost quite differently.
Thus type of learning 1s called cost-sensitive learming. For
example, m a binary classification task, the cost of False
Positive (FP) and the cost of False Negative (FN) are often
very different. For instance, in medical analyses, the cost
of FP in which a normal person is regarded as a sick
maybe waist some time and money for the sick. However,
the cost of FN will be more expensive or even pay his life
if asick is considered as a normal, because this will delay
his cure. Turney (2000) surveys a whole range of costs in
cost-sensitive learning, among which two types of costs
are most important: misclassification costs and test costs.
Many precious researches focus on the test cost and

the misclassification cost in Ling et al. (2006), Yang et al.
(2006) and Sheng et al. (2006) and select some attributes
to test with minimizing the total cost. They considered not
only the misclassification cost but also test cost instead
of the right ratio of the classification and expect to
achieve a balance between the test cost and the
misclassification cost. But in their research, the cost-
sensitive decision trees are built based on the principle of
the maximal reduce for the total costs. In real application,
different people has different object for constructing the
cost-sensitive decision tree. For instance, in medical
analysis, the people with more test resources want to care

the minimal decrease of the misclassification while
constructing cost-sensitive decision trees. And the
people with limited resources want to construct cost-
sensitive decision tree with an aim at economical criterion.

In real application, there exist missing values in
datasets. There are two major kinds of missing values
(N1 et al., 2005) one 13 missing, that is to say, the data exist
but 1t 1s missing now; the other 1s absent, namely, there
was not any data origially. To the former, there are many
methods to handle the missing data, such as (Ling ef af.,
2006, Yang et al., 2006). However, some people msist that
1t 18 unnecessary for user to deal with the absent in Zhang
et al. (2005). Hence, it is real as well as difficult to
construct cost-sensitive decision tree with missing values
both in training set and in test set.

In this study, we propose a new splitting attribute
criterion with the aim to decreasing maximally
misclassification cost for building cost-sensitive decision
tree with missing values n datasets. And two kinds of
cost-sensitive decision trees will be bult for the test
examples with different resources. Then a test strategy
taking the discount cost mnto account 1s presented for test
the efficiency of constructed cost-sensitive decision tree
with missing values in test examples. Last of all, some
experiments are designed to compare our method with the
existed algorithms.

More recently, researchers have begun to consider
both test and misclassification costs. The objective is to
minimize the expected total
misclassifications. Turney (2000) analyzed a whole

cost of tests and

variety of costs, such as misclassification costs, test
costs, active learning costs, computation cost, human-
computer mteraction cost, ete., in which, the first two
types of costs are the misclassification costs and the test
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costs. We follow the categorization as mentioned in
Zubek (2003) and give a refined review in category 4 on
classifiers sensitive to both attribute
misclassification costs as follows:

costs and

Classifiers minimizing 0/1 loss: This has been the main
focus of machine learning, from which we mention only
CART and C4.5. These are standard top-down decision
tree algorithms. C4.5 introduced the information gain as a
heuristic for choosing which attribute to measure in each
node. CART uses the GINI criterion. Weiss ef al. (1990)
proposed an algorithm for learning decision rules of a
fixed length for classifications in a medical application;
there are no costs (the goal is to maximize prediction
acouracy).

Classifiers sensitive only to attribute costs: The splitting
criterion of these decision trees combines information
gain and attribute costs m Nunez (1991) and Tan (1993).
These policies are learned from data and their objective 1s
to maximize accuracy (equivalently, to minimize the
expected number of ¢classification errors) and to minimize
expected costs of attributes.

Classifiers sensitive only to misclassification costs: This
problem setting assumes that all data is provided at once
(Domingos, 1999) therefore, there are no costs for
measuring attributes and only misclassification costs
matter. The objective is to minimize the expected
misclassification costs.

Classifiers sensitive to both atiribute costs and
misclassification costs: Some researchers believe that it
15 necessary to consider the misclassification cost and
test cost simultaneously. Under this assumption, the
doctors must make their optimal decisions concerning the
trade-offs between the less test cost and lower
misclassification cost. Some researchers use a simple
strategy to quantify the misclassification cost to be the
same as the test cost (Ling ef af, 2004, 2006, Yang ef al.,
2006) (for example, use dollar as cost unit).

As far as we know, the work considering both
muisclassification and test costs mcludes (Turney, 1995,
Greiner ef al., 2002; Ling et al., 2004, 2006, Yang et al.,
2006; Sheng et al, 2006). In the cost-sensitive learning
problem is cast as a Markov Decision Process (MDP) and
an optimal solution 1s given as a search n a state space
for optimal policies. Greiner ef al. (2002) studied the
theoretical aspects of active learning with test costs using
a PAC learning framework, which models how to use a
budget to collect the relevant information for the real-
world applications with no actual data at beginmng.

Turney (1995) presented a system called ICET, which
uses a genetic algorithm to build a decision tree to
mimmize the total cost of tests and misclassification.
Lmg et al. (2004, 2006) propose a new decision tree
learning program that uses minimum total cost of tests
and misclassifications as the attribute split criterion.
Sheng er al. (2006) 13 an extension of Ling et al. (2004) as
we propose a new lazy decision tree algorithm that builds
different decision trees for different test examples to
utilize as much information in the known attributes as
possible. Yang (2006) propose a naive Bayesian based
cost-sensitive leaming algorithm, called CSNB, which
reduces the total cost of tests and misclassifications.
They also propose a single batch test strategy that tests
several attributes sumultaneously. Ling et af. (2004, 2006),
Yang et al. (2006) and Sheng et al. (2006) proposed a new
method for building and testing decision trees that
minimizes the sum of the misclassification cost and the
test cost. The objective 15 to mimmize the expected total
cost of tests and misclassifications. Both algorithms leam
from data as well. They used a simple strategy to quantify
the misclassification cost to be the same as the test cost
(for example, use dollar as cost unit) and they defined that
total cost = test cost + misclassification cost (Ling et
al., 2004; Yang et al., 2005). However, the unit scales for
different costs are usually various in real-world
applications and it 1s always difficult for people to
quantify these various unit scales of costs into a sole unit
(Qin et al., 2004; Ni et al., 2005a, b). In the medical
diagnosis example, we can’t define the exact cost for some
kind of misclassifications, because if the misclassification
can lead to the death of a patient, how should we define
the cost for this misclassification? The literatures
(Qm et al., 2004; N1 et al., 2005) proposed a cost-sensitive
decision tree that considers two different unit scales for
costs. However, the methods did not care the splitting
criterion.

There exists missing values during the process of
cost-sensitive learning. Sometimes, values are missing
due to unknown reasons or errors and omissions when
data are recorded and transferred. As many statistical and
learning methods cannot deal with missing values
directly, examples with missing values are often deleted.
However, deleting cases can result in the loss of a large
amount of valuable data. Thus, much previous research
(Qin et al., 2007, Zhang et al., 2007) has focused on filling
or imputing the missing values before learning and testing
15 applied to. However, under cost-sensitive learming,
there is no need to impute values of any missing data and
the learning algorithms should make use of only known
values and that missing 1s useful to mmimize the total cost
of tests and misclassifications. There 1s a little research
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that had paid attention on this. In this study, we will talk
about the case in which missing values
encountered both 1n training sets and testing sets.

can be

MATERIALS AND METHODS

There are three processes for cost-sensitive learmng:
selecting splitting attributes criterion, buillding decision
tree, testing the constructed decision tree. We will
separately them as follows.

Selecting the attributes for splitting: There existed all
kinds of splitting criterion to construct decision tree. Such
as, the Gain (in ID3), the Gain Ratio (in C4.5) and minimal
total cost are regarded as the criteria for selecting
attributes for splitting in building decision tree. However,
the methods (for instance, in TD3 or C4.5) only consider
the classification ability for the attribute without taking
the cost into account. On the contrary, the method with
minimal total cost cared the cost without paying more
attention to the classification ability of the attribute. In
our view, we hope to obtain optimal results both on the
classification ability and on cost under the assumption of
the limited resources. So in our strategy, the term
Performance is equal to the return (the Gain Ratio multiply
the total misclassification cost reduction) divided by
the investment (test cost). That is to say, we select the
attribute that it has larger Gamn Ratio, lower test cost. In
addition, it can decrease the misclassification cost sooner.
The method defined in Ni et al (2005) meets our
expectation and the term Performance 1s defined as
follows:

( 2 GainRatio (A, T) _ 1)

Performance(A )=———— -
(TestCost(A,)+1)

x Redu_Mc(A )< W,
(1

Where, GainRatio(A,T) is the Gain Ratio of attribute A,
(Blake and Merz, 1998), TestCost(A,) is the test cost of
attribute A, W, 1s the bias of experts. Redu Mc(A,) 1s
the decrease of misclassification cost brought by the
attribute A,

Redu_Mo(A; )=Mc->" Mc(A, )

i=0

Where, Mc 1s the misclassification cost before testing the

attribute A, Tt an attribute A; has n branches, iMC( A is
1=0
the total misclassification cost after splitting on A,.
For example, in a positive node, the Mc = fp * FP, {p
1s the number of negative examples m the node, FP 1s the

misclassification cost for false positive. On the contrary,
for examples in a negative node, the Mc¢ = fn * FN, fn is
the number of positive examples 1 the node, FN 1s the
misclassification cost for false negative.

So formula (1) is the criterion for selecting attribute
for splitting to build a decision tree. We select the
attribute A, when Performance(A )= max(Performance(A))),
118 from 1 to m. m 1s the number of attributes.

However, there exist at least several defaults for the
method in formula (1):

s If the values of GamnRatio(A,_ T) of all attributes in
formula (1) are relatively small. All attributes will
receive very small Performance as the values of
Q0= T) ] s very close to 0. As a result, the costs
of the attributes tend to be ignored which leaves
obscuration to assess the attributes.

s Ifall attributes have relatively large cost values, such
as, test cost, misclassification cost, the classification
ability of attributes tend to be ignored too because
the numerator of formula (1) is far less than the
denominator.

(sznRahn(A),T) 1) and

(TestCost(A,)+1)

Redu Mc(A). In real application, different users
have  different opinion for the  weight
GanRato(4;, T}
betweenu and Redu Mec(A;). For
(TestCost(A)+1)

mstance, the test examples with more test resources

Redu Mec(4;) than

¢ There are same weight for

want to more care the
( 2GamRat10(A,,"D _1)

(TestCost(A, 1)

decrease the misclassification costs during the tests.
On the contrary, the test examples with himited test

resources  only  consider the values  of
( 2Ga1nRamn(Aj,T)

as they always want to maximal

L2777 -1 without paying attention to the
(TestCost(A, »1)

values of Redu Mec(A) with am aim to economical
test their attributes.

Owr solution in solving the first two issues is to
normalize the GamnRatio(A, T)’s values for all attributes to
between 0 and 1.

To solve the third problem, we employ harmonic

i GanRatio(4,;, T)
mean method to weight between (27D and
(TestCost(A )1+1)

Redu Mc(A), that is to say, So, Performance will be
( 2GamRamn(A,,T) _1)

(TestCost(A)+1)
Redu Mc(A,). In our algorithm, the harmonic mean, which

based on the trade-off between and
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allows us to specify the desired trade-off between
GainRatio(4;,T)

L V| Redu Mc(A)) through a coefficient
(TestCost{A,)+1)

¢ £ (0, + <), 15 employed to balance the requirements of
different test examples with different test resources.
Mathworld defines the average of ratios between the
Harmonic mean (H) and the data pomnts as unity, 1.e., for
n numbers X, X,.....X,.

IcHE
niax;

( ZGanRatio(A;,T) _1)

And for and Redu Mc(A)), we get

(TestCost(A,)+1)

(2GainRatiu(A1,T) _ )
(TestCost(A, )+1) ’

1

1 1 . 1

25 (20T 1) Redu Mc(A))
(TestCost(A, )+1)

( 2GamRatm(A,,T) _1)
(TestCost(A;)+1)
( 2GamRatm(Ai,T) _1)

(TestCost(A, y+1)

Redu Mc{A,))=

)

% Redu_Me(A,)

+ Redu Mc(A,)

i (2GainRat1a(A),T) _1) i
Assuming ~% "/ has a weight of 1 and
(TestCost(A,)+1)

Redu Me(A;) has a weight of ¢ (o0 £ (0, + <)), we define
the Rank(1,)) as the weighted harmomc mean between

ainRatio(4;,T)
(27T D) and Redu Mc(A)) as follows:
(TestCost(A,)+1)

)X (2Ga1nRatm(Aj,T) _1)
" (TestCost(A,)+1)
(ZGamRanu(Ai,T) _1)
(TestCost(A, )+1)
(2)

{0+ DRedu Ml A
Performance(A,) =

Redu Mc(A )+ o

It 1s umportant to take into account the differences of
the order of magnitude and/or range of data between

GanRatio(4;, T)
(2"—-1) and Redu Mc(A,) . Generally, the result
(TestCost(A,)+1)
15 usually prone to the data with bigger magnitude
(Yang et al., 2006). To avoid this bias, the values of
GanRatio(4;, T)
(Zh—'l) and Redu Mc(A)
(TestCost{A)+1)
transformed or normalized between 0 and 1 before it 1s
used to compute ‘Performance’ in this study.

need to be

Building tree: We assume that the training data may
consist of missing values (whose values cannot be
obtained). And we also assume a static cost structure
where the cost is not a function of time or cases. We
consider discrete attribute and binary class labels;
extensions to other cases can also be made. We assume
that FP 1s the cost of one false positive example and FIN 1s
the cost of one false negative example. Our algorithm uses
a new splitting criterion based on formula (2) on traming
data, instead of minimal entropy (Quinlan, 1993) or the
minimal total costs (Ling et al., 2005), to buld decision
trees. Ate ach step, rather than choosing an attribute that
mimmizes the entropy (as m C4.5) or the mimmal total
costs (Ling et al., 2004, 2006), our algorithm chooses an
attribute that has a trade-off between maximal decrease of
misclassification and selecting the most economical
attribute for the split. If a number of the attributes’
Performance is equal, the criterion to select test attribute
should be follow m priority order:

»  The bigger Redu Mg,
»  The bigger test cost.

For our goal 13 to mimmize the misclassification cost.
Then, similar to C4.5, our algorithm chooses a locally
optimal attribute without backtracking. Thus the resulting
tree may not be globally optimal. However, the efficiency
of the tree-building algorithm is generally high. A
concrete example is given later in this study.

A fine point of our new algorithm is the way it deals
with attributes with missing values in the training set.
In many variations of decision tree algorithms, the
unknown value is treated as an ordinary value. However,
Zhang et al. (2003) experimental demonstrated all kinds
methods dealing with missing values for constructing
cost-sensitive decision tree and made a conclusion that
the best methods would be the internal node strategy in
(Ling et al., 2004, 2006) in which the missing values will be
handled by internal nodes without be imputed. Hence, we
will employ the internal nodes method to dealing with
missing values in the training examples. That to say, the
strategy is that all unknown values (we use 7) are treated
as a special value: no leaf or sub-tree will be bult for
examples with the ? value. This 1s because 1t 13 unrealistic
to assume the unknown values would be as useful for
classification as the known values. In addition, when a
test example 1s stopped at an attribute whose value 1s
unknown, if the attribute has a ? branch, it 1s impossible
to decide whether the test should be performed by the
tree. Therefore, the examples with unknown attribute
values are not grouped together as a leaf, or built into a
sub-tree; instead, they are gathered inside the node that
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represents that attribute. We then calculate the ratio of
the positive and negative examples in the mtermnal node.
See the example given later for more details. Our second
test strategy will incorporate such ratios in making
predictions.

Another important point is how to stop to build tree.
In the process of classify a case with a decision tree, the
layer will be visited may be different if the resources
provided is different. The more resource for a case, the
more layers it will visit. For allowing a decision tree that
can fit for all kinds of needs, the condition of stopping
building tree is similar to the C4.5. That is to say, when
one of the following two conditions is satisfied, the
process of buillding tree will be stopped.

*  All the cases in one node are positive or negative;
*  All the attributes are run out of.

Because different people have different resources, so
we build tree with all attributes.

The next problem is how to label a node when it has
both positive and negative examples. In traditional
decision tree algorithms, the majority class is used to label
the leaf node. In our case, as the decision tree is used to
make predictions to minimize the misclassification cost
within give resources. That 1s, at each leaf, the algorithm
labels the leaf as either positive or negative (in a binary
decision case) by minimizing the misclassification cost.
Suppose that there 13 a node, P denotes the node 1s
positive and N denotes the node 1s negative. The criterion
1s as follows:

P if p*FN=>n*FP
N if p*FN<n*FP

Where, p 1s the number of the positive case m the node,
while n is the number of negative case.

Finally, the attribute at the top or root of the tree is
likely the attribute which is with zero (or small) test cost,
more decrease of the misclassification cost and strongly
classification ability without missing values.

Tests strategy with discount cost: After the decision tree
1s built and the all the nodes are labeled, the next
mnteresting question is how this tree can be used to deal
with test examples and pay the minimal misclassification
cost confined with any test costs. From the criterion of
selecting splitting attribute, we can see that the splitting
attribute mn the parent node may has the highest test cost
than the splitting attribute in the children node of the
decision tree.

During the process of constructing test strategies,
some problem must be considered in advanced:

+  Limited resources.
»  Discount cost.
»  Missing values mn test set.

Common costs (Tumey, 1995) (in this study, we
regard it as discount costs) appear frequently in testing.
In medical analysis, we always allow the cost of a test to
be conditional on the choice of prior tests. Specifically,
we consider the case where a group of tests shares a
discount cost. For example, a set of blood tests shares the
discount cost of collecting blood from the patient. This
discount cost is charged only once, when the decision is
made to do the first blood test. There 18 no charge for
collecting blood for the second blood test, since we may
use the blood that was collected for the first blood test.
Thus the cost of a test in this group is conditional on
whether another member of the group has already been
chosen.

For an example, m Sheng et al. (2006) it will takes
3102.9 to test the term Thal or term Thalach respectively.
However, the other one will only take $1 if one of the two
terms is tested. There are two forms for discount cost in
our method. One means that there exists discount cost
while these two terms are tested together, such as in
Fig. 1. The two tests will be tested together and can enjoy
the discount costs. On the other case, it also receives
discount costs while these two terms are tested m a
period time. For instance, the test can enjoy discount cost
even 1if there are some others tests between these two
tests, such as in Fig. 2.

Inreal application, there always exists the problem of
test resources. Some test examples present more test
resources while the others contain limited one. Obviously,
the test always can reaches to the leaf node for a test
example with more resources. The cost-sensitive decision
tree will be constructed with ¢ > 1 in formula (2) for
selecting splitting attributes. And if a test example reaches
a leaf node, its label will be the label of the leaf node.
However, a cost-sensitive decision tree will be built with
o <1 in formula (2) for the cases with a limited resources,
a case with limited resources does not reach a leaf node
and will stop in an intern node. Obviously, there is equal

w and Redu Mc(A;) while
(TestCost(A )+1)

¢ = 1. On the other hand, there are missing values in test
example, the test maybe stop in an interm node while
encountering a missing value. For these two cases,
we will introduce a method how to label an mtern
node and compute the cost of misclassification based on
Limng et al. (2004).

weight between
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Thalach + Thal
(51029 + $1)

Fig. 1: Example of discount cost

Thalach ($102.9)

Fig. 2: Example of discount cost

A6 (230:102)

N

(107:0) (11:100)

N{0:1) | P (2:0)

Fig. 3: Example for calculating itern node

Figure 3 is a part of a decision tree. And the test case
will stop at node A6, it will distribute into four branches
with a ratio 107/108/6/111. The first two branches make a
correct prediction with no misclassification cost. The last
branch makes a wrong prediction, with a misclassification
cost of 800. The third branch encounters another
unknown value, so it 1s distributed further down m the
tree, with a ratio of 1/1/2/2. The first two branches make a
wrong prediction (costing 800), while the next two
branches make a correct prediction With the total
number of 332 (230+102) training examples n the tree
building, the weighted cost for this test example is thus:
800 x(1+1+111)332 =272.3. And the test cost of attribute
A6 18 0 as 1t hasn’t been tested. We will label the class of
this test as the method for the intern node m this study.
That to say, 230 =800 >102x600, the class label will be
regarded as positive.

RESULTS AND DISCUSSION

In this study, we empirically evaluate our algorithm
with real-world datasets to show its effectiveness. We
choose two real-world datasets, listed m Table 1, from the

Table 1: Datasets used in experiments

Instances Attributes Classes (N/P)
Tic-tac-toe 958 9 332/626
Mushroom 8124 21 4208/3916

UCI (Blake and Merz, 1998). Each dataset 1s split into two
parts: the training set (60%) and the test set (40%). These
datasets are chosen because they have some discrete
attributes, popular m use and have a reascnable number
of examples. The numerical attributes 1 datasets are
discretized at first using a minimal entropy method
(Faayad and Trani, 1993). There are no missing values in
these four datasets; the missing values in the conditional
attributes are missed at random under the missing rates of
10, 20, 30, 40, 50 and 60%, respectively. To assign Test
Cost, we randomly select a cost value that satisfied the
constramnt of falling mto [1, 100] for each attribute. The
costs for test are generated at the beginmng of each
imputation. The misclassification cost is set to 600/800
(600 for false positive and 800 for false negative).

For comparison, we construct four CTS decision
trees with different splitting criterion to demonstrate the
efficiency of our splitting criteria. One CTS decision tree
with the splitting criteria of gain ration is denoted as GR,
the method with the mimmal total cost 1s referred to MTC,
the method with maximal Performance in Ni et al. (2005) 1s
regarded as PMO05 and our method is regarded as PM. The
experimental results of the effect for different test costs
will be presented in study.

Experiments with different missing values: Tn this study,
we evaluate the performances of different algorithms on
datasets under different levels of missing rates. For each
experiment, we do not consider the resources of test
example, 1.e., each test example has enough test cost to be
tested. The test cost 15 900 and 2100, respectively for
dataset Tic-tac-toe and Mushroom. Figure 4 and 5 provide
detailed results from these two datasets, where the x-axis
represents the missing rate and the y-axis is the
Misclassification Costs.

From Fig. 4 and 5, we can see that with the increase
of the missing rate, all methods suffer from increase in
misclassification cost, because more missing values have
been introduced and the model generated from the data
has been corrupted. When comparing with the different
algorithms, we find that PM 1s the best among these
methods in terms of misclassification cost at different
missing rate. The experimental results also demonstrate
that the method with Formula (2) and the algorithm PMOS
in N1 et al. (2005) for spitting attributes 1s best than the
naive methods, such as maximal grain ratio method or the
minimal total cost method under the assumption of
without the limited resources.
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Fig. 4: Results for Tic-tac-toe at different missing rate
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Fig. 5: Results for Mushroom at different missing rate

Experiments with various imputation costs: In the
previous study, we did not fix the test costs and we
assumed each attribute will be tested with the enough test
resources. However, n real applications, there exists a
limited resources, such test cost. In this subsection, we
will use all kinds of test cost levels to test the efficiency
of our method companng with the other two methods. The
experimental results of dataset Tic-tac-toe and Mushroom
are shown in Fig. 6 and 7, for missing rate 20%. The
domain of test cost is between 100 and 600 in Fig. 6 and 7,
the results of MC 18 presented in y-axis. The results show
our PM algorithm perform better than the other three
algorithms in the terms of limited test costs.

Second, with the sum of the resources increasing, we
conclude from the experiments that the misclassification
cost 1s decreasing. But at the same time, we noted that the
slope is different when the sum of resource is different.
That is to say, the speed of the decreasing is not the
same. And the speed 1s sooner when the sum of the
resource 1s fewer. When the sum of the resource 1s larger

6507 - PM05—-PM

- GR ¥ MTIC

Misclassification costs
F o A LA
S W &
T £ %

350

200

100 200 300 400 500 600
Test costs

Fig. 6: Results for Tic-tac-toe at different imputation costs
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600

100 200 300 400 500 600
Test costs

Fig. 7: Results for Mushroom at different imputation costs

than a certain value, the decrease of misclassification cost
is very little. So in reality application, we can put up with
some advices. For example, we will advise a patient to test
the next attribute if the test can decrease the
misclassification cost a lot by paying a little test cost. On
the contrary, we will advise a patient not to do the next
test. If we want to give a piece of advice to a patient, we
must know the next test cost and the misclassification
cost after the next test. The test cost 1s static, so we can
get it directly.

CONCLUSION

In this study, a novel splitting criterion in which the
principle has a trade-off between the classification ability
and costs, then we have proposed separately a decision
tree learmng algorithm to mimmize the misclassification
cost with any given resources and a limited test resource
by involving two kinds of cost scales. We have also
considered possible discount on tests performed
groups of attributes. In addition, we have put forward a
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piece of advice according to the decision tree. Finally, we
have experimentally evaluated the proposed approach and
demonstrated it is efficient and promising.

In our future research, we plan to apply our
algorithms to medical data with real costs. We also plan to
mcorporate other types of costs mn our decision tree
learning and test strategies.
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