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Abstract: Monitoring of fermentation processes is of great importance to ensure their safe operation and
consistent high quality products. Unfortunately, some of the difficulties such as the lack of on-line sensors for
mndication of fermentation performance, the presence of sigmficant nonlinear behaviour and difficulties in
designing accurate mechamstic models limit our ability to provide adequate momtoring. The amount of time and
cost involved in developing detailed fundamental models combined with the commercial pressure to reduce the
time-to-marlket requires different modelling, monitoring and control techniques. The local modelling
methodology can be used in the design of soft-sensors. In this study, we propose a Local Model Network
(LMN) with improved learming scheme for the bioprocess momtoring. The validity of the approach 1s illustrated
on a gluconic acid fermentation process for the design of a soft-sensor to provide an estimation of the product
concentration.
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INTRODUCTION

Bioprocess technology is currently employed for the
production of several fermentation derived products such
as pharmaceuticals and food products. Because of the
complex nature of micro orgamsm’s growth and product
formation in batch and fed-batch cultures, the supervision
of bioprocesses continues to present a challenge to
chemical engineers. Current researchers to momitoring
fermentation processes have focused on the use of either
fundamental mathematical models with state estimation or
knowledge-based models.

At the heart of bioprocess supervision 1s the ability
to monitor the bioprocess progress
physicochemical environment (pH, temperature, pressure,
dissolved oxygen) and process dynamics (feed rates,

m terms of

carbon dioxide evolution, oxygen uptake rate). However,
the inability to measure some key variables represents an
obstacle for the direct implementation of supervision
strategies. To overcome this obstacle, the so-called
"Soft-sensors” have been proposed and used for a
variety of purposes. "Soft sensors" are mathematical
algorithms that can provide estimations of some
unmeasured variables from measured ones (Isermann,
1997; 1998, Shimizu, 1996). For example, in the case of
fermentation systems, variables such as temperature,
dissolved oxygen, pH, agitator power input and flow rates

which are recorded frequently can be used to infer
unmeasured of difficult to measure quantities such
biomass, substrate or product concentrations.

Different techniques have been proposed until now
for on-line estimation m bioreactors. Extensive reviews on
this subject have been presented. These techmques are
always based on either an empirical or first-principles
models of the process. The bioprocesses are highly
nonlinear and operate within a wide range of operating
regimes. Typically, during fermentation, the microbial
species continuously undergo physiological changes
contributing to highly nonlinear dynamics of the process.
Many researchers define these physiological changes as
physiclogical states, phases, or operating regimes of the
microbial population. In every phase, the cell population
expresses stable characteristics and behaves in a fairly
linear manner. Attempting to model or control the process
using global approach would be a challenging task and
only lead to suboptimal results.

A better approach would be to decompose the
process mto its phases and model as well as control each
phase locally. In this study, the nonlinear dynamics
modelling methodology is adopted for the purposes of
bioprocess supervision. This objective can be achieved
by using either a data-driven models or local models
derived from fiust principles. From the different data-
driven empirical models, the multi modelling strategy
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represents an effective way to model the bioprocess. As
a data-driven empirical models, we introduce a Local
Model Network (LMN) based on decomposition of the
process into its operating phases. The overall model
consists of multiple linear local models of the outputs
from the local models. Phase identification for model
development 1s performed using fuzzy clustering.

The rest of this study 1s organized as follows. Firstly,
we give an overview of the local modelling strategy.
Secondly, the whole process of structure identification is
described. Then, the hybrid learning algorithm for tumung
the parameters efficiently 1s described. Experimental
results concerning a simulated process illustrate the
validity of the proposed approach. Finally,
concluding remarks are given in the last section

s0me

LOCAL MODEL NETWORKS

The local model networks are hybrid models wlich
allow the easy mtegration of a pniori knowledge, as well as
the ability to learn from available data to model the
underlying complex nonlinear relationships. The basic
philosophy behind this modelling strategy 1s to partition
the mput domain mto multiple subsets. Such local
representations include the modular networks and fuzzy
systems (Johansen and Foss, 1997, Takagi and Sugeno,
1985). The locality property can be used to make models
interpretable  and  computationally efficient.
Assume we have a complex nonlinear Multi-Tnput and
Single-Output MISO) system where x = [x, x,, ....%x, ]’ € X
cH" 15 the vector of input variables and y ey <®™ 15 the

more

vector of output variables.
In the multi-input and multi-output LMN network
givenin Fig. 1 the overall output 1s defined as:

§(x) =2/ X0, L
where I=1,2,...candi=1,2... . n
o} :ﬁexp{—(xl _Cil)z/(oﬂ)z} (2)

Here, we assume that ¢; €X; 0, 0 and f, € ¥ where X;
and ¥ are the variation domains of the input x, and output
v, respectively. The local linear models are defined as

f=1£(x06)=[1x"]-g (3)

If the and standard deviations of the
validity functions are known, the estimation of the local

centres
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Fig. 1. Architecture of the Local Model Network (LMN)

linear model parameters 1s 8,a linear optimisation problem.
The parameters can therefore be evaluated by employing
linear least squares optimisation algorithms. In the
following subsection, we consider the learning of
parameters of the local models for a given model structure,
i.e., we are estimating 6 for an a priori given set of ¢, ©.

HYBRID LEARNING SCHEME

The learning scheme is a two stage algorithm. Firstly,
coarse model that roughly approximates the
underlying input-output relationship is determined by a
clustering process. Secondly, parameter optumnisation
procedure is performed for a better tuning of the initial
structure. In principle, once an appropriate structure is
identified, the learmning task can be accomplished by
any suitable trammng algorithm such as the standard
Back-Propagation Algorithm (BPA). However, because of
slow convergence speed of pure BPA, m the following a
more efficient training method, namely the combination of
gradient descent with least squares optimisation
procedure will be used.

a

Structure identification by clustering: Assume that we
have N mput-output samples, a regression matrix and an
output matrix are constructed

X:[X1="'=XN]T= YZ[YP"':YN]T (4)

Let these vectors be partitioned into clusters, each
represented by the centre vector. ¢Denote by U = We
R™"the partition matrix of the elements u,representing the
membership degrees of the data vectors x, k=1, ..., N).
The fuzzy clustering algorithms search for a partition
matrix and cluster centers such that the objective function
J, 18 minimized

&)

1=

uid®(x,.¢)

.
I

1
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subject to

Yu, =1 ©6)

For (k=1,-,N). The parameter m controls the
fuzziness of the clusters (typically m»=2). The function
d(x,,c;) measures the distance between the data vector
and the centre of the ith cluster. One of the most efficient
clustering algorithms, able to take account different
shapes of the clusters, 1s the Gustafson-Kessel (G-K)
algorithm, extending the c-means algorithm (Bezdel:, 1981)
by wusing scaled metric norm for the distance
(Gustafson and Kessel, 1979)

T

d*(x.¢) =(x, —¢) M(x, —¢) ()
Where is a positive definite matrix adjusted to the

actual shape of the sth cluster. The matrix 13 defined as
follows:

M, = gfdet(F )F™ (8)
Where F, is the cluster covariance matrix
N m
F :Zkzluik(xkici)(xk *Cl)T (9)

1 EN um
k=1 "1k
For each input , using the Lagrangian multiplier

method, for m > I, local mimmum of Eq. 8 was
demonstrated if and only if

1

Y = T )
] 10
=1 djk
DI

o = SetiTn an
P

The algorithm iterates until ‘Ut —utt|<g for two

succeeding iterations. The special case of G-K algorithm
1s developed by Bezdek (1981). In c-means, the scattering
matrix 15 fixed to unity (M =1) and 1s not adapted during
the learning. Tt means that the distances are calculated in

a simple way as 42 (x.0) =(x, —¢; )T(xk -¢ )

Parameter optimisation procedure: The parameters
obtained by the identification procedure can be
optimized or fine tuned by a variant of gradient
descent optimisation techniques. This i1s aclieved by
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an iterative two stage forward-bacloward optimisation
algorithm. In the forward stage, with the validity
functions bemng constant, the local models f;i=1, .., ¢
are 1dentified by solving a least squares problem.
Then, in the backward stage, the functional models
are fixed and the parameters of the validity
functions ¢;, ¢, 1 =1--¢1=1---n are updated by an
effective nonlinear Gradient-Descent (GD) optumisation
techmque, which requires the computation of the
derivatives of the objective function to be mimmized with
respect to the parameters ¢,and oy,

The optimisation algorithm uses a variable step

learning rates. Given a set, D:{(XP,dp )}N such that
p=1

KeXcR . d" e YR the objective 15 to find the
system (XP) i the form of (1), such that the Sum of

Squared Error (SSE) function

E=— (12)

2

Y (y-a¢)

=Pel

is minimized. The problem is reduced to the adjustment of
the f; and the mean ¢ apd variance ¢ of the model’s
validity functions, so that the SSE is minimized.

Now it can be seen that the network output ¥ and
hence E, depends on cand oonly through ¢ where

y.£.b and P, are represented by the following
equations:
H
§=2tw, (13
1=1
H
w; =(4,/b) andb:2¢1 14
1=1
Derivatives of E w.r.t cyand oy
OE _ OE 0, _OE 0y 89, 15)
acll aq)l acﬂ ay aq)l acll
OB _0F 99 _[9E 95 | o (16)
a‘511 a¢'1 aGﬂ a)’\/ a¢1 aGﬂ

Finally, the results of the chain rules are written as
follows:
JdE

g117A-{2'¢1-(:’(1_Ci1 )/(Gil)z} u
B o,V
-abat-a)fmy] a9

with A =(5 - )-(£,-$)/b
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Estimation of the local models: As stated previously, the
coefficients of the local models can be estimated using the
least squares method on the prediction targets ¥. Once an
mitial structure is defined (1.e. and) and local models
as in (3), so the leaming problem is a straightforward
application of linear regression techniques to find
parameters 6 which best fit the data. Staking the data into
matrices, we get the following regression model:

Y =09 +¢ (19)

where I' 1s the design matrix, the rows of which are
defined by

o =[0I ] oo[1]] (O

So that the design matrix I, vector of output measurement
Y and errors €_are

The standard least squares criterion for this estimation
problem is

1

J(B):ﬁ(Y—FB)T(Y—FG) 1)

and the Moore-Penrose pseudo inverse of I', I'is used to
estimate the weights:

éLS ="y = (FTF)_l y (22)

The computation of the pseudo inverse uses the
Singular Value Decomposition (SVD) to decompose any
Nxp matrix , such that I' = USP” and the pseudo inverse
of T"1s:

r*=vsu’

Then, the solution of the regression problem (6) can be
calculated:

b = VSTUTY (23)

In this way, the learning is global because it is based
on assumption that all the parameters _would be learned
in a single regression operation and the local models
cooperate to solve the regression task. An alternative to
global learning which is less prone to these

233

disadvantages is to locally estimate the parameters of
each of the local models as defined m Eq 3
independently. This is achieved using a set of local
estimation criteria for the ith local model

Ji(el):%(Y—Flel)Tw(Y—riei) (24)
where 1 =1, ..., ¢. W, 1s an NxN diagonal weighting matrix
defined as:

W, = diag(0,(x, ).+ 9, (%) (25)

Now, the criteria J, is minimized by the locally
Weighted Least Squares (WLS3) estimate of the local
model parameters vector. In matrix terms, now we have

(26)
éWLS,l = TWFI)_IWTWY: i=1---¢

where I} is a N=(n+1)submatrix of I' corresponding to the
ith local model.

SIMULATION STUDIES

In this subsection, the effectiveness of the proposed
approach is demonstrated through the modelling of a
gluconic acid batch fermentation bioprocess. This
process was chosen since a nonlinear state-space model
which could be used to simulate it is available in the
literature (Shimizu, 1996, Takagi and Sugeno, 1985). The
modelling is based on decomposition of the process into
its different operating regimes. The model consists of
multiple linear models, one for each regime and its output
is the interpolation of the outputs from the local models.
Regime identification is performed automatically by fuzzy
clustering. The model is described as:

dx, X, X, X
1 :“
dt Kok Eox, XX,
dx
S oy 2% go082K x,
dt K, +x, ?
dx
—3 K X,
dt '
(27)

% = _ium KX R _1_011'\[]“&
dt Y, UK x K, T x, Lt X,
dx .
T oK, (% -x,) - 0.00v, T
dt K. +x,

LM XXX

Y, KX, + K%, +%,X,
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Table 1: Parameters for process model

Ky £ v

180h~! 12.80 litre 83mgUOD™ ' h™!
K, K, Ky

0.64 bt 0.0055 g litre™! 2.5 g litre™!

¥y K e

0.375 UOD mg™" 0.890 UOD me"! 0.39 !

Table 2: Tnitial conditions and noise level used in simulations

Process Cell Glucose Noise
number concentration concentration level (%0)
1 0.4 40 2
2 0.4 50 6
3 0.5 40 3
4 0.5 50 5
5 0.43 47 3
2
o - -
4, W
- 01
als g
o 307
2 17 =
wn =207
éo.s 1 S04
S} T T T T , o T T T y 1
0 2 4 6 8 10 0 2 4 6 g8 10
Time (h) Time (h)
: 401 107 = Glucose (gL
i —Do(gL™
=30 8 EL)
o
g | 6
EEU 4l
101 2]
0 T T T T 1 4] __-_ -—_I__—_-l'____l 1
0 2 4 6 8 10 g 2 4 6 8 10
Time (h) Time ¢h)

Fig. 2. A process sunulation characterized by three
phases. Phase 1. High DO and glucose
concentration. Phase 2: Low DO and glucose
concentration is decreasing. Phase 3: High DO
concentration and low glucose concentration

where

x,is the biomass concentration, UOD mL ™

x,is the gluconolactine concentration, g L™";

x,is the gluconic acid concentration, g 1.7';

x,is the glucose concentration, g L™";

x;is the dissolved oxygen concentration, g .7

x4s the concentration of oxygen mn liquid m equilibrium

with gas phase, g 1. (the value 0.00685 g ™" is used).
The parameters values for this nominal model are

shown in Table 1. To create simulated data that reflects

different operating conditions, mitial states of cell and

glucose concentrations were chosen from the intervals

(0.4 0.5) and (40 50) Table 2 shows initial conditions as

well as noise levels under which these simulations were

performed. Note that the model 1s used here only to

simulate the process and provide access to variables,

which would normally be momtored online. For most

bioprocesses, such models do not exist, which is the

reason the type of work describe here 1s necessary.
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(a) Custening for process
Phase 2

{Phase 1

71— Data
1 -— Model

3 4 Tilfle (h)6 7 10
Fig. 3: (a) Identification of process phases (b) Estimation
of the product concentration

For the gluconic acid batch fermentation process and
according to Foss et al (1993), the fermentation consists
in three phases. At the beginmng of the batch, there 1s a
relatively high concentration of both DO and glucose. In
the mtermediate phase, there 15 a relatively low
concentration of DO and concentration of glucose 1s
decreasing. During the final phase, there is a low glucose
concentration and high DO concentration. Thus, the fuzzy
clustering is used to cluster the data into ¢ = 3 clusters.
The two variables, glucose and DO are used as inputs.

Figure 2 shows a simulation of the gluconic acid
fermentation process. Figure 3 gives fuzzy clustering
results for the first three processes in Table II (used as
traming data). As expected, the smooth transitions
identified by clustering are process dependent due to the
different imtial conditions and noise levels. It 1s worth to
notice that the relationships between glucose and DO
concentration are in accordance with those identified by
expert knowledge (Takagi and Sugeno, 1985).

Figure 3(a) gives phase prediction of the Local Model
Network (LMN) for process 1. With each new time
sample of glucose and DO concentrations, the LMN
predicts accurately to what degree the fermentation is in
phase 1, Z or 3.

In order to demonstrate how the LMN can be used as
a “soft sensor” enabling the product estimation, the
product concentration 1s considered as the output. Figure
3(b) shows the estimated product for the process 1 when
the local models are estimated by a global least squares.

CONCLUSION

A new hybrid optimisation approach for Local Model
Networks (LMN) was applied to the identification of the
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global dynamics of bioprocesses. The technique is based
on the decomposition of the process into its operating
regimes by a well sounded clustering algorithm and
multi-linear models. The method was effectively applied to
the estimation of product for multiple simulations on a
gluconic acid batch fermentation performed at various
initial conditions and noise level.

REFERENCES

Bezdek, 1.C., 1981. Pattern Recognition with Fuzzy
Objective Function, Plenum Press, New York.

Foss, B.A., T.A. Johansen, A.V. Sorensen, 1993
Nonlinear predictive control using local models
applied to a batch process, Control Eng. Practice,
3: 389-3%9.

Gustafson, D.E. and W.C. Kessel, 1979. Fuzzy clustering
with a fuzzy covariance matrix, in Proc. TEEE. CDC.
San Diago, CA, pp: 761-766.

235

Isermann, R., 1997. Supervision, fault-detection and
fault-diagnosis methods. An introduction, Control
Eng. Practice, 5: 639-652.

Tohansen, T.A., B.A. Foss, 1997. Operating regime based
process modelling and identification, Computers
chem., Eng., 21: 159-176.

Rolf Isermann, 1998. On Fuzzy Logic Applications

for Automatic Control, Supervision and Fault

Diagnosis, TEEE. Trans. Syst., Man, Cybem.,
28 221-235.

Shimizu, K., 1996. A tutorial review on bioprocess
systems engineermng, Comput. Chem. Eng.,
20: 915-941.

Takagi, T. and M. Sugeno, 1985 Fuzzy identification
of systems and its applications to modeling

and control, TEEE. Trans. Sys., Man, Cybern.,
15:116-132.



