Nelcllwen Asian Journal of Information Technology 6 (6): 681-684, 2007
n n a

© Medwell Journals, 2007

Collaborative Software Architecture

"Deepak Laxmi Narasimha and M. Y. Sanavullah
"Vinayaka Missions University, Periya Seeragapadi, Salem-636308, Tamil Nadu, India
*Department of EEE, KSR College of Technology, Trichengode-637209, Tamil Nadu, India

Abstract: Modern software architecture becomes more and more complex as the number of properties, features
and the requirements are mcreasing. Software application developer requires to know a number of concerns like
functional and non-functional properties of the application during the application development process. Here
an attempt is made to develop a software architecture using four different software engineering methodologies
namely object, agent, aspect and component on a common platform. Studies show that traditional software
engineering methods like Object Oriented Software Engineering (OOSE), Agent Based Software Engmeering
(ABSE) and Component Based Software Engineering (CBSE) are not efficient enough for the development of
large enterprise application. Therefore, a new method i.e., Aspect Oriented Software Engineering (AQSE)
combining all the above four software engineering methods has been proposed in the study. AOSE has been
found to be useful to remove the concerns associated with the other three software engineering methods.
Further aspects in AOSE allows software engineering properties to move from one model to another through
weaving. A methodology is proposed to develop an advanced ASPECT-JZEE platform and model based
on modification of T2EE and ETB component model. Thus, the combination of these 4 software engineering
methods results i collaborative software architecture 1.e., Advanced Aspect-Java 2 Enterprise Edition (AD

ASPECT-J2EE).

Key words: OOSE, ABSE, CBSE, AOSE, EJB, IZEF, design patterns, AD aspect J2ZEE

INTRODUCTION

Researchers focus on one method of software
development. They try to remove the drawbacks from the
mndividual methods only. Recently researchers realize the
application of integrating the software engneering
methodologies. Of late there have been many works
relating to convergence of the software engineering
methods and techniques. The convergence of software
engineering 18 one area where more work needs to be
done. The framework evaluation and performance analysis
is another area to evaluate the above work. Keeping in
view of both the requirements, research has been carried
out to combine four existing software engineering
methods in a frameworl. The collaborative environment,
model and frameworlk promises to provide the application
of all the 4 software engineering methodologies and
techmques.

In this study, research is also being carried out to
evaluate a J2EE Presentation Tier design patterns for
analyzing the software architecture. Aspects help in

achieving high modularity, security and manageability

through clear separation of concerns in component
models. J2EE and ETB component based model are widely

acceptable platform for enterprise application, but study
shows that there are number of concerns (functional
and non-functional properties) which are tangled and
mixed up during the coding and execution phase. This
gives wefficient results m final software application.
Therefore, these concerns are required to be separated.
Aspect and agent technique help m removing these
concerns and allows to add new properties into the
system. Aspect works on divide and rule policy, whereby
business logic and technical properties are separated at
first and weaved at later stages. Thus, it decomposes the
system into modules and later composes to form
application. There are large numbers of software are
available in the market. The complexity associated with
the software is also very high, because each application
requires specific code and programmer needs to write the
code each time, to develop the application. Component
Based Software Development (CBSD) using EIB, Java
Beans and CORBA is a solution in this field, but they
have also showed their inefficiency. Researchers have
found that if the aspects are mtroduced or weaved mto
the object, agent or component software methods
separately to remove a number of concerns from the
application development process.

Corresponding Author:
Tamil Nadu, India

Deepak Laxmi Narasimha, Vinayaka Missions University, Periya Seeragapadi, Salem-636308,

Asian J. Inform. Tech., 6 (6): 681-684, 2007

Proposed system specifies how aspect helps in
obtaiming clear separation of concerns, achieving higher
modularity, distribution and easy plug-in and plug-out
facility during run tunme. Aspects allow new agent
properties like communication, interaction, autonomy and
adaptation to be added mto the system. A methodology
15 proposed to develop an advanced Aspect-JZEE
platform and model based on modification of J2EE and
EIB component model.

Concerns in object oriented software development:
Hachani and Bardou (2002), Janzen and Volder (2004)
have discussed the problems associated with object
oriented software development. They proposed different
methods to handle this problems
programming codes and design patterns. Unfortunately
these papers do not provide any concrete solution for

or concerns in

effective handling of separation of concerns m object-
oriented software development.

Concerns in agent based software development:
Kolp et al. (2001) have examined the various concerns
assoclated with Agent and Multi Agent Systems
(MAS). Krutisch et al (2003), Kulesza et al. (2004),
Garcia (2002) and Trilnik et al. (2002) have emphasized
on agent-component, aspect-agent
architecture, respectively to deal with these concerns in
MAS. Decker et al. (1996) and Iglesias ef al. (1998)
describe the failure of MAS to achieve a common
goal

and agent-aspect

Concerns in component based software development:
Concerns mn component based software development are
specified in numerous studies. Mehta et al (2000) and
Aoyama (1998) have emphasized on a common taxonomy
and definition for all the components and the component
life cycle. Aspects in CBSD based system are studied by
Chavez et al. (2004). They have used MDA with reference
to CORBA to combine application architecture, platform
and framework.

Concerns separation using aspect oriented software
engineering: Grundy has specified life cycle and phases
of component and specified the adjustment to be made in
component to accommodate aspects. AOSD and Aspect]
have discussed the Aspect] programming to develop
enterprise applications.
unsuccessful to bring out the best of aspect and
component in application development context. These

However, this study again

study do not address many concerns.

682

Inference drawn from literature survey: The detailed
study clearly demonstrate that there 1s a lack of one
software architecture supporting and incorporating all
the four software engineering methodologies.

MATERIALS AND METHODS

The aim of the study is to combine all the four
software engineering methodologies in a common

platform as shown in Fig. 1. Following steps are mvolved.

Design for agent-component

Design for agent-aspect

Design for agent-object

Design for aspect-component

Common CBSD (T2EE and EJB based application)
Figure 1 illustrates the proposed method and
principle.

Method: Collaborative usage of the four software

engineering methodologies as shown in Fig. 1 and
Table 1.

Aspect Object

il

Component
Middleware
v
Distributed
v

Application

Fig. 1: Collaborative software architecture

Table 1: Properties and application features that are expected to obtain n
the final platform

Aspect Agent Object Component
Cross-cutting Adaptability Modularity Distributed services
Metadata Mobility Overloading Reusable

Tntroduce Communication Polymorphism Prefabricate component
Point cuts Tnteraction Tnheritance Highly adaptable

Join point Encapsulation

Advice Abstraction
Object+agent+aspect+component == AD Aspect J2EE

AspecttI2EE=>Aspect-J2EE Programming language

Asian J. Inform. Tech., 6 (6): 681-684, 2007

Table 2: J2EE presentation Tier design pattern implementation using aspectJ2EE

Presentation tier

Coupling Cohesion Code size Manageability

Pattern Before (%) After (%) Before (%0) After (%) Before (%) After (%9) Before (°0) After (%)
Intercepting filter 52 50 60 65 38 29 43 51(18)
Context object 53 sl 60 64 42 37 46 41 (-9)
Front controller 34 34 41 50 46 34 35 A1 (200
Application controller 54 50 43 49 35 45 54 A6 (-1T)
View helper 45 39 47 40 34 35 32 23 (-35)
Composite view 34 34 47 50 35 30 37 45 (20)
Dispatcher view 61 55 35 46 49 35 38 24 (-30)
Service to worker 50 46 35 45 47 40 42 52Q16)

J2EE presentation tier design pattern implementation and analysis using aspectJ2EE

RESULTS AND DISCUSSION

Table 2 illustrates the application of using
collaborative architecture, framework and model 1.e. AD
Aspect]2EE as compared to J2EE. This 18 demonstrated
by implementation of J2EE Presentation Tier Design
Patterns using Aspect]ZEE Language. The I2EE design
patterns are examined using quantitative and qualitative
tools for coupling,
manageability.

Results shows that some J2EE design patterns are
highly beneficial, other are lesser and least beneficial,
while remaming show no change and negative impact of
the software architecture used maximum (51-70%):
composite view. Minimum (1-49%): Intercepting filter,

cohesion, code size and

composite view and service to worker. No change (0% or
-ve result): Application controller, context object, view
helper and dispatcher view.

J2EE presentation tier design pattern analysis using
aspectl2EE: Table 2 shows the behavior of various J2ZEE
design patterns in collaborative AD Aspect J2EE
environment. The table shows the comparisons before
and after the implementation of I2EE design patterns
using Aspect J2EE Language.

Aspect oriented software engineering is still in the
primary stage. New properties and features are being
developed and added with every new version The
software requirements are very ligh and demanding.
Software industry can not wait for the new versions and
updates. Hence, a new collaborative architecture is
needed which provide the application of all the modemn
software engineering methods, properties and features. It
must address all necessary requirements of a software
application and must not be complex at the same time.
Further, there are many applications where Agents are
required for specific mtelligence and for knowledge,

interaction, adaptability —and autonomy. These

requirements are not fulfilled by I2EE or Aspect] software,
because this software is not developed to handle such
applications. Their usages are limited. While AD Aspect-
J2EE 18 developed to
requirements. Designs principles use heterogeneous
design patterns and style to adopt the various
components into the system.

accommodate the above

CONCLUSION

+ EIB based component platform are highly beneficial
as a result of mtroduction of Aspect and Agent. The
heterogeneous application development usmg this
platform help programmers to develop the enterprise
application in areas beyond the traditional object
oriented and based software
development.

¢ This Framework allows large number of Agent-
Component (AC) to easy plug in into the EIB and

I2EE based platform.

component

» The research being carried out to study J2EE based

design patterns at presentation Tier level.

» Results show that higher maintainability,
reusability, software evolution and modularity
among others are achievable using this techniques
and framework.

REFERENCES

Aoyama, M., 1998. New age of software development:

How component-based software engineering
changes the way of software development.
International Workshop on Component-Based

Software Engineering. Kyoto, Japan.
AspectTHome http://aspect].org/
Aspect-Oriented Software Development, http://aosd.net.
Chavez, C., 2004, A Model-Driven Approach to
AspectOriented Design. PhD .Thesis, PUC-Rio.

Asian J. Inform. Tech., 6 (6): 681-684, 2007

Decker, K., K. Sycara and M. Williamson, 1996.
Matchmaking and Brokering, International
Conference on Multi-Agent Systems (ICMAS).

Hacham, O. and D. Bardou, 2002. Using aspect-criented
programming for design patterns implementation.
Proceeding Workshop Reuse in Object-Oriented
Information Systems Design.

Iglesias, C.A., M. Garyjo, J.C. Gonzalez and I.R. Velasco,
1998. Analysis and Design of Multi-Agent
Systems Using MAS-CommonKADS, M.P Singh,
A Rao, M.J. Wooldridge, (Ed.), Intelligent Agent
IV(ATAL'97), LNAI 1365, Springer- Verlag, Berlin,
Germany, pp: 314-327.

Janzen, D. and K.ID. Volder, 2004. Programming With
Crosscutting Effective Views. In Proc. 18th Eur.
Conf. Object-Ortented Programming (ECOOP),
pp: 195-218.

Kolp, M., P. Giorgini and T. Mylopoulos, 2001. A Goal-
Based Orgamnizational Perspective on Multi-Agents
Architectures, (ATAL), Seattle, USA.

684

Krutisch, R., P. Meier and M. Wirsing, 2003. The Agent
Component Approach, Combining Agents and
Components.

Kulesza, U, A. Garcia and C. Lucena, 2004, Generating
Aspect Oriented Agent Architectures. Proceedings
of the 3rd Workshop on FEarly Aspects, 3rd

Aspect-Oriented
Software Development, Lancaster, UK.

Mehta N.R., N. Medvidovic and S. Phadke, 2000. Towards
a Taxonomy of Software Comnectors. Twenty two
International Conference on Software Engineering
(ICSE), Limerick, Ireland.

Sun-Java 2 Platform, Enterprise Edition and JavaBeans

International Conference on

Architecture, http://java.sun.com/j2ee/.

Sun Microsystems: Enterprise JavaBeans Specification.,
WWW. SN, Com.

Trilmk, F., A Diaz and Marcelo Campo, 2002.
Smartweaver: An agent-based approach for aspect-
oriented development. ICSE., pp: 716.

