M Asian Journal of Information Technology 6 (7). 825-833, 2007
We]l

EAL . AT ¥ [SSN: 1682-3915
Online © Medwell Journals, 2007

Lingu to Java Translator with UUAG Compiler Construction Tool

Heru Suhartanto, Jimmy Bong and Ade Azurat
Faculty of Computer Science, Universitas Indonesia, Kampus Ul Depok 16424, Indonesia

Abstract: This study reports

our experience in developing Lingu to Java translator based on Attribute

Grammar. Lingu is a new specification language to represents reliable system. The specification can be verified
by a theorem prover and then transform into Java which will be ready to be compiled and implement. Various
compiler construction tools such as TNJAG, CUP and JavaCup are studied and used in the development
process. The translator manage to transform the Lingu specifications into Java and we identified that the
Attribute Grammar constructions tools is the most suitable tool compared to others on almost all of the
comparison aspects such as parsing methods, parsing tables, error handling, code structure, modularity,

adaptability and the file management

Key words: Lingu, attribute grammar, compiler construction tools, Java translator, UUAG, CUP

INTRODUCTION

There are many compiler construction tools available.
The goal is to simplify the process of creating a compiler.
Programmers do not need to know the complexity of
compiler construction process, such as building a parsing
table. The details of how compiler does the job are
managed by these tools and usually hidden from the
programmers’ point of view. The only thing that a
programmer needs when building a compiler is basic
knowledge of programming and how to represent a
language.

The most well known compiler construction tools is
YACC (Yet Another Compiler- Compiler) (Johnson, 1979).
It is not the first compiler-compiler ever built but it has
been a role model for most modern compiler-compilers.
Yacc takes a grammar written in Backus-Naur Form (BNF)
(Naur, 1963) notation and generates a parser for it. The
generated output is a code for the parser in the C
programming language. Many variations of Yacc have
been developed. CUP (Hudson ef al.,, 1999) and JavaCC
(Viswanadha and Sanlkar, 2004) are two examples of
compiler-compiler that are similar to Yacc, but use Java
programming language instead of C.

Since then, there are many compiler-compiler tools
developed. There is a list of some freeware compiler
construction tools given by Heng (2005). Utrecht
University also builds a compiler-compiler tools which
focus on attribute grammar system called UUAGI
(Swiestra and Azero, 1998). Using Haskell programming
language, that offers powerful abstraction and typing
mechanisms, UUAG is said to bring a new approach of
compiler construction. UUAG provides libraries to
support compiler construction since attribute grammar is

used to particularly define semantics. Parser combinator
can be used to assist parser construction. Some functions
are also available to help scanning inputs and passing
them to the parser. And pretty printing is useful for
formatting text-based output as the output of the
compiler.

We have experiences in construction MuPL to
Tava translators using CUP (Suhartanto and Bong, 2006)
and Lingu to Java using JavaCC (Suhartanto et al.,
2006). However, we found some disadvantages using
CUP and JavaCC during the processes, for example the
process depended on the generation of parsing tables,
both CUP and JavaCC will halt after seeing a parsing error
hence one needs to manually fix the problem and both
have low level of modularity. This motivated us to use
UUAG as an alternative approach. In this study, we
show the process of building a translator for a
language called Lingu into a Java programming language
with UTUAG and identify how TUJAG differs with the
other tools.

TRANSLATOR FROM LINGU TO JAVA

The translator that tranforms TLingu into Tava
programming language is a part of LinguSQT (Suhartanto
et al., 2006). LinguSQL is an Integrated Development
Environment (IDE) for verifying and transforming Lingu
scripts. Tt takes a Lingu script and the associated
validation script and reduces them to a set of verification
conditions. The validity of these conditions imply the
correctness of the main script with respect to its
specification. After these conditions are proven valid,
LinguSQL will transform the main script into a concrete
code.

Corresponding Author: Heru Suhartanto, Faculty of Computer Science, Universitas Indonesia, Kampus UT Depok 16424, Indonesia

Asian J. Inform. Tech., 6 (7): 825-833, 2007

LinguSQL consists of 3 different engines. The first is
transformation engine for transforming Lingu seripts into
concrete codes. The second is verification engine for
reducing a scripts specification into a set of mathematical
formulas (which are called verification conditions above).
These formulas will then be verified using a theorem
prover (HOL). And the last 1s testing engine for executing
the test scenarios specified in the given validation script
and compare the results to the scripts
specification. This is done using a dummy database

induced

generated by the engine. Finally, the result will be brought
to the user representing its validity value.

Lingu is a lightweight language to program data
transformations on database (Prasetya ef af., 2005). Even
though the language is small, Lingu provides enough
expressiveness to program a large class of useful data
transformations. Lingu embraces validation and testing
as an integral part of the programming. This 1s reflected
by integrating validation scripts mside Lingu. But Lingu
is unexecutable. Therefore, a Lingu script needs to be
translated into a concrete executable program. To
translate Lingu scripts into programming languages,
UUAG 1s taken as an approach to build the translator.
Java is the initial choice for the target language. Tn the
next section, the construction process is partially shown.
The details are discussed m Timmy (2006).

DEFINING DATA STRUCTURE IN UUAG

In UUAG, the keyword DATA can be used to help
defining the data structure that keeps the significant
information from the input file. When it is compiled using
TUUAG compiler, it will generate a data-type definition in
Haskell. To initially define the data structure, the grammar
can be used as a basis. Each production in the grammar 1s
given a definition for a certain data type. Below is given
an example of a single production rule to form Lingu
program.

Program —+TypeDeclaration * ClassDeclarationt+ (1)

From the production, we know that a program
consists of a number of type declarations and one or more
class declarations. The information gives us a lead on
how to describe the data structure to store the mformation
of a Lingu programwhich is as follows:

DATA Program
| Program typedecls : TypeDeclList
classes : ClassList

826

The code above gives us a definition of Lingu
program. It states that a Lingu program has two
components: Typedecls and classes, both represents a
group of type declarations and a group of class
declarations, respectively. The type TypeDeclList and
ClassList are the types that we will yet define, but it s
common to use Haskell list to contain the multiple
elements.

UUAG provides TYPE keyword to make aliases for
types. Sometimes it is more convenient to give aliases to
certain complex types for the sake of clanty. For the
implementation of the translator, we use TYPE for naming
types of lists. TypeDeclList and ClassList are the
examples of types defined using aliasing. Both types are
the aliases for [TypeDecl] and [Class], respectively.

TYPE TypeDeclList = [TypeDecl]
TYPE ClassList = [Class]

After the data structures have been constructed for
every aspect of the Lingu language, the next step 1s to
define the parser.

BUILDING THE LINGU PARSER

We use parser combinator to build the parser. It 1s
provided in the UUAG package and easier to use rather
than to program the parser from scratch using Haskell
programming. Tt is a quite powerful tool to build a parser
m a Haskell parser
composition. Parser combinator has a restriction. It does
not allow left-recursion in the grammar’s productions.

environment which allows

Even though it can take ambiguous grammars but such
grammars should be avoided for the sake of clarity and
efficient parsing. These restrictions are exactly similar to
LL grammars. Using (1), we show a parser definition for
Lingu program as a conjugation of 2 smaller parser, which
are the parser for a group of type declarations and another
group of classes definitions.

pProgram :: Parser T oken Program
pProgram = Program_Program
<$> pTypeDeclList
<*= pClassList
The parser pProgram wuses 2 parsers for its
defimtion. It does not need to define specifically of how
it should parse type declarations and Lingu classes.
pProgram only states that a Lingu program is mainly

composed by 2 major components, 1.e., type declarations

Asian J. Inform. Tech., 6 (7): 825-833, 2007

and classes in specific order. How the Lingu type
declaration and class are structured 1s handled by more
specific parsers, in this case: pTypeDecllist and
pClassList. Program Program 15 the comstructor for
Program datatype. Tt is generated from the data structure
that has been defined previously usmg UUAG.
Program Program takes two arguments that will be
resulted from pTypeDeclList and pClassList as Program
has been declared to have two components of the types
TypeDeclList and ClassList, respectively.

The parser definitions for TypeDeclList and
ClassList are given as follows:

pTypeDeclList :: Parser Token TypeDeclList
pTypeDecllist = pList pTypeDecl

pClassList :: Parser Token ClassList
pClassList = pList] pClass

Both defimtions above take a collection of
components and store them in Haskell list. plist and
pListl denote that the parser can take consecutive
components, where pList allows no such component to
occur while pListl insists on having at least one
occurrence of the expected component. PTypeDecl is a
parser for a single Lingu type declaration and pClass 1s for
a single Lingu class.

pTypeDecl :: Parser Token TypeDecl
pTypeDecl = TypeDecl TypeDecl
<$ pKey "type"
<*> pComd
<* pSpec ’=’
<*= pTyTypeDecl
pClass :: Parser Token Class
pClass = Class Class
<$ pKey "class"
<*= pConid
<*> pParens_pCommas pParam
<* pOCurly
<*> pList pMethod
<*= plList pValidation
<* pCCurly

Apart from the ones used in the defimitions above,
there are other library functions of parser combinator
which will not be discussed here. The defimtions are
presented to show how we can compose a big/complex
parser from some smaller ones, just as we write it in BNF-
style. After the parser for Lingu is completed, we define
the semantics to process the information acquired from
the parsing.

827

DEFINING SEMANTICS IN UUAG

The keyword SEM is used to define semantics in
UUAG. Haskell programming language 1s used to describe
the details of the semantic actions. In building a
translator, the final result is another programming code.
To help the formatting of the output, pretty printing
library m UUAG 1s used. It provides some functions to
simplify textual formatting. But before that, the attributes
must be declared first. Since UUAG uses the attribute
grammar concept (Knuth, 1968), semantic meanings are
defined using attributes. The keyword ATTR declares
attributes for each node that we defined previously as
data types.

For example, consider the code fragment below.

ATTR Program [|| lg : PP_Doc]
ATTR TypeDecl [| |lg: PP_Doc]
ATTR Class [|| 1g: PP_Doc |

ATTR TypeDeclList[|| lgs: PP_Docs |
ATTR ClassList[| | 1gs: PP_Docs |

SEM Program
| Program lhs.lg = (vlist. insert vsep "" $ @type
decls.1gs)
>-< text ""
>-< (vlist. insert vsep "" § @classes.lgs)
SEM TypeDecl

| TypeDecl lhs 1g = text "public class"
>#< text [@name

>-< pp_braces @type.lg

SEM Class
| Class 1hs.1g = text "public class"
>H< text ([@name
>-<pp_braces (dbm_decl
»-< dbm_1mit @name
>-< vlist @methods.lgs)
{

dbm_decl = text "private DBManager dbm;"

dbm_init name = text "public”
>H< text name
=|<text "()"
>-<pp_braces (text "tlus.dbm = new DBManager
(M'lingusgly"),"
>-< text "this.dbm.comect();")

}

SEM TypeDeclList
| Cons lhs.lgs = @hdlg : @tl.1gs
| Nil Ths.Igs =[]

Asian J. Inform. Tech., 6 (7): 825-833, 2007

SEM ClassList
| Cons lhs.lgs = (@hd.lg : @tl1gs
| N1l lhs.1gs =]

The attributes g and lgs are variables to store the
semantic results. They are defined as synthesized
attributes, which means their values are calculated from
their children’s attributes. The type PP Doc 1s the type
used for pretty printing. The attribute lg of Program
composes the values from the attributes of its children:
typedecls.lgs classes.lgs. The functions and
operators that are used to mampulate the values are
available in the UUAG’s pretty printing library. For the
types of Haskell lists (e.g TypeDeclList and ClassList),
eachprovides two kinds of constructors, 1.e. Cons for non-
empty list that has two elements hd (head) and t (tail) and
Nil for empty list. As the top most node, the attribute of
Program will give the final translation result. The PP Doc
variable 13 printed out to a file and gives the Java source
code

Figure 1 describs the main translation scheme, a lingu
file named “berkas.lingu” will be transformed into its

and

Code 1. Example of Lingu file

Tava codes. The following Codel example shows an
example of Lingu code which is translated into Java

Code 2.
public class i
LA A java
{}
berkas.lingu public class
B ;
r B.java
ea=.. / At g
typeB= /
class X public class
X X java
classY
'\ {2}
\ public class
Y Yjava
{}

Fig. 1: Main translation scheme

Type registration table =Record

{|ID . 8tring;
Name 11 8tring;
Sex :: Integer;
Category :: Integer;

Study programme :: String; |}

Type answer form table =Record

{ 1D 11 8tring;
Name . 8tring;
SheetCode 11 8tring;
Answer . String; |}

type SETdb =Dbase

{| SubmitTab 1 Table AnswerFormTable;
MasterTab :: Table RegistrationTable;
UnknownAFormTab :: Table AnswerFormTable;
DoubleAFormTab :: Table AnswerFormTable; |}

class SETutility (d::SETdb) {

method filterUnknown(SubmitTab :: Table AnswerFormTable,
MasterTab :: Table RegistrationTable,
UnknownAFormTab :: Table AnswerFormTable

10
ids, okids :: Table {| ID :: String; |};
do
{
ids ;= findAll s<-d. SubmitTab where T found s.ID,s.Name;
insertAll i<-ids,r=-d. MasterT ab where 1.ID—r.ID to okids;
delete ids where ids.ID in okids.ID;

insertAlls<-d.SubmitTab, i <-ids where s.ID=—1.ID to d.UnknownAFormTab;

}

method filterDouble(i :: Integer) :: ()
do
{

828

Asian J. Inform. Tech., 6 (7): 825-833, 2007

Contimie: Code 1

ids = findAll s<-d.SubmitTab, r<-d.SubmitTab
where s.ID=—r.ID /s < r found s.ID;
insertAll s<--d.SubmitTab, i<-ids where s.ID=i.ID to d. DoubleAFormTab;
}
H

Code 2: Translation result of Code 1

Answer form table. java:

public class AnswerFormTable
{private String ID ;

public void setTD(String D)

{

this.ID =1D;

)

public String getID()

{

retum this.ID;

)

private String Name ;

public void sefName(String Narme)
{

this.Name = Narme;

public String getName()

jetum this.Name;

}})rivate String SheetCode ;

public void set8heetCode(String SheetCode)
t{his.SheetCode =8heetCode;

1})ub1ic String getSheetCode()

jeimn this.8heetCode;

1})rivate String Answer ;

public void setAnswer(String Answer)

{

this. Answer = Answer,

public String getAnswer()
{

return this. Answer;,

b
RegistrationTable.java:

public class RegistrationTable
{private String ID ;

public void setTD(String D)
{

this.ID =1D;

)

public String getTD()

{

retum this.ID;

)

private String Name ;

public void sefName(String Narme)
{

this.Name = Narme;

public String getName()
{

return this.Name;

}

829

Asian J. Inform. Tech., 6 (7): 825-833, 2007

Contimie: Code 2

private Tnteger Sex ;
public void setSex(Integer Sex)

{

this.Sex = Sex;

}

public Tnteger getSex()
{

return this.Sex;

}
private Integer Category ;
public void setCategory(Integer Category)

{
this. Category = Category;

public Integer getCategory()

{
return this. Category;

}

private String StudyProgramme ;

public void setStudyProgramme(String StudyProgramme)
{

this. Study Programme = StudyProgramme;

}

public String getStudyProgramme()

{
return this.StudyProgramme;

1Y

SETdb java:

public class SETdb
{private AnswerFormTable[] SubmitTab ;
public void setSubmitTab({ AnswerFormTable[] SubmitTab)

this. SubmitTab = SubmitTab;

)
public AnswerFormTable[] getSubmitTab()

{
return this.SubmitTab;

)
private RegistrationTable[] MasterTab ;

public void setMasterTab(RegistrationTable[] MasterTab)

t{his.MasterTab = MasterTab;

1})ub1ic RegistrationTable[] getMasterTab()

jeu.lm this.MasterTab;

1})rivate AnswerFormTable[] UnknownAFormTab ;

public void setUnknownAFornnTab(AnswerFormTable[] UnknownAFormTab)

{
this.UnknownAFormTab = UnknownAFormTab;

public AnswerFormTable[] getUnknownAFormTab()

{
return this. UnknownAFormTab;

}})rivate AnswerFormTable[] DoubleAFormTab ;

public void setDoubleAFormTab(AnswerFormTable[] DoubleAFormTab)
t{his.DoubleAFormTab = DoubleAFormTab;

]iublic AnswerFormTable[] getDoubleAFormTab()

jehml this.DoubleAFormT ab;

1}

830

Asian J. Inform. Tech., 6 (7): 825-833, 2007

Contimie: Code 2

SETdb java:

public class SETutility

{private DBManager dbm;

public SETutility()

{this.dbm = new DBManager("lingusql");

this.dbm. connect(); }

public void filterUnknown(AnswerFormTable[] SubmitTab,RegistrationTable[] MasterTab,AnswerFormTable[] UnknownAFormTab)

{VirtTable vtables = new VirtTable();

vtables.clearColumnList();

vtables.addColumn("TD","String™);

vtables.create("ids™);

vtables.clearCohimnList();

vtables.addColumn("ID","String");

vtables. create(” okids™);

this. dbm.findAll("SubmitTab as ", "ids", "T", "s.1D,s.Name™);
this.dbm.insertAl{"ids as i, MasterTab as ", "okids", "iID =r.ID");
this.dbm.delete("ids", "ids.ID in (select ID from okids)™);

this. dbm.insert Al{"SubmitTab as s,ids as i, "UnknownAFormTab", "s.1D = i1D");

public void filterDouble(Integer i, AnswerFormTable[] SubmitTab)
{VirtTable vtables = new VirtTable();

this. dbm. findA1(" SubmitTab as s,SubmitTab as ", "ids", "s.ID =r.ID and s <= 1", "s.1D");
this.dbm.insert ALI("SubmitTab as s,ids as i", "DoubleAFormTab”, "s.ID = i.ID");

1

UUAG COMPARISON TOWARDS
CUP AND JAVACC

The comparison of UUAG against CUP and JavaCC
1s based on experience in using the tools in practice. We
will see how UUJAG stands out from most compiler-
compiler tools.

Parsing method: Parser combinator takes the input and
matches token by token to the grammar. Tt worles like an
recursive-descent parser (Baars et al., 2004) although it
does not reject ambiguous grammar. In most cases,
ambiguous grammar is not desirable in the sense that
programming languages in particular should be rigorous.
CUP is similar to Yacc. It generates LALR parser. On the
other hand, JavaCC generates LL parser.

Parsing table: There is no generation of parsing table in
parser combinator. The parser is built entirely in Haskell.
Productions are defined as functions and each production
acts as a parser itself. Small parsers are joined together
with parser combinatory to create bigger and more
complex parsers. Meanwhile, CTUUP and JavaCC produce
parsing tables. Each has its own syntax rules about
defining the grammars. The file contaimng the grammar
definition is then compiled to generate parser codes that
contain the parsing table for the grammar.

Error handling: Parser combinator takes each error and
tries to suggest a fix for the error. Tt is done by deleting or
inserting a token based on the list of token that the parser
was supposed to accept. This makes it possible for the

831

parser to fimish parsing and mform the user about the
location of the errors and its repair solutions. But the
parser is naive and can cause larger number of errors as it
1s trying to fix the errors. If the parser mistreated an error,
1t would invoke a list of new errors and would run out of
resource in the continuous effort of repairing error by
error.

By default, CUP will halt if it encounters an error
when parsing. But, CUP has error recovery mechanisms,
which is similar to standard Yacc error recovery. The
recovery uses an error production. This production can
be used to reduces errorneous input.

In JavaCC, parser halts when it comes to an error. As
all LL parser is a predictive parser, it gives a list of tokens
that it should take instead of the one that caused the
ITOr.

Code structure: UJTUAG provides complete library to
create a compiler. Focusing mainly on the semantic
analysis, UUJAG gives the tools to construct the scanner,
parser and pretty printer. The libraries can be optionally
used, depending on how the user needs. It is possible to
define the scanner and parser in Haskell by oneself
without using the librares provided, but still use UUAG
to deal with semantics.

The coding in TTUJAG is very flexible. One can code
the whole compiler in a single TTUAG file, or one can malke
it as modular as possible. Scanner, parser and the
semantic actions are defined usmg Haskell programming
language. While the semantic definitions in attribute
grammar follows the UUAG structure, which will be
compiled to produce Haskell codes.

Asian J. Inform. Tech., 6 (7): 825-833, 2007

CUP and JavaCC have stricter rules for the codes.
Both are based on Java programming language and have
a certain format to define parsers. Each needs to be
compiled and outputs Java files.

CUP provides a template to build parsers. Grammars
are defined in a BNF style and the tokens are defined with
regular expressions. For the scanners, CUP uses support
from scanner generator tools, such as JLex or JFlex.
Semantic actions are embedded in the grammar definition.
For more complex semantics, it is possible to create
external Java codes that are linked from the semantic
actions defined in the grammar.

In JavaCC, users build parser and scanner in the
same file. The semantics can be defined in the files
generated by JavaCC in a Java-style. Tt makes JavaCC to
be more rigid about the format rules.

Modularity: UUAG gives the freedom to make a compiler
as modular as possible. The parser can be built from a
composition of smaller parsers to make a bigger and more
complex one. The definition of the attributes can also be
defined modularly.

Building a compiler using CUP, mainly consists of
two major components: the scanner and the parser. CUP
handles the parser generation; while the scanner is built
using Jlex or Jflex. Defiming semantic actions outside
of CUP is optional. As a feature of Java programming
language, users can create a modularized semantic
definitions.

JavaCC has strict rules upon its usage. Users must
follow their platform in defining all the components. The
scammer and parser are both defined in a JavaCC file.
When a JavaCC file is compiled, it will generate one file for
each non terminal where the semantic action can be
written. In such way, the modularity of the parser 1s
mainly controlled by JTavaCC.

Adaptability: Since UUAG supports high-level of
modularity, it implies a high-support of adaptability. For
mstance, when the grammar needs an extended structure,
it is possible to define the structure individually and then
merge it with the original grammar. The merging can be
done easily just by linking them together with a mimmal
change to the old structure.

Applying changes in CUP grammar would be quite
difficult if the grammar is very big. Since the grammar is
written m a single file, one should browse all over the
grammar to identify the section to be changed. Tt is a
different case if the changes only involve the semantics
where they are defined in separate files.

Table 1: Summary of UTTAG comparison towards CUP and JavaCC

Comparison aspects Tool Description

Parsoing method UUJAG Recrusive-descent

CUpP LALR

JavaCC LL

UUAG None

CUP Created upon CUP compilation

JavaCC Created upon JavaCC compilation

UUJAG Attempt correction

CUP Error token mechnism

JavaCC Report the token expected

UUJAG TUUAG attributes for semanties, optional
parser and scanner

CUP CUP for parser, Jlex/JFlex for scanner,
samanties in Java

JavaCC JavaCC for parser and Scanner, semantic
files generated

UUAG User privalge

CUP Uponusing Java programming for semantics

JavaCC Determined by JavaCC

UUJAG Relativity easy

CUP Hard for large grammers

JavaCC Relativity hard

UUAG User decision

CUP Sementics can be defined separately

JavaCC Determined by JavaCC

Parsing table

Error handling

Code structure

Modularity

Adaptability

File management

TavaCC generates its semantic files whenever it is
compiled. The semantic files should be carefully managed,
otherwise they would be overwritten by new files in every
compilation of the JavaCC file. JavaCC also has the same
problem with CUP in the case of applying changes for a
large grammar (Table 1).

File management: With UTUAG flexibility, the user 1s
given the freedom to arrange how the compiler will be
coded. UUAG does not give any restriction whatsoever.
The user should decide whether the codes will be limited
wnto a few large files of probably many small files. Of
course, the decision should be based on the complexity
level of file management for maintenance and further
development.

CUP guides the creation of the parser and scanner.
As for support features, CUP gives the freedom to extend
the parser using Java programming language. Therefore,
other than the parser and scanner codes, the programmer
should manage the additional files.

File management in JavaCC is mainly done by itself.
With strict rules about the usage, JavaCC dictates a
programmer how to define a compiler. Tt even generates
the semantic files. Even though it 1s still possible for
programmer to define some additional files to extra
support such as more complex semantic functions, but
TavaCC has handled mostly everything.

CONCLUSION

Lingu to Java translator 18 developed using UUAG
compiler construction tool. UUAG 13 a powerful compiler

Asian J. Inform. Tech., 6 (7): 825-833, 2007

construction tool. Tt combines the simplicity of defining
semantics using the concept of attribute grammar and the
strength of Haskell programming language concerning
lazy evaluation and higher order functions. The other
advantage of UUAG 1s how 1t supports modularity that
impacts on a lenient way to deal with changes.

In spite of the advantages that TTUJAG has to offer,
defining a grammar for UUAG 1s a task that should be
carefully done. Mistakenly defined grammar can result the
program to go into an infinite loop until it runs out of
resource. Its indulgent characteristic towards ambiguous
grammar can bring worse problems as it can confuse the
interpretation of a language.

Every tool has its pluses and minuses, including
compiler construction tools like TTTAG, CUP and JavaCC.
But the distinct features that each tool has to offer can
give the options for the programmer to pick one that 1s
most suitable with the requirements of the problem.
Table 1 summarizes the tools comparison result observed.

REFERENCES

Aho, A V., R Sethi and I.D. Ullman, 1986. Compilers:
Principles, Techniques and Tools. Addison-Wesley.

Baars, A., A. Dijkstra, . Hage, B. Heeren, B., AL oh,
P. van Oostrum, D. Swierstra and W. Swierstra, 2004,
Implementation of Programming Languages. Lecture
Notes, Utrecht University.

Heng, C., 2005, Free Compiler Construction Tools: Lexers,
Parser Generators, Optimizers., http://www.thefree
country.com/programming/compilerconstruction.s
html.

833

Hudson, S.E., F. Flannery and Ananian, 1999. CUP LALR
Parser Generator for JavaTM. http://www2.cs.tum.
edu/projects/cup/.

Jimmy, 2006. Pengembangan Penerjemah Lingu ke Java
dengan Attribute Grammar. Master Thesis. Faculty of
Computer Science, University of Indonesia.

Johnson, S.C., 1979. YACC: Yet another compiler-
compiler. Unix Programmer’s Manual, Vol. 2b.

Kmuth, DE., 1968,Semantics of Context-Free Languages.
Mathematical Systems Theory, 2: 127-146.

Naur, P., 1963. Revised Report on the Algonthmic
Language Algol 60.

Prasetya, . 3. W.B., A. Azurat, T.E.J. Vos, A. van Leeuwen
and H. Suhartanto, 2005, Theorem Prover Supported
Logics for Small Imperative Languages. Institute of
Information and Computing Sciences, Utrecht
University.

Suhartanto, H. and Bong, Jimmy, 2006. Penerjemah MuPL
ke Java dengan CUP, Copy rights certificate number
029004,

Suhartanto, H., R. Wenang, 1.S'W.B. Prasetya, B.
Wibowo, 8. Maizir and A. Azurat, 2006. LinguSQL:
A Verification and Transformation Tool for Database
Application. Copy rights certificate number 032110,

Swierstra, S.D. and P.R. Azero, 1998. Attribute Grammars
in the Functional Style. Proceedings of the Systems
Implementation 2000. Chapman-Hall, pp: 180-193.

Viswanadha, S. and 3. Sankar, 2004. Java Compiler
CompilerTM(JavaCCTM)- The Java Parser Generator,
https://javacc.dev.java.net/.

