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Abstract: There is a necessity to secure the message when the exchange of secret information is taken place

among the intended users. We can generate a common secret key using neural networks and cryptography.

Two neural networks which are trained on their mutual output bits are analyzed using methods of statistical

physics. In the proposed TPMs, hidden layer of each output vectors are compared, then updates from hidden

unit using Hebbian learning rule, left-dynamic unit using Random walk rule, right-dynamic unit using Anti-

Hebbian learning rule, lower layer spy umt and upper layer spy unit with feedback mechanism. Also, we

mcrease the effective number of keys using entropy of the weight distribution against brute-force attack. The

genetic attack, geometric attack and majority attack are also explained in this study.
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INTRODUCTION

In the field of cryptography, the two partners A and
B can be transmitted secret message over the public
channel. An attacker E who is able to listen to the
commurication should not be able to recover the secret
message (Kinzel and Kanter, 2002; Kanter and Kinzel,
2002; Kinzel, 2002; Ruttor, 2006).

Before 1976, all cryptographic methods exchanged
common secret keys for encryption which were
transmitted between A and B over a secret channel not
accessible to any attackers.

In 1976, Diffie and Hellman have shown how to
generate a secret key over a public channel for exchange
of secret message. Recently, it has been shown how to
use synchromzation of neural network by mutual learning
to generate secret keys over public channel and this
algorithm 15 called neural cryptography (Kinzel and
Kanter, 2002).

The two neural networks of the same structure as
well as same learning rule which is an adjustment process
for the graph weights such that they will be synchronized
at the end. The synchromization will be in the sense that,
from some point, on which they will have the same
weights, even 1if they change their weights contimuously
in each step.

NEURAL SYNCHRONIZATION

The weight vectors of the 2 neural networks begin
with random numbers. The partners A and B receive a
common input vector at each time, their outputs are
calculated and then communicated. If they agree on the
mapping between the current input and the output, their
weilghts are updated according to the learning rule.

A structure of tree parity machine: The TPMs consist of
K-hidden umits, K-left dynamic umts (Prabakaran et af.,
2008) and K-right dynamic units each of them being a
perceptron with an N-dimensional weight vector w
(Godhavari et al., 2005). The lower layer and upper layer
spy units are connected to the inputs, hidden units, left-
dynamic umits, right dynamic umts and output unit.

The lower layer and upper layer spy umts receive the
input values from the N-input units, K-left dynamic units,
K-right dynamic units, K-hidden units and output unit
with feedback mechanism.

The structure of this TPM 1is shown in Fig. 1. The
components of the input vectors x are binary,

X {-1, 41}, x, e d-1, +1}, xy€ { -1, +1} (1)

and the weights are discrete numbers between -1, and +1.
(Ruttor et al., 2006):
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Upper layer spy unit E

Lower layer spy unit

Fig. 1. A structure of tree parity machine with K =3,
80=3,T=3E=1,0=1andN =4

wye { L, L4l L1, L},
woe (L, L4, T-,L1, )
Wi € { -L, -L+1, ...... N L-l, L }

where, L 15 the depths of the weights of the networks
(Mislovaty et al., 2003).

The mdex 1=1,....., K denotes the ith hidden unit of
TPM (Mislovaty et al., 2004), m = 1,....., K left dynamic
unit (8) of the TPM (Prabakaran ef ai., 2008), k=1,.....K
right dynamic unit (¥) of the TPM and j =1,... N denotes
the N components (Kanter ef al., 2002; Mislovaty et al.,
2002; Kanter et al., 2004; Ruttor et al., 2004; Metzler et al.,
2002). The transfer functions are given below

“4)

Y = tanh[ZN:Wim X, J )]
} (&)

£= —sign[i& o) lYl} )

=1

where, Eq. (3) 1s the transfer function of the hidden
unit (Kinzel ef al., 2000; Kinzer, 1997, Klein et af., 2004,
Klimov et al., 2002), the Eq. (4) 1s the transfer function of
the left dynamic umt (Rutter ef al., 2002), the Eq. (5) 1s the
transfer function of the right dynamic umt, the Eq. (6)
15 the transfer function of the lower layer spy unit and
the Eq. (7) is the transfer function of the upper layer spy
unit.

The K-hidden units of 0, left-dynamic units of &, and
right-dynamic units of T, define a common output bit T of
the total network and is given by:

5-TT o ®
Bb :ﬁ 61 (9)
p-TI T, 10)

where, Eq. (8) 1s output for the hidden umts
(Rosen-Zvi et al, 2002, Klimov et al., 2002), Eq. (9)
output for the left-dynamic units and Eq. (10) output for
the right-dynamic units.

The 2 TPMs compare the output bits (Engel and Van
Den Broeck, 2001) and then update the values between
hidden umits, left-dynamic units and right-dynamic units
as well as 2 parties A and B that are trying to synchronize
their weights.

w,*" = comp(B,. By, B,) an
¢1A _ Wj XUA TB\UIA (12)
q)iB = Wﬁ XgB TAIHB (1 3)

where, HEq. (11) represents comparison of the output of
hidden, left dynamic and right dynamic units of A and B.
The Eq. (12) and (13) represent output of hidden, left and
right dynamic units of A and B, respectively.

Learning rules: The partners have their own networks
with a same TPM architecture. Each party selects a
random initial weight vectors wi(A) and w(B)at t=0.
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The two TPMs are trained by their mutual output bits
* and t* as well as receive common input vectors x, and
corresponding output bit T of its partner at each traiming
steps.
The following are the learning rules:

If the output bits are different, t* # °, nothing is
changed.

If t*= ¢ = 1, the hidden, left and right dynamic units
are trained which have an output bit identical to the
common output ¢,*® = 7%,

To adjust the weights, we comsider 3 different
learning rules. They are:

(a) Hebbian Leaming rule (Kanter ef af., 2004) for mdden
units

WAL D) = wh DR T O (T O T)
WE(L+1) = WP (D), PO (TP )O(T )

(14)

where, © is the Heaviside step function (Engel and Van
Den Broeck, 2001), if the mput is positive then the
output 18 1 and if input 1s negative then the function
evaluates to 0.

(b) Random walk learning for left dynamic units

wi(t+1) = wi()+x Ot )BT 1")

(15)
wi(t+1D) = w (x0T Bt t?)
(¢) Anti-Hebbian learning for right dynamic units
WELHD) = wh (D% BB T) (o

w (t+ D=w? (D-0x 0T ¢ et ")

Order parameters: The size of a matrix F 13 (2L+1)x(2L+1)
in TPMs (Kanter and Kinzel, 2002). Their elements are
Fi(w), F(u) and F{ ) where ‘0’ is the state of the machines
in the time step, ‘1° 18 hidden units, where )" 1s the left-
dynamic umts and ‘k’ 18 the nght-dynamic units. The
element f', of matrix stands for the matching components
in the ith weight-vector in which the A’s components are
equal to ‘q” and the matching components of B are equal
to ‘r". The element f, matching components of jth weight-
vector in which the A’s components are equal to s’ and
the matching components of B are equal to ‘t’. The
element f*,, matching components of kth weight-vectors
i which the A’s components are equal to “u’ and the
matching components of B are equal to *v’. The values
of g 1, s, & u v are equalto-I.,....-1,0,1,
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overlap of the weights belonging to the ith hidden
unit (Ruttor et al., 2004), jth left-dynamic umt and kth
right-dynamic unit in the 2 parties are given below:

geo MW, ,RA,E:W] W ,R,;,E:Wk Wooan
' N ! N : N
Also their norms
W WA sLwh W W
le i i ,Q - 1 J anko: k k
N ] N N

are hidden, left and night-dynamic umits of A’s TPM,
respectively.

WE . W=

:WB'WB Q.= i ]
A N

N

W W,
N

Q, and Q. =

are hidden, left and right-dynamic umts of B’s TPM
respectively. They are given by the matrix elements

RM =%"ar f, (18)
q,r

R&E = st f) (19)
s,t

Rﬁ’B = Zuv fffv (20)

The Eq. (18-20) represent overlap between two
hidden units, 2 left-dynamic units and two right-dynamic
umits of A and B, respectively.

Q=Y q’f,, Q=Y (D
q.r q,r

Q=D s, QF =3 s} (22)
s,t LR

Qp =D ufy, QF=>viE (23

The Eq. (21-23) represent weight distribution of
hidden umits, left-dynamic units and right-dynamic units
of A and B, respectively.

These overlaps and norms fixed the probabilities of
deriving the same internal representation via the
normalized overlap,
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AB AB RA,B
pf\‘B - 1A B pfh,B j& E and pi!B - i B
(Q 1Q; Qe Qy
then
RA,B RA.B RA,B
Pt = @4

oT T g

More precisely, the probability of having different
results in the ith hidden unit, jth left-dynamic unit and kth
right-dynamic unit of the 2 parties is given by the
well-known generalization error for the perceptron by
(Engel and Van Den Broeck, 2001):

i 1
s[; = ;arccos (pijk)

Synchronization with feedback: The TPMs A and B are
beginning with different randomly chosen weight vectors
“w’ and common randomly chosen mput vectors ‘x’. The
feedback mechanism 1s defined as follows:

The input is shifted at each step ‘t’. That is
¥, () =x () forj=1.

Tf 1%t) = 18(t) then x,(t+H1) = Py(t), else x; ,(1+1) are
reset to common values.

If T(t) # t7(t) for R steps, then all input values are
reset to commeon values.

These evaluations give some privacy to mputs and
additionally system becomes sensitive about the learning
rule. As described in Ruttor ef al. (2004), learning rule of
anti-hebbian will reveal less mnformation than hebbian
learning rule and random walk learning rule. Therefore, the
anti-hebbian learning will be more appropriate for the
feedback scheme.

NUMBER OF KEYS

To determine the number of keys, this can be
produced by the neural key-exchange protocol using a

given sequence of mputs, the followmng system
consisting of two pairs of TPMs.
Wt = g(w I T X ),
B+ _ B E _A B
w, o=g(w, +{({7 .t TX,) (25)

wi=g(w! HE(90 T, T ),

Wit =glw] (07, T, T X))
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Fig. 2. The weight configuration of a TPM with K = 3,
0=3T=3andN=4

where, %, is the common sequence of input vectors. Both
pairs communicate their output bits only internally. Thus
A and B as well as C and D synchronize using one of the
available learning rules, while correlations caused by
common inputs are visible in the overlap p;*°. Because of
the symmetry in this system, p*", p®° and p°" have the
same properties as this quantity, so that it is sufficient to
look at p*° only.

The synchronization of networks which do not
interact with each other, e.g., A with C, 1s much more
difficult and takes a longer time than performing the
normal key-exchange protocol. That 1s why we assume
p*f=1 and p®=1 for the calculation of (Ap*® (p*°)). The
number of keys 1s smaller than the number of weight
configuration n,,,- = (2L+1)**0 of a TPMs.

We further analyze these correlations by calculating
the entropy of the weight distribution (Ruttor et ai., 2006)

L L
5% = (K+8+Y)N> > p, . Inp,, (26

a=—Le=-L

where, $* is the entropy of a single hidden, left-dynamic
and nght-dynamic umt of TPM. Here p, . 1s the probability
to find w?, = a and w%; = ¢ by selecting a random weight.
As the weights in each TPM alone stay umformly
distributed, the entropy of 2 fully synchronized networlks
1s given by:
S,=Inn_ =(K+8+1)-N In(2L+13 (27)
From the Fig. 2, we are able to predict a large number
of possible weight configuration, in which weights are
chosen randomly for a pair of TPMs. The attacker E could
use some clever algorithm, 1t 1s very difficult to determine
weight configuration, which lead to identical results.
Consequently, 3*°-8, is the part of the total entropy,
which describes the correlations caused by using a
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Fig. 3: Number of distinct keys for K=3,8 =3, ¥ =3 and
N=4

common mput sequence. It 13 proportional to the effective
length of the generated cryptographic key,

S* -8

0

In2

(28)

key

which would be the average number of bits needed to
represent it using both an optunal encoding without
redundancy and the input sequence as additional
knowledge. If the possible results of the neural key-
exchange protocol are uniformly distributed, each one
can be represented by a number consisting of I, bits. In
the case,

(29)

by g
n,, =2"=e

However, that the real number can be larger, because
not all possible weight configurations occur with equal
probability as keys. Therefore n,,., in fact, a lower bound
for the number of cryptographically usable configuration.

First $°-3, shrinks linearly with increasing t, as the
overlap p between A and C grows while it approaches the
stationary state (Ruttor et al., 2006).

This behavior is consistent with an exponential
decreasing number of keys, which can be directly
observed in very small systems in Fig. 3. We use this
minimum value in order to determine n, .

It 15 clearly visible that there are two scaling relation
for S(t):

Entropy is an extensive quantity. Thus $*° and S, are
proportional  to  the of weights N.
Consequently the number of keys, which can be

number

generated by the neural key-exchange protocol for a
given input sequence, grows exponentially with
increasing N.
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The synchronization time t,,, = L’ is the time scale of
all process related to the synchronization of TPMs.
It depends on the size of the learning steps {Ap;.
Therefore, the time needed to reach the fixed point of
o is proportional to 1.2,

In order to determine the dependency between the
synaptic depth L and n,,. we calculate the mutual
information:

[*=28,-38* (309
between A and C, which 1s visible mn the correlations of
the weight vectors using the Eq. (27) and (28), we find:

1 -m[ e J 31
Done

Therefore, the number of distinct keys 1s given by:
N, =n, &0 =(@LaDEEOY Y (32)

Consequently, n,, increases exponentially with N,
n,,, & [0.66(2L +1)** V] (33)

Then

Inn,,, ~ N-In[0.66 (2L +1)**** 7] (34)
& N-In(066HN-(K+d+ Dn2L+1)  (35)

From Fig. 3, we are able to estimate a large number of
keys which are generated agamnst a brute force attack.
However, the attacker E could use some clever algorithm
to determine which keys are generated with high
probability for a given input sequence, because of large
number of keys are generated, the attacker could not find
the secret keys easily. A large number of keys are
important for the security of neural cryptography against
brute force attacks on the neural key-exchange protocol.

ATTACKS

The attacker E is trying to the internal represen-
tations of hidden units (0,, 0, , 0g), left-dynamic units
(9, 9, . 8, rnight-dynamic units (Y, T,,....., Ty) with
lower layer spy umt @ and upper layer spy umt £ of A’s or
B’s TPMs.

The lower layer’s spy unit vector & and upper layer’s
spy unit vector £ are transmitted, associated with output
bits t* during synchronization precess. When the output
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bits are reached, the destination of B’s TPM, the lower
layer spy unit’s vector and upper layer spy unit’s vector
are automatically destroyed by the B’s TPM over the
public channel. The attacker can access in between the
A’s or B’s TPM, the spy unit’s vectors with output bits
are mixed then pass to the attacker’s TPM.

Genetic attack: The attacker E beginning with only one
randomly initialized TPM, but E can use upto ‘M neural
networks. Whenever, the partners update the weights
because of = t® in a time step, the following genetic
algorithm 1s applied (Ruttor, 2006):

¢ The attacker E has at most M/2%' TPMs and also
determine all 2" * 2*! * 2™ internal representations

(0}.00, s, 8.8 B Y Yo Y )

S Rt TR 2 Yy

which reproduce the output t* Then, these are used
to update the weights m E’s neural networks
according to the leaming rule, so that 2! * 21 * 2™
variants of each TPM in this mutation step, are
generated.

+ If the attacker E has more than M/2“' neural
networks, only one fittest TPM should be kept. This
is achieved by discarding all networks which
predicted less than 17 outputs T* in the last V learning
steps, with T = ©° successfully, where U is the
minimal fitness and V 15 the length of the output
history.

Geometric attack: In the geometric attack t* = t° - 0,
attacker E tries to remove the lower layer spy unit vector
and upper layer spy unit vector, otherwise this cannot be
done by just applying the same learning rule. The attacker
tries to correct the internal representation of own TPM
using the local fields,

for hidden units,

for left-dynamic units,
(YF,TE, ..... Y%)

for rnight-dynamic umits as additional information. These
quantities can be used to find out the level of confidence
associated with the output of each hidden, left-dynamic
and right-dynamic units. The low absolute values,

E,m
i

o]

|85 and | Y|

indicate a high probability of ¢* = ¢%, the attacker E
changes the output & of the hidden, left-dynamic and
right-dynamic unit with mmimal absolute values,

5

‘G]f . |87 and ‘Tﬂ
and the total output T°-DE befere applying the learning
rule.

The geometric attack does not always succeed in
estimating the mternal representation of A’s TPM
correctly due to the ldden, left-dynamic and nght-
dynamic units with ¢.* = ¢

Majority attack: The majority attack E can improve the
ability to predict the mternal representation of A’s
neural network. The attacker E uses an ensemble of *M’
TPMs instead of a single neural network. At the
beginning of the synchronization process, the weight
vectors of all attacking networks are chosen randomly.

The attacker E does not change the weights mn time
steps with T*#1°, because the partners skip these input
vectors. But for t* = 1%, an update is necessary then the
attacker calculates the output bits T with lower layer
spy umt and upper layer spy umt It 15 very hard to
estimate output bit t™* by an attacker because of spy
units vectors are mixed with output bits when entering
into attacker’s TPM. If the output bit ™" of the mth
attacking network disagrees with t*, then attacker E
searches the hidden, left-dynamic and right-dynamic units
of ‘1" with minimal absolute values 6|, |8."| and |vy"|.
Then, the output bits "™ and t** are inverted similarly to
the geometric attack. Afterwards the attacker counts the
internal representations (p.*",......,p5™) of own TPM and
selects the most common one. The majority votes are
adopted by all attacking networks for the application of
the learning rule.

CONCLUSION

In the proposed TPMs, the synchronize time of the
attacker is increased by the three transfer functions of
hidden unit using Hebbian learning rule, left-dynamic
umit using Random walk learning rule, right-dynamic umt
using Anti-Hebbian learning rule with lower layer spy umit
and upper layer spy unit. A feedback mechanism with
hidden, dynamic and spy units decrease the probability of
the successful attack. The synchromization time and
feedback yield an wnprovement of the security of the
system. We generate the effective number of keys, both



Asian J. Inform. Technol., 7 {7): 300-306, 2008

a configuration space n_,; = (2L+1)**"" and n,,, grow
exponentially with mcreasing nmumber of weights per
hidden umt, left-dynamic umt and right dynamic unit.
Therefore, a large value of N guarantees the security of
neural cryptography against brute-force attaclks.
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