Asian Journal of Information Technology & (3): 88-93, 2009

ISSN: 1682-3915
© Medwell Journals, 2009

Parallel Performance on Solving Lengyel-Epstein Model Using Runge-Kutta Method

H.A. Bastian and M A Kartawidjaja
Faculty of Engineering, Catholic University of Atma Jaya, Jakarta 12930, Indonesia

Abstract: The Lengyel-Epstein model is an Ordinary Differential Equation (ODE) model developed from Chlorite
Todide Malonic Acid (CTMA) chemical reaction in the Initial Value Problem (IVP) form. The stiffness of this
model 15 determined by the rescaling parameter, which depends on the starch concentration. A stiff system 1is
harder to solve and requires a larger computation time and thus, parallelization 1s applied. In this study, the ODE
model 15 solved using Runge-Kutta implicit parallel scheme on a number of Personal Computers (PCs)
connected n a network. The parallelization 13 implemented in two levels-one 1s parallelization across the method
to solve the nonlinear equations and the other is parallelization across the system to solve the associated linear
equations. The parallel environment is emulated using Parallel Virtual Machine (PVM) software. The
performance of the parallel system 13 quantified by the speedup compared to a sequential system. The
experiments showed that a sigmficant speedup was achieved by inplementing two level parallelization on the

Lengyel-Epstein model.

Kev words: Parallel, performance, PVM, Runge-Kutta, speedup, stiffness

INTRODUCTION

Numerical modeling is commonly used in simulating
natural phenomena, for example: weather predictions, air
pollution, earth quakes, chemical reactions, ozone
depletion, DNA structure analysis, et cetera. Modeling a
system usually requires a large number of parameters and
complex computational method, which in turn requires a
large amount of time. One way to circumvent this problem
15 to use parallel computing where, the computation
process is broken down into smaller processes to be
solved simultaneously using a number of processors.

One model that needs intensive computational power
18 the Chlorite Todide Malonic Acid (CIMA) chemical
reaction introduced by Lengyel and Epstein. This model
1s an Initial Value Problem (IVP) mvolving a number of
parameters related to the reactance of CIMA reaction.

Several researchers have designed and implemented
ODE Their research are mainly based on
comstruction of new mtegration formula that
accommodates parallelism. For example, Suhartanto (2007)
designed a parallel iterated technique based on multistep
Runge-Kutta formula. Bendtsen (1997) introduced a new
formula based on Multiply Implicit Runge-Kutta (MIRK)
methods that exploit parallelism across the method. De
Swart et al. (1998) designed a parallel iterated technique
based on implicit Runge-Kutta method. Cohen and
Hindmarsh (1994, 1996) created PVODE from CVODE,
which was a solver generated from two earlier solvers,
VODE (Brown et al., 1989) and VODPK (Byrne, 1992), by
accommodating some parallel techniques. The common

solver.

part of those algorithms 1s the step size iteration (outer
most loop) uses nonliear iteration (Newton loop) to
solve the nonlinear system and the nonlinear iterations
uses some linear solvers. It means that there will be a
linear solver loop if an iteration technique is used. We
name the loop as wmer most loop. However, none of those
research investigate the effect of parallelism mside the
inmer most loop to the next outer loop (Newton loop) and
further to the outer most loop (step size loop). This study
aims to investigate this effect of parallelization on the
overall performance of the ODE solver.

We propose a parallel implementation of an ODE
solver based on Runge-Kutta method. The parallelization
was performed in two levels, across the method to solve
the arising nonlinear system and across the system to
solve the related linear system.

MATERIALS AND METHODS

Lengyel-epstein model: The Lengyel-Epstein model can
be declared in an Ordinary Differential Equation (ODE)
system form as follows (Fengqi et al., 2008):

ou & Juv

(1)

u(x,0)=1u,(x)=0
vix,0)=v (x)=>0

=0, xcQ2

Corresponding Author: H.A. Bastian, Faculty of Engineering, Catholic University of Atma Jaya, Jakarta 12930, Indonesia

88

Asian J. Inform. Technol., 8 (3): 88-93, 2009

The parameter QeR" is the reactor, parameters u and
v each declares the particle concentration of activator
Todide (I-) and inhibitor Chlorite (C102-). Parameters a and
b are parameters concerning with feed concentrations.
Parameter ¢ is the ratio of diffusion coefficient where as
0 1s the rescaling parameter determined by the starch
concentration. The values for all parameters a, b, ¢ and o
must be positive. The stability of the Lengyel-Epstein
model is determined by parameters a, b and initial
condition of the system, where as the stiffness of the
system is determined by the rescaling parameter 0.

Runge-Kutta method: Generally speaking there are two
classes of numerical methods that can be used to solve an
IVP problem, which are one step method and multistep
method. A famous class of multistage one step method 1s
the family of Runge-Kutta methods.

The Runge-Kutta method has two different forms, 1.e.,
explicit and implicit. Tmplicit form is commonly used to
solve a stuff problem. The general equation of an implicit
autonomous Runge-Kutta method can be declared as
(Burrage, 1995):

You = Yo + h{(bT 1, JF(Y)
Y=e®@y, +h(A®I_JF(Y)

(2)

Where,

Aand b" = Butcher table components

Y = The intermediate approximation vectors
h = The step size

Solving an ODE system for each integration step
requires solving the non-linear system iteratively. The
iterative method that is used here 1s the Newton method,
which results in the following linear equation:

(I.®L ~hA®@DA=G (3)

G=-Y+e®y, +h{A®I_JF(Y) (4
with parameter I declaring the Jacobian matrix. To reduce
the computational cost, the Jacobian matrix 1s evaluated
at a certain point, for example, at initial integration point,
vo. This 15 a modified Newton method as mentioned in
Burrage (1995). To simplify the discussion, the operation
Le I -hAel 13 symbolized with parameter M, so that
(Eq. 4) can be declared as:
MxA=G (5)
This linear equation 1s then solved with the iterative
method known as GMRES (Generalized Minimal Residual)
which was introduced by Saad (1986).

89

In advancing through the integration time, we used
adaptive step size instead of fixed step size. The step size
15 dependent on the error from the previous step.
Therefore error estumation 1s required in each time step.
Because, global error is difficult to calculate or estimate
(Skeel, 1986), the estimation was done for local error.
Controlling the size of the local error will mdirectly affect
the size of the global error.

One way to calculate local error is Merson’s (1957)
embedding method. For that purpose, we need to build a
Runge-Kutta formula that differed in one order from the
Runge-Kutta formula that was wused. Usually the
embedded formula uses a lower order (Dormand et af.,
1994). If the approximation results with the first and
second Runge-Kutta formula is y, and ¥, then local error
can be declared as:

e = hH(bT -t)er, HF(Y) (6)

The error can be calculated by using weighted root
mean square norm (Hairer et al., 1993):

18 (e, Y
r= [— i
N;[ewtlj

with e, ; declaring the ith error vector component and ewt
declaring the error weighting factor, which size 1s declared
in the following equation:

7

ewt. = atol, + ‘ym ‘ % rtal, (8)

Parameter atol i1s the absolute tolerance value and
parameter rtol is the relative tolerance value.

Parallel system speedup: A parallel system can be viewed
as a collection of processing elements that communicate
and cooperate to solve large problems faster than using
a single processing element. In essence, a parallel system
15 expected to provide a better performance than that
provided by a sequential system. As in single processor,
most performance 1ssues in multiprocessor can be
addressed by programming or architectural technicques or
both. The focus of this study is the performance issues
addressed by programming techniques. There are
various metrics to evaluate performance of a parallel
system, such as execution time, speedup, efficiency and
cost. Nevertheless, the most general metric 1s speedup
(W, 1999).

Speedup denotes the performance gam of a parallel
system in terms of reduced execution time compared to
the execution time of the sequential system. By defimng

Asian J. Inform. Technol., 8 (3): 88-93, 2009

T, and T, as execution time of a parallel algorithm on one
and on p processors respectively, speedup 18 formulated
as:

@)

This speedup 1s termed as relative speedup. If the
execution time on one processor is substituted by
execution time of the best sequential algorithm, then an
absolute speedup is identified.

The lower bound of the speedup 1s equal to one and
the upper bound is equal to the number of processors in
the system. A speedup that equals to this upper bound is
termed as ideal speedup. In practice, sometimes the
performance of a parallel system degrades by using more
than one processor and thus speedup becomes <1. This
fact 1s usually caused by excessive commumication or by
the small data size. In some cases, a speedup greater than
the number of processors 1s observed. This super-linear
speedup is commonly caused by the size of the data that
might be too large to fit in the main memory of a single
processor.

There are two distinet programming models in
paralle]l computing platform, shred memory and distributed
memory models. Two popular message passing softwares
are commonly used to emulate parallel platform, i.e.,
Parallel Virtual Machine (PVM) and Message Passing
Interface (MPT). The research was performed using PVM
software (Geist et al., 1994).

Parallel Virtual Machine (PVM): PVM is software that
makes a collection of computers appear as one large
virtual machine. The set of computers used in the parallel
environment must be defined prior to runming the
programs. PVM can be used on homogeneous or
heterogeneous platforms. Tt handles transparently all
message routing, data conversion and task scheduling
across a network of computers.

PVM system 1s composed of two parts. The first part
is a daemon that resides in all computers forming the
virtual machine. The second part 18 a library of PVM
interface routines that contains a complete collection of
primitives that are required for cooperating processes.

PVM allows creation of any number of processes,
mdependent on the number of processors used m the
system. Each process is identified by a task ID. The
processes will be mapped on to processors automatically
unless overridden by the programmer.

PVM programs are generally orgamzed 1 a master-
slave arrangement, where a single process, referred as
master process, 1s first executed and all other processes,
child processes, are created by master process when
necessary.

90

Parallelization strategy: The discretization process in the
Lengyel-Epstein model resulted in the following equation:

- [w_, —2u +u]JrafufM
i ()2 i-1 i i+1 i 1+u12
vl'—(ic)z[vl_l2v1+v1+1]+csbu1Glbuij‘ (10)
x +u
Ax=1/(N+1)

X =iAx, (1<i<N)

The parameter value used here are a = 20, b= 1.2 and
¢ = 2, following the recommendation (Fengaqi ef al., 2008)
for a stable system. The stiff condition was acquired by
taking the rescaling parameter ¢ = 8x10°. The initial
condition uses two function types. The constant
functions are declared as u,(x) = 2.0 and v (x)=11.0. The
sinusoidal functions are declared as w(x) = 3 +sin(x)
and vy(x) = 10 + cos(x). The Runge-Kutta matrix used in
the mvestigation 1s a fourth order Runge-Kutta matrix
introduced by Iserles and NOrsett (1990). This matrix has
decoupled sub-matrix structures to as shown in Fig. 1.

The error estimation here uses embedding technique
by forming second approximation, which has a lower
order from the Runge-Kutta formula used to solve the
ODE. The modified matrix can be shown in Fig. 2
(Kartawidjaja, 2004).

The absolute tolerance and relative tolerance in
Eq. 8 is set to 107", Integration step size in this CDE
system is calculated from Predictive Integral Derivative
(PID) formula controller from H211b class mtroduced by
Soderlind (2003) with the following equation:

1f(bk) 1f{bk) h -1fb
hn+l) [SJ {SJ [n J hn
rn I-nfl hnfl

Parameter h represents the integration step size,
parameter r denotes error prediction and parameter € is the
multiplication of safety factor with the allowed tolerance.
Tolerance value is between O<TOL<l. Parameter k
declares the order from the ODE system. To acquire a
smoocth integration step, parameter b = 4 is used following
the recommendation by Soderlind (2003).

In order to balance the workload among processors,
the mumber of processors used in the parallel environment
must be even, which is two, four, six and eight processors.
For clarity of discussion, we provide a working
relationship of 2, 4 and 6 processors in Fig. 3, where p,
denotes root processor, whilst p,, ps, pi. ps and denote
child processors. The eight processors interrelationship
can be constructed analogously. Parallel environment 1s
emulated with PVM software.

(11)

Asian J. Inform. Technol., 8 (3): 88-93, 2009

-3 5 1-243 0 0
6 12 12
3+43 [1+243 5 0 o
6 12 12
37‘5 0 0 1 ;‘ﬁ
6 2 6
0y O |
6 6 2
EE
2 2

Fig. 1. Runge-Kutta table mtroduced by Iserles and

Nersett (1990)
34510 s 124 0 0
6 12 12
3443 | 14243 5 0 0
5 12 12
3-43 0 0 1 —ﬁ
3 2 6
343 o ¥ 1
5 5 Z
3 3 -1 -1
2 2
9857143 9857143 685TL43 68ST3 .
5 § 2 2
0857143 0857143 0857143 085743 .
6 5 5 6

Fig. 2: Modified Runge-Kutta table for embedding process

(2} Two processors

(D

I

(b) Four processors

O—=0

b,

h 4

O ©

{c) Six processors
Fig. 3: Working relationships of the processors
The parallelization in this study is done in two steps,

across the method to solve the nonlinear system using
Newton method (Kartawidjaja et ad., 2004a) and across the

91

system to solve linear system using GMRES method
(Kartawidjaja et al., 2004b). If only two processors are
available, then parallelization 1z only done to solve
nonlinear system. But if more than two processors are
available, parallelization is also implemented to solve the
linear system.

Generally, there are three basic algebra operations in
GMRES method, which are Inner Product (IP) operation,
Vector Update (VU) operation and Matrix Vector product
(MV) operation.

IP and VU are BLAS 1 operations, where as MV 1s
BLAS 2 operation, which means MV operation requires a
much larger computation time than the computation time
needed by TP or VU operations. By that reason,
parallelization in the linear system 1s only implemented in
MV operation.

RESULTS AND DISCUSSION

The experiment was performed on a cluster of PCs,
consisting of eight processors with similar characteristics,
connected through a 100 Mbit Each PC has a CPU of 1.5
GHz and 512 MB RAM and the test code was written in C.

The performance of parallel computing 1s evaluated
using speedup metric. Testing has been done for two
initial conditions, initial condition in constant form and
mitial condition mn sinusoid function. Test result of
execution time for mmtial condition m constant form 1s
presented in Table 1.

It is noted from Table 1 that the execution time
increases with more processors for ODE dimension of
300. But for ODE dimension above 300, the execution time
decreases as the number of processor increases. The
same phenomenon also appears for initial condition in
sinusoidal form as shown in Table 2.

By comparing Table 1 and 2, we see that ODE with
initial condition in sinuwoid form requires larger
computation time compared to ODE with initial condition
1n constant form.

We can calculate the speedup from the execution time
in Table 1 and 2 using Eq. 9 and the results are provided
in Table 3 and 4.

Tt was shown that in general speedup occurs for ODE
with dimension greater or equal to 400, both for initial
condition in constant form (Table 3) and for initial
condition in sinusoid form (Table 4). In addition, the
speedup for initial condition in constant form is larger
compared to the speedup for initial condition in sinusoid
form, as illustrated m Fig. 4 and 5 for two and eight
processors, respectively.

Our observation on single processor revealed that
solving the linear system mside the Newton loop required

Asian J. Inform. Technol., 8 (3): 88-93, 2009

Table 1: Execution time of ODE with initial condition in constant form

Table 4: Speedup of ODE with initial condition in sinusoid form

Execution time (sec) Speedup

ODE ODE

dimension/n T, T, T, T T. dimension/nn Sp Spy Sps Sp
300 241 201 344 358 375 300 0.98 0.67 0.58 05
400 654 492 492 409 391 400 1.17 1.27 1.35 1B
500 1687 1163 922 743 570 500 1.32 1.7 2.07 22
600 3338 2086 1314 1048 835 600 1.44 2.30 2.78 K1k
700 6182 3237 1938 1614 1247 700 1.62 3.03 3.59 3P
800 7732 3987 2358 1943 1501 800 1.68 3.15 3.73 416

Table 2: Execution time of ODE with initial condition in sinusoid form
Execution time (sec)

ODE

dimension/n T, T, T, T T:
300 277 283 413 477 512
400 726 622 572 537 569
500 1831 1387 1071 885 799
600 3502 2500 1561 1294 1148
700 6493 4008 2143 1809 1627
800 8159 4859 2593 2189 1963

Table 3: Speedup of ODE with initial condition in constant form

Speedup

ODE
dimension/n Spy Spy Spg Sp
300 1.20 0.70 0.67 0.04
400 133 1.33 1.60 1.67
500 1.45 1.83 2.27 2.96
600 160 2.54 319 4.00
700 1.91 319 3.83 4.96
800 1.94 3.28 3.98 5.15

67 ESp2 con

5 o8p2 sin

4

8 13-
&

2_

1_

(=

300 400 500 600 700 800
ODE dimension

Fig. 4: Speedup of ODE with mitial condition in constant

and sinusoid form on two processors

HSp2 con
oSp2_sin

2 -
14
01 j_l T T T T T
400 500 600 700 800

300

ODE dimension

Fig. 5. Speedup of ODE with initial condition in constant
and sinusold form on eight processors

approximately 60-70% of the overall execution time in
each integration step. This large percentage of time will
contribute to a better performance when more processors
are available, except for small data size, i.e., 300

CONCLUSION

From the test results, we can draw the following
conclusions:

For ODE with dimension greater or equal 400 we can
acquire speedup by implementing parallelization in
two levels

» Speedup for ODE with wutial condition i constant
form is larger compared to speedup for ODE with
initial condition in sinusoid form

REFERENCES

Bendtsen, C., 1997. ParSodes: A Parallel Stiff ODE Solver
Version 1.0 User’s Guide. http://www.nethib.org/ode/
parsodes tar.gz.

Brown, PN., G.D. Byrne and A.C. Hindmarsh, 1989.
VODE, a variable-coefficient ODE solver. STAM T.
Scient. Statist. Comput., 10 (5): 1038-1051. DOT: 10.
1137/0910062.

Burrage, K., 1995, Parallel and Sequential Methods
for Ordinary Differential Equations. Numerical
Mathematics and Scientific Computation Series.
Oxford Umversity Press, New York ISBN: 0-19-
853432-9.

Byrme, G.D., 1992, Pragmatic Experiments with Krylov
Methods 1n the Stuff ODE Setting. In: Cash, JR.
and 1. Gladwell (Eds.). Computational Ordinary
Differential Equations. Oxford University Press,
Oxford, pp: 323-356.

Cohen, S.D. and A.C. Hindmarsh, 1994. CVODE User
Guide. Numerical Mathematics Group, UCRL-MA-
118618. https://computation.lInl. gov/casc/nsde/pubs/
ul18618.pdf.

Cohen, SD. and A.C. Hindmarsh, 1996. CVODE, A
Stff/Nonstiff ODE Solver in C. Computers 1n
Physics, 10 (2): 138-143. http://citeseerx.ist. psuedu/
viewdoc/summary?doi=10.1.1.47.5594.

Asian J. Inform. Technol., 8 (3): 88-93, 2009

De Swart, J.T.B., W.M. Licen and W.A. Van Der Veen,
1998. Specification of PSTDE. http://citeseerx.ist.psu.
edwviewdoc/summary?dei=10.1.1.18.1762.

Dormand, T.R. et al., 1994. Globally embedded Runge-
Kutta schemes. Ann. Numer. Mathe., 1: 97-106.

Fengqi, Y. et al, 2008. Diffusion-driven instability and
bifurcation in the lengyel-epstein system. Nonlinear
Anal. Real World Appl., 9 (3): 1038-1051. DOT: 10.
1016/ nonrwa.2007.02.005.

Geist, A. et al., 1994, PVM: Parallel Virtual Machine: A
Users” Guide and Tutorial for Networked Parallel
Computing. Scientific and Engineering Computation
Series. Massachusetts: MIT Press, Cambridge.
ISBN: 0-262-57108-0. http://www netlib.org/pvm3/
book/pvm-boolk. html.

Hairer, E., S.P. N@rsett and G. Wanner, 1993. Solving
Ordmary Differential Equations I: Nonstiff Problems.
2nd Edn Springer Series m Computational
Mathematics. Springer-Verlag, Berlin Heidelberg.
ISBN: 978-3-540-56670-0. DOIL: 10.1007/978-3-540-
78862-1.

Iserles, A. and S.P. NG@rsett, 1990. On the theory of
parallel Runge-Kutta methods. IMA J. Numer. Anal.,
10 (4): 463-488. DOL: 10.1093/1manum/1 0.4.463.

Kartawidjaja, M.A., 2004. Performance of Parallel ODE
Solver Using Semi-Implicit Runge-Kutta Method.
http:/lontar.cs.ui.ac.id/Lontar/opac/themes/ng/has
ilcarijsp?method=similar&query=8609& lokasi=lokal.

Kartawidjaja, ML.A., H. Suhartanto and T. Basaruddin,
2004a. Performance of a parallel techmque for solving
nonlinear systems arising from ODEs. IEEE. TenCon,
Chiang Mai, Thailand, 4: 403-406. ISBN: 0-7803-8560-
8. DOL 101109/ TENCON.2004.141 4955,

93

Kartawidjaja, M.A., H. Suhartanto and T. Basaruddin,
2004b. Performance of parallel iterative solution of
linear systems usmg GMRES. Proceedings of the
International TPSI-2004k Conference, Kopaonik,
Published on CD, Serbia, ISBN: 86-7466-117-3.
http: /kopaocnik.internetconferences. net/Book OfAb
stractsBody.doc.

Merson, R.H., 1957. An operational method for the study
of integration processes. In Proceedings of a
Symposium on Data Processing. Weapons Research
Establishment, Salisbury, South Australia.

Saad, Y. and M.H. Schultz, 1986. GMRES: A Generalized

Residual Algorithm
Nonsymmetric Linear Systems. SIAM T. Scient.
Statist. Comput., 7 (3): 856-869.

Skeel, R.D., 1986. Thirteen ways to estimate global error.
Nurnerische Mathematik, 48 (1): 1-20. DOI: 10.1007/
BF01389440.

Soderlind, G., 2003. Digital filters mn adaptive time-
stepping. ACM Trans. Mathe. Software, 29 (1): 1-26.
http://doi.acm.org/10.1145/641876.641877.

Suhartanto, H., 2007. VSMREK: A parallel implementation
and the performance of variable stepsize multistep
Runge-Kutta methods for stff ODEs. Asian J. Inform.
Technol,, 6 (11): 1110-1116.

Wu, X, 1999. Performance Evaluation, Prediction and
Visualization of Parallel Systems. Kluwer Academic
Publishers, The Netherlands. ISBN: 0-7923-8462-8.

Mimmal for Solving

