Asian Journal of Tnformation Technology 10 (7): 296-305, 2011

ISSN: 1682-3915
© Medwell Journals, 2011

Applying Domain Specific Modeling for Environmental
Sensing Using Wireless Sensor Network

Mohammad Fajar, Kenji Hisazumi, Tsuneo Nakanishi and Akira Fukuda
Department of Advanced Information Technology, Ito Campus, Kyushu University,
744 Motooka, Nishi-Ku, 819-0395 Fukuoka, Japan

Abstract: In order to provide an easy way to develop Wireless Sensor Network (WSN) applications. Current
proposals apply abstraction mechamsms of software engineering, to hide complexity and implementation details
of WSN. However, most of them are focused on implementation issues and platform-dependent solution thus,
resulting designs are difficult to be reused. Moreover, these proposals do not provide a way how to specify
a network architecture for application and how to control task allocation for each node or a group of node. This
study addresses these 1ssues and proposes a new high-level of abstraction model based on Domain Specific
Modeling (DSM) which enables developers to build WSN applications using logical and physical abstraction
model, task allocation as well as automation via code generation. Evaluation results on a case study indicate
that the use of proposed model 1s capable to mcrease productivity in development time about 6 tumes than
manual approach. While evaluation of quality of generated codes in simulation environment shows the
effectiveness of processing task in the case study, average calculation at mtermediate nodes can reduce the
cost of communication significantly.

Key words: Domain specific modeling, wireless sensor network, environmental sensing, task allocation,

generation, Japan

INTRODUCTION

A Wireless Sensor Network (WSN) 15 a large-scale
ad-hoc and multi-hop networls, consisting of small
devices such as sensor nodes, routers and smk noede.
These devices use limited resources including limited
storage, communication capabilities as well as severely
constrained power supplies and the networks often
operate in harsh unattended environments. Due to these
constraints, many researches have been done to address
many aspects of wireless sensor networks designs. So far,
most of them are focused on implementation issues of
applications and platform-specific design which tend to
be constructed one by one and possibly in a site-specific
manner.

The lack of utilization of software engineering
methodologies can causes a considerable amount of
efforts to configure the system for each site and
modification of the system to introduce additional
features, the resulting design are difficult to be reused and
costly (Fajar et al., 2010). To sclve these problems,
current proposals apply abstraction mechamsms of

software engineering to lide the complexities and
implementation details of WSN. For example, TinyOS and
nesC (Gay et al, 2003) try to raise level of abstraction
from low-level to high-level programming models, they
were focused on abstracting hardware and allowing
flexible control of nodes. Although, developers are still
difficult to out of hardware details and resulting designs
are too platform-dependent to be reused. More software
engineering is based on an application-centric view,
where developers only concentrate on application level of
WSN thus, it providing flexibility in optimizing the
application’s performance. Cougar (Bonnet et al., 2000)
and TinyDB (Madden et af., 2005) are examples work in
this model. Tn addition, some proposals in this category
use model-based development such as UML and MDD
(Beckmann and Thoss, 2010).

These approaches offered more high level of
abstraction model. However, they do not provide a clear
way how to specify networl architecture for application
and do not provide a mechanism how to allocate a set of
program instructions (task) to each node or a group of
nodes mcluding specify the behavior of nodes. As a

Corresponding Author: Mohammad Fajar, Department of Advanced Information Technology, Ito Campus, Kyushu University,
744 Motooka, Nishi-Ku, 819-0395 Fukuoka, Japan

Asian J. Inform. Technol., 10 (7): 296-305, 2011

distributed system, task allocation is important aspect to
control which node performs which task. Tt could affect
the reliability of WSN system performance and energy
use. In order to satisfy both requirements in this study,
researchers propose a new high-level of abstraction model
based on DSM which enable developers to model logical
and physical aspects of their environmental sensing
applications. Logical abstraction model provides a
mechanism to define tasks for WSN application and
physical level model 13 used to specify a network
architecture for the application (to satisfy the first
requirement). While task allocation model supplies an
easy way to allocate or distribute WSN tasks to each
node or a group of nodes (to satisfy the second
requirernent). Fmally, generator specifies a transformation
mechanism from model to final target automatically.

This study presents domain specific models m
details, demonstrate them in a case study and measure
their contribution 1 development time as well as evaluate
the quality of generated codes simulation
environment.

using

DOMAIN SPECIFIC MODELING

software
differentiate between modeling and coding activities.

In engineering, developers generally
Models are used for desigmng systems, specifying
required functionality and understanding them better
while codes are written to implement the designs. As a
software engineering methodology, DSM has two
basic characteristics (Kelly and Tolvanen, 2008).
First, the of

programming by specifymg the solution in a language

raise level abstraction beyond
that directly uses concepts and rules from a specific
problem domain.

Second, generate fmal products m a chosen
programming language or other form from these high level
specifications. The generating final products involves
software generator to produce target codes automatically
(Czarnecki and Eisenecker, 2000; Greenfield et al., 2004).
With these DsM

fundamental benefits over general purposes modeling and

characteristics, offers several
manual approaches such as increased productivity,
unproved quality and share expert knowledge (Kelly and
Tolvanen, 2008). Figure 1 shows the basic architecture of
DSM.

The objective of the DSM solution in this research is
to make environmental sensing application development
possible for a fundamentally larger developers and

domain experts: people having little or no experience in

297

[Language]l:l>[Generator]l:[‘>

Fig. 1: Basic architecture of DSM

WSN programming especially nesC programming for
TinyOS platform. The main idea is to get a situation where
the developers could draw some pictures of the
application, define some input parameters using dialog
interface making relationship between components and
then generate them to be executed m a target device. This
quick and easy development approach 15 considered
important for developers who wished to make some of
their sensing application but did not have enough
experience in WSN application development.

RELATED WORK

Different aspects of WSNs have been investigated in
the literature ncluding the use of software engineering
approaches. hide complexity and
implementation detail of WSN system from developers,
Sugihara and Gupta (2008) classified the abstraction level
of programming for sensor networks mto node-level,
group-level and network-level abstraction.

Node-level are focused on abstracting hardware,
allowing flexible control of nodes and some of them

In order to

provide event-driven programming, this moedel 1s used by
nesC (Gay ef al., 2003), COMOS (Han ef al., 2006) and
TMI. (Newton et al, 2005). Group-level abstraction
facilitates the collaboration among nodes so, developer
can specify the behaviowr of a group. Abstract regions
(Welsh and Mainland, 2004) and SPTDEY (Mottola and
Picco, 2006) are examples works in this model. In
Network-level model, a sensor network is treated as a
whole and 1s regarded as a single abstract machine, this
model focusing on querying and processing system for
extracting information from a WSN. Cougar (Bonnet ez al.,
2000), TinyDB (Madden et «l., 2005) and Regiment
(Newton and Welsh, 2004) provide tlus abstraction
models.
However, there i1s a trade-off between them.
Researchers can not define the behaviour of each node in
the group-level abstraction or define group behaviour and
network architecture in the networl-level abstraction. In
addition, some of them are focused on the implementation
of platform-specific. Thus, resulting designs are too
platform-dependent to be reused.

Furthermeore, several studies have been done 1n order
to reduce the cost of development, hiding the complexity
and implementation detail of WSN, these works using

Asian J. Inform. Technol., 10 (7): 296-305, 2011

more high-level of abstraction than previous research.
Sadilek (2007) proposed a language engineering approach
to rapid prototyping of domain-specific languages based
on Scheme and Eclipse EMYE and present first experiences
from the prototyping of a stream-oriented language for the
description of earthquake detection algorithms. While,
Losilla et al. (2007) proposed an architecture-centric
approach to develop WSN applications.

The model presents a high level of abstraction using
UMIL and a domain-specific language which allows
designers systems in a platform
independent way thereby, obtaining more flexible and
reusable designs. Similarly, Beckmann and Thoss (2010)

to model their

presents an approach for Model Driven Software
Development (MDSD) based on the data-centric OMG
middleware standard Distributed Data Service (DDS) and
1t combines DDS features and MDSD for WSN systems.

However, the use of general modeling language such
as UML m these researchers need to transform from
model to model (general model to platform specific model)
before transform it into a final target.

Researchers proposed DSM is to come up with a
minimal sufficient representation of systems and this is
the main reason for its 5-10 times productivity increases
(Kelly and Tolvanen, 2008).

In addition, these current proposals are msufficient
for the needs since, they do not provide a way how to
specify a network architecture for application and how to
control task allocation to each node or a group of nodes.
Task allocation 1s important feature i a distributed sensor
network where WSN application consists of a set of task
to be assigned or distributed to each node and these
nodes have limited resources as well as may have
different capabilities.

Researchers need to control how to distribute the
task for each node or a group of nodes to increase
application performance the reliability system as well as
efficiency of energy use.

In order to satisfy these requirements researchers
proposes a domam specific model which offers some
benefits: ligh level abstraction models provides an easy
way to model environmental sensing applications
mcluding tasks of application and network architecture;
easy to control tasks allocation to sensor nodes or a
group of nodes and generate target platform (primitive
code) automatically by generator.

DSM FOR ENVIRONMENTAL SENSING

The proposed model 18 used to develop

environmental sensing applications, specify network

298

architecture and control task allocation for each node or
a group nodes. It supports multi-hop network, star, tree
and mesh architecture, TinyOS platform as well as mica-
family mote. It 15 also possible to employ the model in
different platforms.

Overview of WSN-DSM: Researchers use a graphical
language to raise level of abstraction and make
application development as easy and natural as possible.
The language provides graphical components,
relationships and rules how to model environmental
sensing applications. Figure 2 shows an instant of the
model with notation and its symbol using problem domain
such as sensing and node icon.

Generally, the model is separated into logical level
model, physical level model and task allocation model.
Logical level model represents a collection of tasks or a
group of tasks and relationships among them. With this
model, developer concentrates to define logical aspects of
application in terms of tasks for application.

Physical level model reflects physical components
and network architecture. Developers have flexibility in
deciding nodes and a network architecture for each
applications. Both of these models are linked by task
allocation model. The task allocation model is used to
control which nodes perform which tasks.

Each component in each level 1s connected by a
relationship to describe their data flow. Horizontal
relationships depict a cormection between components at
same level (from moving average to average calculation
task) wlule vertical relationships show a comnection
between components at different level (from components
in TG1 to components in Node group 1).

Logical level model: This model provides required
components for modeling of environmental sensing
application sensing tasks, filtering,
sending/receiving and data collecting task as well as
relationship components.

Each task consists of a set of program mstructions
which done by node. Some tasks which have regular
contact and frequent intraction or mutual influence and
work together to achieve a goal can be arranged into

such as

a group.

For modeling an application, this logical model can be
seen as a rooted tree where data collection as a root,
calculation tasks as their branches or intermediate nodes
and sensing task as leaf nodes. Data flow design for
sensing data is started from leaf node, through branch
toward It the of
relationship always leads to root node and 1s not

to root. indicates direction

Asian J. Inform. Technol., 10 (7): 296-305, 2011

Logical level model Send packet = 5
Average
Send packet = 58 calcull ation » Daa
Moving > oy collection
average — e -
P _._-, Humidity Buff-size=5 . I:§i
E 1 > TGS
i Buff-size = 10 i
i S-rate=5s "
TG3 (]
T '
Send packet = 5s 0 Send packet = 5s :
Accoustic : » Data '
] P— reduction [}
TGl = ' e M 4 '
: b= 8 Accoustic = M
' State=5s . £ | |eutsze=3 =
' TG2| e : '
' . ' Srate = 5s '
. " ' TG4l !
Task allocation hodel] ' 5 :
[g
—————— e R T e e [
: : v ; '
' U
v ' ' v
'
] ' L
| s _,_,..-—-—-———l'-—--__‘_*
[]
e g | e
Node]]
group 1 : : r?) '&‘;
' Head node 1 W
v]
. Node ﬁ
Physical level model group 2 Head node 2
Fig. 2: An overview of WSN-DSM for environmental sensing
Send packet = 5s
Logica level model =
Average
Send packet = 58 calc:;lan on » Daa
Moving » =1 collection
average — | ey
P _._l,. Humidity Buff-size=5 - i1 =1}
E l > TGS
i Buff-size= 10
Temperature Srate =5s 163
l Send packet = 5s Send packet = 5s
i Accoustic » Data
Srae=ss TG1 ﬂ -; reduction
=4 Accoustic =
State=5s ﬂ Buff-size = 30
TG2 —
Srate = 5s
TG4

Fig. 3: Logical level model

allowed to make a relationship with opposite direction
(from data collection to sensing task). Modeling activity
involves: define a group and its sending period; put one
or more tasks to the group and decide their parameters
(sensing task and its sampling rate); connect each task to
form their data flow. To add more groups, repeat first step.
For making a connection between two tasks, researchers
havetwo types of relationship. Intra and inter relationship.

Intra-relationship is used to link tasks at a same group
while inter-relationship to connect tasks at different
group. For example in Fig. 3 researchers define
temperature sensing task and its sampling rate = 5 sec,
moving average task with buffer size = 10 elements and
then connect both of them using mtra-relationship (dotted
line) to form their data flow. This relationship describes
that after temperature data is sensed, the data stored into

299

Asian J. Inform. Technol., 10 (7): 296-305, 2011

Physicd level S
model] ‘
T e
?ode Head Sink node
1 node 1
group l f
A

|
]
<, e

group 2 node 2

Fig. 4: Physical level mode with tree architecture

moving average's buffer and then moving average task
calculate all of data in the buffer and sent its result to
average calculation task, a relation between moving
average and average calculation is specified by using
mter-relationship (solid line). Fmally, all of data are
collected by data collection task. This scheme is similar
for TG2, TG3 and TG4 in Fig. 3. In transformation
generator translates intra-relationship as a
relation at the same node and uses a buffer as their media
(moving average’s buffer). While inter-relationship is
mapped as a relationship at different nodes and uses
sending and receiving task to connect them. For sensing
symbols, generator translates them mto codes for sensing
activity (read function), moving average symbol into
codes of moving average algorithm.

Process,

Physical level model: This level provides required
components to model network architecture of application
such as sensor nodes, intermediate nodes, sink node and
relationship components. These nodes are organized mto
node groups. Each group consists of one or more nodes
which have similar behaviour and often they have same
resources capabilities. Relationships at this level are used
to form network architecture. For example if the nodes
form tree architecture, root node of the tree should be smk
node, leaf nodes as sensor nodes and branches as
intermediate nodes. The flow of sensing data is started
from leaf, through branch toward in other words sensor
nodes send data to intermediate node and ends at sink
node.

The behaviours of each node are decided by tasks at
logical level (will be performed m allocation model).
Modeling work at this level involves: define a node group,
put one or more sensor nodes to the group if we need
intermediate nodes then researchers should define a new
group and put one or more intermediate nodes to the
group. Repeat first or thurd step te add more groups.
Fourth step define a group and put a sink node to the
group. Finally, fifth step connect each node to form
network architecture. Figure 4 shows an example of
physical components which formed in tree architecture.

300

The model consist of two sensor node groups: Node
group-1 and Node group-2, two intermediate nodes: head
node 1 and 2 as well as one sink node. Generator

translates this model as a tree with sink node as its root
(Node ID = 0).

Task allocation model: Task allocation 1s an mstrument
that can help us in identifying task scopes and parameters
in dividing the entire work into parts and portions and
assighing these loads to different nodes so, they can be
properly controlled during the whole task performance.
The flexability and easiness to control task allocation
could affect on application performance and reliability of
WSN including energy use. This model provides required
components for making relationship between logical
components and physical model components. It uses
vertical relationships (colored dotted-line) with some rules
if a group of task is leaf node which contained sensing
task then, this task can be allocated to sensor node, a
sensor node group or intermediate nodes while data
collection task should be allocated to sink node.

If a group of task containg a task for intermediate
node (ex. average calculation task) then the group should
be allocated to intermediate nodes. Modeling work at this
level involves: select a vertical relationship, put the
relationship on a group of task at logical level and draw
the relationship toward a node or a group of nodes at
physical level. Repeat first steps to allocate another task
until all of tasks have been distributed to nodes.

Task allocation model provides some rules to avoid
task allocation errors such as the direction of relationship
always from task components at logical level toward
node components at physical level (from top to bottom),
some tasks are prepared only for certain nodes for
example average calculation task in this research the task
1s space domaim where it calculates data from two or more
sensor nodes. The type of such task should be allocated
to intermediate nodes not for sensor nodes.

In a complex WSN comprising of many nodes with
various capabilities, proper allocation of tasks to nodes 1s
an important aspect and the results of simulation should
be evaluated and revised if necessary before deploy the
application n a real system. As an example in Fig. 5
researchers use vertical relationship to allocate three tasks
in TG (sensing temperature, moving average and send
task) to Node group 1, this mean all of nodes in the Node
group 1 perform these tasks. The sequence of execution
of tasks 1s determined by intra-relationship in TG1.

Each node in TG1 performs temperature sensing, puts
temperature data into moving average’s buffer then
performs moving average task to calculate all of data in
the buffer and finally, performs sending task to send

Asian J. Inform. Technol., 10 (7): 296-305, 2011

Send packet = 5s
Logica level model Avarage
Send packet = 5s calcull ation Data
Moving — collection
average _ —
[Humidity Buff-size=5 4|
e i
: —*I
: 1 TGS
: Buff-size= 10 (]
i Srate = 5s [
Temperature TG3 .
L] [}
[] L]
[]]
= [] []
Srate=5s !
TG1 (]
[]]
¥ i .
Task a||oca1i=;n model ' [
S e R T S e e e e el e s mse e | e
S [] []
' ' '
]]
he b [
e | ;
Node ! ﬁ
group 1
Sink

Physical level model

Fig. 5: Vertical relationships for task allocation model

calculation result. In transformation process when a task
15 allocated to a node (temperature sensing), generator
transforms it as an activity to perform sensing for the
node, read and decide its sampling rate from model and
add sending task to the node. If a task is allocated to a
group of node then, generator translates 1t as activity for
all of sensor nodes m the group and completes them with
a sending task. All of these activities are translated mto
appropriate codes of platform target.

Execution timing of the task: The execution of task in
WSN applications can be triggered either by time, event
or certain conditions. For a simple environmental sensing
application might sample a few sensors every 20 min and
send it to sink node while fire detection application might
transmit the data if temperature is >45°C. This execution
behaviour is specified in DSM model. Timing explicitly
define node control-flow behavior for example sampling
rate mn sensing task 1s used to determine the number of
sample per second while sending time 15 used by node to
specify delivery period to send data to network. In
processing task, this timing is specified implicitly in
algorithm for example a calculation process is started
when a buffer 1s full or reached a certamn condition. For
example in Fig. 2 sensing task 1s done every 5 sec. Each
time temperature has been sampled and stored mto
moving average’s buffer. Sensor node checks the buffer
if it is full then the calculation task will be performed and

301

Head node 1 node

its result sent to mtermediate node. In this case, first
iteration, sending task is triggered by a certain condition
(if buffer is full) while for next iteration, it is initiated by
timer periodically (every 5 sec). In addition, all of the
nodes in the model have same timer rate tosenda
packet but since, boot time and their range are
different from each other, intermediate node will receive
their data in different time. When a group of nodes
commumicate using an RF, MAC protocol determines
the communication schedules and rules because at any
time only one pair of nodes can use the frequency to send
out data to each other. In worst condition collision may
occur and the protocol has mechanism to re-transmit the
data.

Definition of WSN-DSM metamodel: A metamodel as
shown in Fig. 6 describes the concepts and rules of DSM
language and gives us and developers more general and
flexible model for reuse requirements. At logical level
model, sensing tasks can be connected to processing and
processing tasks can be linked to data collection task.
Conversely, researchers can not make a relationship from
processing tasks to sensing tasks or data collection task
to sensing tasks. For simplicity, researchers can classify
some tasks mnto a group and allocate the group to a group
of nodes. Execution of tasks mvolves timer either it
executed by periodically (sampling rate and sending
period) or based on certain event (implicitly is described

Asian J. Inform. Technol., 10 (7): 296-305, 2011

Sensing type Processing type
Temperature Moving average
Humidity Average calculation
Light Data reductlon'

A i Data compression
ceousti . User defined processing
User defined sensing

Sensing task ||

Processing task

Data collection task

Sensing type
Sampling rate

Processing type

T T 4
T = £
= 3
Task group] Task e @
— T group ID
R, Sending period
g
T > >
c g g
[¢3 o
g g
T T
— e ———— — — e e e e e o o
Target
s .
ource
E‘ Node group Sink node
% N group ID 1 *
a
a i 1* !
Sensor node Intermediate

Fig. 6: WSN-DSM for environmental sensing

in processing algorithm). At physical level researchers
can define a group of nodes. All the nodes performing
similar tasks are grouped and physically deployed
together are considered to belong to same region.

IMPLEMENTATION

In this study, researchers describe a schema of
implementation which invelves a DSM environment,
nesC components and code generator. Figure 7 shows
the implementation schema and its flow to guide
application development process using the proposed
model. Each activity (circle symbol) requires mput
document and will produce one or more output
documents.

DSM environments: To develop a proof of the proposed
models, researchers have implemented the model and
evaluated it. The development tools that researchers used
in this research are as follows:

MetaBdit+4.5 to develop DSM language and its
generator

nesC language 1.2.4 on TinyOS-2.x as the target
codes

Tossim-2.x to simulatethe generated codes

302

Micaz mote 1s hardware platform target
Perl seript to analyze the log files (simulation results)
and produce network static (Fig. 7)

nesC components model and code generator: Tn this case
study, researchers use TinyOS and nesC language as a
final target. A nesC program is a collection of
components. These components are defined by using
module and configuration concepts. Module
implementation sections consist of nesC code, declares
variables and function, call functions, etc. Configuration
implementation sections consist of nesC wiring code
which comnects components together. Every component
is in its own source file and there is one to one mapping
between component and source file names. For example,
the file TunerMilliCnc contams the nesC code for the
component TimerMilliC. Figure 8 shows nesC main
components used in this research. MainC, LedsC,
ActiveMessageC and TimerMilliC components are nesC
predefined modules while SensorC and RoutingC
components are self predefined modules, these modules
dependent on user requirements. For Routing
components researchers use collection tree and P2P
protocol as multi-hop protocol. The last component is
DataCollection which contamns codes of application and
it will be generated by generator.

Asian J. Inform. Technol., 10 (7): 296-305, 2011

Application
requirement

Fig. 7: Implementation schema

Data .

collection Radio

control

Timer<T milli> / / \\Read<unitl6_t>
MainC TimerMillj SdpsorC Active
messageC
Send r?éeive \ Leds
RoutingC LedsC

Fig. 8: nesC component model

The final step 1s obtaining final application codes via
code generation automatically. A nesC generator in this
research has been implemented using the Meta Edit
Report Language (MERL) script. The generator reads
application model and produces nesC codes for each
node group, intermediate nodes and sink node. The core
codes are generated into two files (nesC configuration
and module file), the nesC configuration file contains
wiring components and nesC module file contains the
behaviour of application including algorithms for
processing. For each provided interface in the nesC
model, all its Commands must be implemented.
Conversely, for each required Interface, all its Events must
be handled. The generated solution, obtained from the
corresponding model m the case study and the nesC
component model in the Fig. 8 have been successfully
compiled and tested on TinyOS simulator, demonstrating
satisfactory results.

CASE STUDY: AN ENVIRONMENTAL
SENSING APPLICATION

TIn this study, researchers use the proposed models to
develop environmental sensing applications and show
their evaluation results.

Modeling the application: Application 1 and 2 have two
sensor nodes (with temperature sensing task), one head

4
Simulate

Program to

303

Generated automatically

Configuration

Compile

2
Generate
codes

Table 1: Coding cost in time

Application No. of functions No. of lines Time (min)
Application 1 8 129 33
Application 2 9 144 38
Table 2: Modeling cost in time

Application No. of objects No. of relationship Time ¢min)
Application 1 9 9 5
Application 2 10 10 6

and one sink node, respectively. The nodes are connected
via a tree multi-hop architecture. Head node for
application 1 is a forwarder (without a sensor device and
calculation task). While head node for application 2 is a
processor (with a humidity sensor device and average
calculation task). The head node in application 2 will
intercept packets from sensor node 1 and 2, calculate the
packets and send its average to sink node. The model of
application 2 1s shown n Fig. 9.

Development cost: Researchers measure the cost of
development time for application 1 and 2. Final target is
two nesC files (module and configuration). For coding
activity/handwriting code researchers use nesC template
and programmer editor with assumptions, developers
have experience in nesC programming. Using handwriting
code to produce nesC codes for application 1 researchers
need 33 and 38 min for application 2 (Table 1).

While for modeling activity, researchers measure the
time since, they run the DSM graphical model, select the
requirements tasks and mput their parameters (timer rate),
comect the task then design network architecture,
allocate the tasks to the nodes and finally, generate the
codes using generator automatically. To produce nesC
codes for application 1 researchers need 5 min while for
application 2 researchers need 6 min (Table 2).

The results show that the use of the proposed model
to develop the two applications will reduce the time of
development significantly, the productivity improvement
of about 6 times than manual approach.

Asian J. Inform. Technol., 10 (7): 296-305, 2011

Logica level model

Send packet = 5s Send packet = 5
Average
Temperature P calculation
- p| Daa
—'I collection
Humidity | | Buff-size = 6 =
Srate=5s =1
TG1 2 TG3
i “ Srate=5s :
. . TG2 N
]
M L] - []
1 ' 1
: % Task allocation model t '
_____.____________________l ________________ T TR
' L) § 1
b h 4 0
) [b
v ‘
| | |
S e
S P
Sensor " Sink
node 1 . node
~f Head node 1
ﬁ J Physical level model
Sensor
node 2

Fig. 9: An environmental sensing application (Application-2) depicted using the proposed model

Table 3: Network performance of application 1

No. of No. of Delay time

From To packets sent packets loss average (sec)
2 1 1018 20 0.00751943
3 1 1018 18 0.00776123
1 0 339] 0.00753571
Packet loss ratio=1.7%%
Table 4: Network performance of application 2

No. of No. of Delay time
From To packets sent packets loss average (sec)
2 1 1018 15 0.00750677
3 1 1018 13 0.00743656
1 0 679 (Original data) 12 0.00748064
1 0 339 (Calculated data)

Packet loss ratio = 0.3%

Performance evaluation: Researchers use TmyOS
Simulator (TOSSIM) to observe and evaluate the quality
of generated codes in terms of network performance such
as packet loss, delay time and ability to reduce the cost of
communication. TOSSIM captures the behaviour and
mteractions of networks of thousands of TinyOS motes
at network bit granularity and it runs the same code that
runs on sensor network hardware (Levis ef al., 2003).
Researchers present here, one of testing results that
researchers have done. Table 3 shows a network
performance of application 1 after researchers added
average calculation task to head node.

Head node (node 1) made the number of packet sent
to sink node (node 0) was decreased significantly. From
1998 packets sent successfully to the head node, it

generates 339 packets and sends 334 packets to sink node

successfully. The packets are average results of data from
node 2 and 3. This is one of calculations types of space
domain requirement. For average calculation task, the
number of packets sent and data accuracy are mfluenced
by buffer size (in this case the buffer size is 6 elements).
Similarly, for application 2, Table 4 shows head node
{(node 1) made the number of packet sent to sink node was
decreased significantly (339 packets). Besides, 1t also sent
its own humidity data (679 packets) to sink node. This
result shows even if the head node sent its own data, its
significantly with

performance was not different

application 1.
CONCLUSION

Researchers present a high level of abstraction model
in logical and physical level model as well as task
allocation model which allows developers to build their
envirormental sensing applications more flexible, reusable
and configurable ncluding a clear way how to specify the
WSN architecture via physical level model and how to
control tasks allocation using task allocation model. While
the use of generator to generate a final target
automatically makes the applications development more
quickly with high quality of codes.
results sensing
applications show that the proposed model has ability to

Evaluation on environmental

304

Asian J. Inform. Technol., 10 (7): 296-305, 2011

increase productivity of developers in development time
about 6 times than manual or handwriting approach.
While evaluation of quality of the generated codes shows
the effectiveness of processing task in this case study
average calculation at mtermediate nodes can reduce the
cost of communication significantly.

REFERENCES

Beckmann, K. and M. Thoss, 2010. A model-driven
software development approach using omgdds for
wireless sensor networks. Proceedings of the 8th IFIP
WG 10.2 International Conference on Software
Technologies for Embedded and Ubiquitous System,
October 13-15, 2010, Austria, pp: 95-106.

Bonnet, P., I.E. Gehrke and P. Seshadri, 2000. Querying
the physical world. TEEE Personal Commun., 7: 10-15.

Czarnecki, K. and UW. Eisenecker, 2000. Generative
Programming: Methods, Tools and Applications.
Addison-Wesley, USA., ISBN-13: 9780201309775,
Pages: 832.

Fajar, M., T. Nakanishi, S. Tagashira and A. Fuluda, 2010.
Introducing software product line development for
wireless sensor/actuator network based agriculture
systems. Proceedings of the AFITA 2010
International Conference on Quality Information for
Competitive Agricultural Based Production System
and Commerce, October 3-7, 2010, IPB International
Convention Center, Bogor, Indonesia, pp: 83-88.

Gay, D, P. Levis, R. Behren, M. Welsh, E. Brewer and
D. Culler, 2003. The nesC Language: A holistic
approach to networked embedded systems. ACM
SIGPLAN Notices, 38: 1-11.

Greenfield, J. and K. Short, 2004. Software Factories:
Assembling Applications with Patterns, Models,
Frameworks and Tools. Wiley Publishing Inc., USA,,
ISBN-13: 9780471202844, Pages: 666.

Han, C.C., M. Goraczko, J. Helander, J.L.B. Privantha and
F. Zhao, 2006. CoMOS: An operating system for
heterogeneous multi-processor sensor devices.
Microsoft Research Technical Report No. MSR-TR-
2006-177, pp: 14. hitp://research. microsoft. com/apps/
pubs/default.aspx?1d=55991.

Kelly, S. and I.P. Tolvanen, 2008 Domain-Specific
Modeling: Enabling Full Code Generation. Wiley-
TEEE Computer Society Press, USA., ISBN-13:
9780470036662, Pages: 427.

305

Levis, P., N. Lee, M. Welsh and D. Culler, 2003. TOSSIM:
Accurate and scalable simulation of entire TinyOS
applications. Proceedings of the 1st International
Conference on Embedded Networked Sensor
Systems, November 5-7, 2003, Los Angeles, CA.,
USA., pp: 126-137.

Losilla, F., C. Vicente-Chicote, B. Alvarez, A. Iborra and
P. Sanchez, 2007. Wrireless sensor network
application development: An architecture-centric
MDE approach. Proceedings of the 1st Furopean
Conference on ECSA, September 24-26, 2007,
Aranjuez, Spain, pp: 179-194.

Madden, S.R., M.J Franklin, TM. Hellerstein and
W. Hong, 2005. TinyDB: An acquisitional query
processing system for sensor networks. ACM Trans.
Database Syst., 30: 122-173.

Mottola, L. and G.P. Picco, 2006. Logical neighborhoods:
A programming abstraction for wireless sensor
networlks. Proceedings of the 2nd TEEE International
Conference on Distributed Computing i Sensor
Systems, JTune 18-20, 2006, San Francisco, CA., TISA.,
pp: 150-168.

Newton, R. and M. Welsh, 2004. Region streams:
Functional macroprogramming for sensor networks.
Proceedings of the 1st Workshop on Data
Management for Sensor Networks, August 30, 2004,
Toronto, Canada, pp: 78-87.

Newton, R., Arvind and M. Welsh, 2005. Building up to
macroprogramming: An intermediate language for
sensor networks. Proceedings of the 4th International
Symposium on Information Processing in Sensor
Networks, April 15, 2005, Los Angeles, CA., TUSA .,
pp: 37-44.

Sadilek, D.A., 2007
languages for wireless sensor networks. Proceedings
of the 4th International Workshop on Software
Language Engineering, October 2007, Johannes
Gutenberg-Umiversitat, Mainz, Germany, pp: 76-90.

Sugihara, R. and R K. Gupta, 2008. Programming models
for sensor networks: A survey. ACM Trans. Sensor
Network, 4: 1-29.

Welsh, M. and G. Mamland, 2004. Programming sensor
networks using abstract regions. Proceedings of the

Prototyping domain-specific

1st Symposium on Networked Systems Design and
Implementation, March 29-31, 2004, San Francisco,
CA., USA., pp: 29-42.

