Asian Journal of Tnformation Technology 11 (5): 169-180, 2012

ISSN: 1682-3915
© Medwell Journals, 2012

An Efficient Method to Achieve Effective Test Case Prioritization in
Regression Testing using Prioritization Factors

'S. Raju and “G.V. Uma
"Department of Computer Applications,
Sri Venkateswara College of Engineering, 602105 Sriperumbudur, India
“Department of Information Science and Technology,
College of Engineering, Anna University, 600025 Chennai, India

Abstract: Test case prioritization techniques have been shown to be beneficial for improving regression-testing
activities. With prioritization, the rate of fault detection is improved, thus allowing testers to detect faults earlier
in the system-testing phase. Most of the prioritization techmiques to date have been code coverage-based.
These techniques may treat all faults equally. Test case prionitization techmiques schedule test cases for
execution so that those with higher priority, according to some criterion are executed earlier than those with
lower priority to meet some performance goal. In this study, researchers introduce a cluster-based test case
priontization techmque. By clustering test cases, based on their dynamic runtime behaviour researchers can
reduce the required number of pair-wise comparisons significantly. Researchers present a value-driven
approach to system-level test case prioritization called the prioritization of requirements for test. In this
approach, prioritization of test cases is based on four factors rate of fault detection, requirements volatility, fault
umpact and mmplementation complexity. The results show that this prioritization approach at the system level
unproves the rate of detection of severe faults.

Key words: Test case prioritization, regression testing, prioritization factors, agglomerative hierarchical

clustering, India

INTRODUCTION

In today’s changing business environment, time to
market 1s a key factor to achieving project success. For a
project to be most successful quality must be maximized
while mimimizing cost and keeping delivery time short.
Quality can be measured by the customer satisfaction
with the resulting system based on the requirements that
are incorporated successfully in the system (Karlsson and
Ryan, 1997). Many software engineering methodologies
face complex cost and benefit tradeoffs that are influenced
by a wide variety of factors. For example, software
development processes are influenced by system size,
personnel experience and requirements volatility and
these contribute to determining the overall costs and
benefits of particular processes (Do and Rothermel, 2008).
The quality of services 15 a key issue for developmng
service-based software systems and testing is necessary
for evaluating the functional correctness, performance
and reliability of individual as well as composite services
(Askaruinisa and Abirami, 2010). During development and
testing, changes made to a system to repair a detected

fault can often mject a new fault mto the code base. New
faults introduced during testing and maintenance can be
isolated by impact analysis and regression testing
techmques. Impact analysis and regression testing
techniques exists that find changes in a system based
upon a modification (Sherriff et af., 2007).

Every software product typically undergoes frequent
changes m its lifetime. These changes are necessitated
on account of various reasons such as fixing defects,
enhancing or meodifying existing functionalities or
adapting to newer execution environments. Whenever a
program 1s modified, 1t i1s necessary to carry out
regression testing to ensure that no new errors have been
introduced Swarnendu (Biswas et al., 2009). Test case
prioritization techniques improve the cost-effectiveness
of regression testing by ordering test cases such that
those that are more important are run earlier in the testing
process. Prioritization can provide earlier feedback to
testers and management and allow engineers to begin
debugging earlier. It can also increase the probability that
if testing ends prematurely, important test cases have
been run (Do et al, 2010). Regression testing is the de

Corresponding Author: S. Raju, Department of Computer Applications, Sri Venkateswara College of Engineering,

602105 Sriperumbudur, India

Asian J. Inform. Technol., 11 (5): 169-180, 2012

facto activity to address the testing problems due to
software evolution. However, many existing regression
testing techmiques (Harrold ef @f., 1993; Kim and Porter,
2002) assume that the source code is available and
use the coverage information of executable artifacts (e.g.,
statement coverage of test cases) to conduct regression
testing. When such coverage information cenmot be
assumed to be available it 1s vital to consider alterative
sources of information to facilitate effective regression
testing (Mei et al., 2009). Although, efficient algorithm
selection for detecting suitable test case prioritization is
an undesirable problem, researchers still attempt to
develop various methods and have made some progress.
These means can be classified as dynamic selection of
suitable algorithm. Dynamic methods include random
selection of suitable algorithm. Dynamic methods include
random selection of algorithms and extract suitable test
case selection it’s a kind of goal-oriented approach and
evolutionary approach (Pravin and Srinivasan, 2012).

Prioritization mvoelving human judgement 1s not new.
The Operations Research community has developed
techniques including the Analytic Hierarchy Process
(AHP) algorithm that help decision makers to prioritize
tasks. However, prioritization techmques that mvolve
humans present scalability challenges. A human tester
can provide consistent and meaningful answers to only a
limited number of questions, before fatigue starts to
degrade performance (Yoo et al, 2009). It 13 often
desirable to filter a pool of test cases for a program in
order to identify a subset that will actually be executed
and audited (checked for conformance to requirements) at
a particular time (Leon and Podgurski, 2003). For example:
the suite of regression tests for a long-lived system may
become so large that it 1s feasible to execute only a
fraction of them when the program is meodified
(Harrold et al., 1993).

A deployed application may be instrumented to
capture its own executions, so that developers can replay
and audit them (Steven ef al., 2000) or so that captured
mputs can be used to refresh a regression test suite. The
number of executions that are captured may exceed the
number it is feasible to audit.

An automatic test data generator may be capable of
producing many more tests than a tester 1s able to run and
audit.

Naturally, it is desirable to select those test cases that
are most likely to reveal defects in the program under test.
To be worthwhile the sum of the cost of the filtering
process and the costs of executing and auditing the
selected tests should be less than the cost of executing
and auditing all of the tests in the oniginal pool. Some
approaches to filtering or prioritizing regression tests

170

employ profiles collected when testing previous versions
of a program. These approaches emphasize economical
reuse of test cases and hence they are not applicable to
new tests cases (Leon and Podgurski, 2003). Recent
studys have investigated several techniques for test case
filtering and for the closely related problem of test-case
prioritization that are based on analyzing profiles of test
executions. These profiles characterize aspects of test
executions that are thought to be relevant to whether the
tests reveal defects.

To optimize the time and cost spent on testing,
prioritization of test cases in a test suite can be beneficial.
Test Case Prioritization (TCP) involves the explicit
planning of the execution of test cases in a specific order
with the intention of increasing the effectiveness of
software testing activities by improving the rate of fault
detection earlier in the software process (Srikanth et al.,
2005). In this study, one new approach to prioritize the
test cases at system level for regression test cases 1s
proposed. This techmque identifies more severe faults at
an earlier stage of the testing process. Factors proposed
to design algorithm are rate of fault detection,
requirements volatility, fault impact and implementation
complexity. The objective of this research 1s to develop
and validate a system-level test case prioritization scheme
to reveal severe faults earlier and to improve customer-
perceived software quality. In this study, severty value
also 1s considered as one of the factors to prioritize the
test cases where severity value ranging from 2-10 to the
faults. Before applying the prioritization algorithm, here
we use clustering technique. By clustering test cases,
based on therr dynamic runtime behaviour researchers
can reduce the required number of pair-wise comparisons
signmficantly. Then, researchers present a value-drniven
approach to system-level test case prioritization called the
Priontization of Requirements for Test (PORT). PORT can
be used to prioritize system-level black box test when
traceability between requirements, test case and test/field
failures is maintained by the development team.

LITERATURE REVIEW

Many researchers have addressed the test case
priontization problem. A wide range of priornitization
technicques have been proposed and studied. Only a few
studies have considered issues related to the presence of
time constraints during prioritization. Where prior studies
of prioritization are concerned, the vast majority reported
in the literature.

During development and testing, changes made to a
system to repair a detected fault can often mject a new
fault mto the code base. These myjected faults may not be

Asian J. Inform. Technol., 11 (5): 169-180, 2012

in the same files that were just changed since, the effects
of a change in the code base can have ramifications in
other parts of the system. Sherriff et al. (2007) proposed
a methodology for determimng the effect of a change
and then priortizing regression test cases by gathering
software change records and analyzing them through
singular value decomposition. That methodology
generated clusters of files that historically tend to change
together. Combining these clusters with test case
information yields a matrix that can be multiplied by a
vector representing a new system modification to create
a prioritized list of test cases. They have performed a post
hoc case study using that technique with three mmor
releases of a software product at IBM. They have found
that their methodology suggested additional regression
tests in 50% of test runs and that the highest-prionty
suggested test found an additional fault 60% of the time.

Software engmmeers frequently update COTS
components mtegrated in component-based systems and
can often chose among many candidates produced by
different vendors. Mariani et al. (2007) presented a study
which tackles both the problem of quickly identifying
components that were syntactically compatible with the
interface specifications but badly integrate in target
systems and the problem of automatically generating
regression test suites. The techmque proposed in that
study to automatically generate compatibility and
prioritized test suites was based on behavioral models
that represent component
automatically generated while executing the original test
suites on previous versions of target systems.

Software engineering methodologies were subject to
complex cost benefit tradeoffs. Economic models can help
practitioners methodologies
relative to these tradeoffs. Effective economic models,
however, can be established only through an iterative
process of refinement involving analytical and empirical

interactions and were

and researchers assess

methods. Sensitivity analysis provides one such method.
By identifymng the factors that are most important to
models, sensitivity analysis can help simplify those
models; it can also identify factors that must be measured
with care, leading to guidelines for better test strategy
defimition and application. Do and Rothermel (2008)
proposed a research which uses sensitivity analysis to
examine the model analytically and assess the factors that
were most important to the model. Based on the
results of that analysis, they proposed two new
models of increasing simplicity. They assessed those
models empirically on data obtained by using regression
software

testing techmques several non-trivial

systems.

o1l

171

Srivastava (2008) proposed that test
prioritization techniques involve scheduling over test

case

cases 1n an order that improves the performance of
regression testing. It was mefficient to re execute every
test cases for every program function if once change
occurs. Test case prioritization techniques organize the
test cases m a test suite by ordering such that the most
beneficial are executed first thus allowing for an increase
in the effectiveness of testing. One of the performance
goals, i.e., the fault detection rate is a measure of how
quickly faults are detected during the testing process. In
that study they presented a new test case prioritization
algorithm which calculates average faults found per min.
They presented the results illustrating the effectiveness
of algorithm with the help of APFD metric. The main aim
of that study was to determine the effectiveness of
prioritized and non-prioritized case with the help of APFD.

Tin et al. (2010) proposed a novel approach called
Behavioral Regression Testing (BERT). They have given
two versions of a program; BERT identifies behavioral
differences between the two versions through dynamical
analysis in three steps. First, it generated a large number
of test inputs that focus on the changed parts of the code.
Second, it ran the generated test inputs on the old and
new versions of the code and identifies differences in
the tests” behavior. Third, it analyzed the identified
differences and presents them to the developers. By
focusing on a subset of the code and leveraging
differential behavior, BERT provided developers with
more information than traditional regression testing
approaches. To evaluate BERT they have implemented it
as a plug in for Eclipse a popular Integrated Development
Environment and used the plug-in to perform a preliminary
study on two programs.

Regression test selection techniques for embedded
programs have scarcely been reported in the literature.
Biswas et al. (2009) proposed a model-based regression
test selection technique for embedded programs. Their
proposed model in addition to capturing the data and
control dependence aspects also represents several
additional program features that were important for
regression test case selection of embedded programs.
These features include control flow, exception handling,
message paths, task priorities, state information and
object relations. They selected a regression test suite
based on slicing the proposed graph model. They also
proposed a genetic algorithm based technique to select an
optimal subset of test cases from the set of regression test
cases selected after slicing the proposed model.

A web service may evolve autonomously, making
peer web services in the same service composition
uncertain as to whether the evolved behaviors may still be

Asian J. Inform. Technol., 11 (5): 169-180, 2012

compatible to its originally collaborative agreement.
Although, peer services may wish to conduct regression
testing to verify the original collaboration the source
code of the former service can be maccessible to them.
Traditional code-based regression testing strategies are
inapplicable. The rich interface specifications of a web
service, however, provide peer services with a means to
formulate black-box testing strategies. Me1 ef al. (2009)
formulated the new test case prioritization strategies using
tags embedded in XMI, messages to reorder regression
test cases and reveal how the test cases use the
mterface specifications of services. They have evaluated
experimentally their effectiveness on revealing regression
faults in modified WS-BPEL programs. The results shown
that the new technique that have a lugh probability of
outperforming random ordering.

Software developers use testing to gain and maintain
confidence in the correctness of a Software System.
Automated reduction and prioritization techniques
attempt to decrease the time required to detect faults
during test suite execution. Smith and Kapthammer (2009)
proposed a study which used the Harrold Gupta Soffa,
delayed greedy, traditional greedy and 2-optimal greedy
algorithms for both test suite reduction and prioritization.
Even though reducing and reordering a test suite was
primarily done to ensure that testing was cost-effective
those algorithms were normally configured to make
greedy choices with coverage mformation alone. That
study extended those algorithms to greedily reduce and
prioritize the tests by using both test cost and the ratio of
code coverage to test cost. An empirical study with eight
real world case study applications shown that the ratio
greedy choice metric aids a test suite reduction method in
identifying a smaller and faster test suite.

Askaruinisa and Abirami (2010) proposed an
approach for generating web service test cases using
WSDL-S and Object Constraint Language (OCL) while
the test case generation technique is Orthogonal Array
Testing (OAT). They have developed a prototype namely
Semantic Web Services Test Case Generator (SWSTCG).
They have generated WSDL of Web Service to be tested
using NetBeans IDE and converted into WSDL-S by
giving OCL references where pre and post conditions are
defined. Test data using OAT with different factors, levels
and strengths were generated and documented in XMI,
based test files called Web Service Test Specifications
(WSTS) and executed. The proposed method 1s compared
with the Pair-Wise Testing (PWT) Method. They have
conducted testing on various web service applications
and the results have shown that the method was effective
in generating mimmal test cases with maximum test case
effectiveness.

172

Genetic algorithms have been successfully applied in
the area of software testing. The demand for automation
of test case generation in object oriented software testing
15 ncreasing. Genetic algorithms are well applied in
procedural software testing but a little has been done in
testing of object oriented software. Pravin and Srinivasan
(2012) proposed a study which discusses genetic
algorithms that can automatically select an efficient
algorithm which was suitable for test cases selection. That
algorithm takes a selected path as a target and executes
sequences of operators iteratively for efficient algorithm
selection to evolve. The evolved efficient algorithm
selection can lead the program execution to achieve the
target path. An automatic path-oriented test data
generation was not only a crucial problem but also a hot
1ssue 1n the research area of software testing today. They
also proposed genetic algorithm for the selection of the
suitable algorithm which perform much better than the
existing methods and can provide very good solutions.

PRIORITIZATION FACTORS

In the research, researchers refer to these factors as
Prioritization Factors (PF). These factors may be concrete
such as test case length, code coverage, severity value
and data flow. Researchers will describe these factors as
rate of fault detection, requirements volatility, fault impact
and implementation complexity.

Rate of Fault detection (RF): The average number of
faults per min by a test case is called rate of fault
detection. The rate of fault detection of test case 1 have
been calculated using the number of faults detected and
the time taken to find out those faults for each test case of
test suite:

No. of faults »

tme

RFTi = 10 Y]

Every factor is converted into 1-10 point scale. The
technique presented m this study implemented a new test
case prioritization technique that prioritize the test cases
with the goal of giving importance of test case which have
higher value for rate of fault detection and severity value.

Requirements Volatility (RV): Requirements Volatility
(RV) is based on the number of times a requirement has
been changed during the development cycle. If a
requirement has changed more then ten times the
volatility values for all requirements are quantified on
a 10 point scale. Requirements volatility is an assessment
of the requirements change once the mmplementation
begins (Malaiya and Denton, 1999).

Asian J. Inform. Technol., 11 (5): 169-180, 2012

Roughly 25% of the requirements for an average
project change before project completion and volatile
requirements tend to make the testing activities difficult
and cause the software to contain high defect density.
Changing requirements result in re-design, the addition or
deletion of existing functions and often an increase in the
fault density in the program. Severe defects that escape
mnto the field can cost 100 times more to fix after delivery
than correcting the problem in the requirements phase.
For non-severe defects the ratio is 2:1 for fixing the defect
n the field as opposed to pre-delivery.

Fault Impact (FI): Testing efficiency can be improved by
focusing on the test case that is likely to contain high
number of severe faults. So for each fault severity value
was assigned based on impact of the fault on the product.
Severity value has been assigned based on a 10 pomnt
scale as given below:

Very High Severe: SV of 10
High Severe: SV of 8
Medium Severe: SV of 6
Less Severe: SV of 4

Least Severe: SV of 2

Equation 2 shows that the severity value of test case,
i where t represent number of faults identified by the ith
test case:

Si :i SV (2)

If Max (S) 18 the high severity value of test case
among all the test cases then fault impact of ithtest case
is shown below:

S NTY (3)
Max(S)
Implementation Complexity (IC): Implementation

complexity (IC) is a subjective measure of how difficult the
development team perceives the mmplementation of
requirement to be. Each requirement is analyzed to assess
the anticipated implementation complexity and 1s assigned
a value ranging from 1-10; the larger value indicates
higher complexity. IC 1s a prioritization factor for
requirements being implemented for the first time or for all
requirements in the first release.

Requirements with high implementation complexity
tend to have a higher mumber of faults. Amland (1999)
conducted a case study to find that the functions with
high number of faults were the functions with hgher
McCabe Complexity. About 20% of the modules result in
80% of the faults and roughly 50% of the modules are
defect free.

173

PROPOSED WORK

Test case prioritization seeks to find an efficient
ordering of test case execution for regression testing. The
most 1deal ordering of test case execution i1s one that
reveals faults earliest. Since, the nature and location of
actual faults are generally not known in advance, test case
prioritization techmques have to rely on available
surrogates for prioritization criteria. Structural coverage,
requirement priority and mutation score have all
previously been utilized as criteria for test case
prioritization. However, there is no single prioritization
criterion whose results dominate the others. The
proposed research is shown in Fig. 1.

This study aims to reduce the number of comparisons
required for the pair-wise comparison approach through
the use of clustering. Instead of prioritizing individual
test cases, clusters of test cases are prioritized using
techmques such as prioriization of requirements for

the
then

test algorithm. From the prioritized clusters,

ordering between individual test cases is

generated.

Test case clustering: The clustering process partitions
objects into different subsets so that objects in each
group share common properties. The clustering criterion
determines which properties are used to measure the
commonality. When considering test case prioritization,
the 1deal clustering criterion would be the similarity
between the faults detected by each test case. However,
this information is mherently unavailable before the
testing task is finished. Therefore, it is necessary to find

Prioritization
factors

1 A4 A 4

Agglomerative hierarchical
clustering

\4 \4 A4 A 4

Prioritization using
PORT

\4

[Prioritized test case output

Fig. 1: Flow diagram of the proposed research

Asian J. Inform. Technol., 11 (5): 169-180, 2012

a surrogate for this in the same way as existing coverage
based prioritization techniques turn to surrogates for
fault-detection capabilities.

Here, researchers use a siumple agglomerative
hierarchical clustering technique (Yoo et al., 2009). Tts
pseudo-code is described:

Tnput- A set of ntest cases, T
Output- A dendrogram, D , representing the clusters
Algorithm
Formn clusters each with one test case
c-{}
Add clusters to C
Insert n clusters as leaf node into D
while there is more than one cluster
Find a pair of clusters with
minimum distance
Merge the pair into a new
cluster, C....
Remaove the pair of test cases
from C
Add G to C
Insert C,. as a parent node of
the pair into D
retum D

The resulting dendrogram is a tree structure that
represents the arrangement of clusters. Figure 2 shows
an example dendrogram from agglomerative hierarchical
clustering. Cutting the tree at different height produces
different number of clusters. It 1s possible to generate k
clusters for any k in [1, n] by cutting the tree at different
heights.

Prioritization technique: In the research, researchers are
using priontization of requirements for test to prioritize
the test cases. After clustering the test cases,
prioritization of requirements for test algorithm is applied
to each cluster to prioritize the cluster of test cases.
In this study, researchers can find a brief account about
Prioritization of Requirements for Test algorithm.

Prioritization of Requirements for Test Algorithm
(PORT): Based on the project and customer needs, the

R\

AN

k=5 {PQ,R,S, T, U} \
cimerstu® @ ® ©® © O

Fig. 2: Sample dendrogram
hierarchical clustering

k=1 {PQRSTU}

from agglomerative

174

development team assigns weight to the prioritization
factor such that the assigned total weight (1.0) 15 divided
amongst the four factors. Factor weight which is unique
for each project, allows the PORT user to customize the
priority of each factor for a particular project. For example
if the requirements for a project have been very stable
then the development team might assign RV a relatively
smaller portion of the total weight. A default value can be
assigned, giving each factor equal weight.

For every requirement, Eq. 4 is used to calculate a
Prioritization Factor Value (PFV) which can be given as:

4
PFV = Z {Factor value, x Factor weight,) (4)
i=1

1

PFV, represents prioritization factor value for
requirement 1 which 13 the summation of the product of
factor value and the assigned factor weight for each of the
factors. Factor value, represents the value for factor j for
requirement i and Factor weight, represents the factor
weight for jth factor for a particular product. PFV 1s a
measure of the importance of testing a requirement.

A value-matrix representation of PFV for requirements
is shown in Eq. 5 where PFV (P) is the product of Value
(V) and Weight (w):

P=Vw &)

Equation 5 can be expanded with respect to the
prioritization factors as given m the equation:

RF c RV FI
PW R1 R1 R1 Rl W
RF
W,
— Ic (6)
Wey
PFV RRF RIC RRV RFI WFI (451}
o fnxt) 1 f 1 1)

The computation of PFV, for a requirement 1s used in
computing the Weighted Priority (WP) of its associated
test cases. WP of the test case is the product of two
elements:

The average PFVof the requirement (s) the test case
maps

The requirements-coverage a test case provides
Requirements coverage 1s the fraction of the total
project requirements exercised by a test case

TLet there be n total requirements for
product/release and test case | maps to
requirements. WP, is an indication of the priority of
running a particular test case. WP, is represented by
the Eq. 7 which is given:

a
i

Asian J. Inform. Technol., 11 (5): 169-180, 2012

iPFVX
WP =| 22!

= | = (7
Y PFV,
y=1

1
b
n

)

The test cases are ordered for execution based on the
descending order of WP values such that the test case
with the highest WP value 1s run first and so on.

Validation algorithm: Refmement and validation of
Prioritization of Requirements for Test (PORT) waill
proceed via the analysis of the severity of faults detected
for a product. For analysis purposes, each failure is
assigned a Severity Value (SV) on a 10 point scale as
shown:

Highly severe (Severity 1): SV value of 10
Medium severe (Severity 2), SV of 6

Less severe (Severity 3), SV of 4

Least severe (Severity 4) SV of 2

Total Severity of Faults Detected (TSFD) 1s the
summation of severity values of all faults identified for a
release. Hauation 8 shows TSFD for a product/release
where trepresents total number of faults identified for the
product/release:

t
TSFD=Y SV, &)

t=1

The Average Severity of Faults Detected (ASFD) is
computed for each requirement to analyze if the
requirement with a higher computed PSFV actually had
higher average severe faults when the product was
system tested or used by the customer. The ASFD for
requirement 1 (ASFD)) 1s the ratio of the summation of
severity values of faults identified for that requirement
divided by the TSFD. The computation of ASFD is shown
m Eq. 9 where m 1s the number of faults mapped to
requirement i:

sy,

=1

TSFD

ASFD, =)

ASFD is used to analyze the effectiveness of PORT
technique by mapping the total percentage of severe
faults identified for a requirement to the PFV for that
requirement.

175

RESULTS AND DISCUSSION

The test case prioritization system, proposed in this
study was implemented in the working platform of JAVA
(Version JDK 1.6). Researchers can use the bank
application project for regression testing.

Intermediate step results: In the proposed method,
researchers are using a banking application was created
to find the test cases. In this study, researchers can find
some of the screen shorts for the intermediate results of
the proposed prioritization technique. Figure 3 shows the
nitial screen of the proposed prioritization techmque.

After the imtial screen appears, the data must be
saved in the database regarding the accounts. Figure 4
the screen to shows the sample output before regression.
Figure 5 shows create new account. Figure 6 shows the
sample screen for depositing amount. Figure 7 shows the
display for withdrawing the amount from the account.
Figure & shows the screen for the mini statement for the
particular account.

The earlier mentioned banking application is used to
create the test cases for the proposed prioritization
technique. After completing all the applications shown
earlier the test cases are generated for the errors occurred
during the operation of the banking application. Figure 9
shows some of the sample test cases generated during the
banking operation.

After generating test cases by operating the banking
application, the test cases must be clustered together to
reduce the total number of test cases to be analyzed. This
step reduces the time to prioritize the test cases. The
sample test case after clustering is given in Fig. 10.

After clustering the PORT algorithm is applied to the
clustered test cases to prioritize the test cases. The output
| = 1| S| |

=] Bank application

Before regression

After regression

Test cases

Clustering

Prioritization

Cancel

Fig. 3: Imitial screen of the banking application

Asian J. Inform. Technol., 11 (5): 169-180, 2012

New account

| Deposit |

| Display l

| Withdrawal I

| Delete Acc]

MINI Stmt]

| Money transfer]

| Loan l

| Cancel |

Fig. 4: Sample screen beforer regression

Account |1

Computer
26/6/12

Microsoft

55

Address

Age

Fig. 5: SBample screen for creating new account

obtained after applymg PORT 1s the final prionitized test
cases. Figure 11 shows the prioritized output of the test
cases. Rate of fault detection is one of the factors
considered in this proposed method to prioritize the test
cases. This factor depends upon the time and the number
of faults occurred during the operation. Figure 12 gives
the error count per sec for the test cases.

Figure 13 shows the average factor values of the
prioritization factors considered in the proposed
technique.

176

- "
sl ESEER S
=2| Deposit

Acc.Num | 9875654 |
Name | Computer |
Type Cu |
Date | 26/6/12 |
Amount | 50000 |
Save Cancel

Fig. 6: Sample screen for depositing amount.

==

-

|.£2| With draw
Acc. Num 985645
Name W
Type Cu
Date EC
Amount 65200
s Jom]

e

Fig. 7: Sample screen to withdraw the amount

Performance analysis

APFD: To quantify the goal of increasing a subset of the
test suite’s rate of fault detection researchers use a metric
called APFD developed by Elbaum that measures the rate
of fault detection per percentage of test suite execution.
The APFD is calculated by taking the weighted average
of the number of faults detected during the run of the test
suite. APFD can be calculated as follows:

(T +TH, +"'+Tfm)+ 1
Zn

(10)

Apfd =1
nm

Asian J. Inform. Technol., 11 (5): 169-180, 2012

r Rl
%) Mini statement oo 0

Date Type ~ Amount
23/5/12 D 1
24/5/12 D 1250
24/5/12 D 25000
24/5/12 D 250001
25/12/12 D 250012
25/5/12 D 500
24/5/12 w 1500

Sample screen of mim statement of a particular
account

019999999

10,0
7ITTTTIETN
TITTTITTETN
G.EEGEGEEIE4!
FITTTTTET A

o.
0.43000007
015000001
1.5000000

19000006 8888889312
2oaaaaaa 7 PTIIIIETA
14 EEEEEEE084
19999999 5.555555820
31 4444444558

4300000
15000001
sa99999

5.555555820.
5.555555820.
G.EEEEEE984!

19000006 G5.555555820
20999998 6666666984
14 GEEEEEE084
1ag99999a FIFFFIIIGT N
31 4444444656

43000001 333333492
15000001 2222222328
S999999 G.EEEEEE984
14 GEEEEEE984
AEEEEEEE R S |
3.333333492
2.222222328
FITTTTTET
7.7TTTTIET

43000001
15000001
saaaaaq

19000006 5555555820
20999999 GGGGGGGIS4
14 8.888889312
19999aaa 0.0

31 B.BEBEE9312

43000001
15000001
EEEEEEE]

FITTTITETA
GEEEEEE084
EEEEEEE084
19000006 FFFFTITETA
20999999 F.FFFFITIGT
14 FITIIIIET
19000006 6666666984

NOUHNNONODNEDONANDONORNNOONOONNWEGOD OGN 00D
DONHONNODDNOONEONNEDEANODD AN GO G400

40044000000240000040000004540000002
W

Fig. 9

Test cases generated during banking operation

LR L 1 Q a a
o3 FITITIIATL S 8
O A TDO0001 L LA BT -1 R T
O 1 B S 858860312 4 a
1 SSUEOoD e 4
1 15000004 4 Add4d4058 o
i 2OUSHHED 3 AXAATIA0T: F il
G IPDRDanE 108 a]
o3 TITIFTTATU 8 e
= A3000001 060600004 & T
VB0 000 & ASARA03AT 4 i

R -2 4

b oAdASARGEE T a
O JoUene0a 3 ARIRIJAGT a

Fig. 10: Test cases after clustering

177

Fig.

Values

Fig.

Valus

Fig.

-

L L T

S >
P e & S
\)oagx\ Q\\@;o PN
&

T
<
s
o ooo"”

Vs

S S
@0‘;%0%"‘&\&&

& ¥

D

12: Error count per sec for the test cases

T T T T
RF RV 1C FI

13: Average factor values

Table 1: The faults detected by the test suites in bank project

Test cases
Faults T1 T2 T3 T4 T3
F1 X - - - X
F2 - X - - X
F3 - - - X -
F4 X - X - -
F5 - - - - X

where, n be the no. of test cases and m be the no. of
faults. Tf,...Tf, are the position of first test t hat exposes
the fault.

For the project the APFD metric is calculated as

follows. Number of test cases m = 5 and the number of

faults n

5. This can be represented in followimng

Table 1.

Asian J. Inform. Technol., 11 (5): 169-180, 2012

50
48
46
444

APED (%)

421
401

38 T T

Fig. 14: APFD metric comparison

°\E 60

5 50

g 40

E 30

=2 20

a

£ - =

= 0 T T T T
T1 T2 T3 T4 T5

Test cases

Fig. 15: Fault detection performance of test case

Here, the number of test cases 18 5, 1i.e,
iT1, T2, T3, T4, T5} and the number of faults
occur during the regression testing is 5, i.e., {F1, F2, F3,
F4, F5} The prioritized test suits with test sequence
iT5, T1, T3, T4, T2} then the APFD metric after
prioritization is:

+ L =0.50
2x5

3+5+2+4+1
Apfd(T,P)=1- G+3+2+4+D
5x5
The APFD metric before prioritization is The APFD
comparison before and after regression 1s represented in
Fig. 14

1
— =042
2x5

Apfd (T,P) - 1- AT 2¥F L,

5x5
PTR metric: The PTR metric is another way that the
effectiveness of a test prioritization may be analyzed.
Recall that an effective prioritization technique would
place test cases that are most likely to detect faults at the
begmning of the test sequence. Let t be the test swte
under evaluation, n be the total number of test cases in t,
and n, be the total number of test cases needed to detect
all faults in the program under test p. The PTR
metric 1s shown in Fig. 15:

Ptr(t,p):% (11)

178

120 B Prioritized

m Non-prioritized
100

80

60

40

Percentage of faults detected

20 30 40 50

Percentage of testcases executed

16: Comparison of prioritized and non-prioritized test
cases

Fig.

9_
8_
7_
6-
5-
4_
3_

Mean ASFD

l_

T T T T
0-2 2.01-4 4.01-6 6.01-8 8.01-10

RFV range

Fig. 17: Comparison of ASFD and RFV

The comparison is drawn between prioritized and non
prioritized test case which shows that number of test
cases needed to find out all faults are less in the case of
prioritized test case compared to non prioritized test

case.

It can be observed in Fig. 16 that the new
priorntization techmque needs only 30% of test
cases to find out all the faults. But 50% of test

cases are needed to find out all the faults m the
case of non prioritization if test cases are executed
in non prioritized order. APFD 1s the portion of area
below the curve m Fig. 16 and 17 plotting percentage
of test cases executed against percentage of faults
detected.

Comparison of ASFD and RFV: The RFV and ASFD for
each requirements and the TSFD of the project is
computed. RFV is divided into five range of categories
based on the values of RFV. The requirements are
grouped into one of these five ranges. The mean ASFD
value 1s computed for each range of RFV. A lower RFV

Asian J. Inform. Technol., 11 (5): 169-180, 2012

value indicates a lower priority for the particular
requirement to be tested. Thus, the proposed method of
test case priontization process will reduce the re-execution
time of the project by prioritizing the most important test

cases.
CONCLUSION

In this study, researchers describe regression

testing based test suite prioritization technique.

Experimental results demonstrate that the approach
prioritizations. This study
identifies the challenges associated
with prioritization. The
method uses most efficient factors to prioritize the test

can create time-aware
and evaluates
time-constraint proposed
factors.

The effectiveness of the proposed priorntization
technicque can be evaluated by using the APFD and PTR
metric. Based on the experimental results obtained
researchers observe that the proposed method 1s
effectively prioritize the test cases in the Bank application
project by employing the clustering and port based
prioritization. This will reduce the cost of executing the

entire project.
REFERENCES

Amland, S., 1999. Risk based testing and metrics.
Proceedings of the 5th International Conference on
EuwroSTAR, November 8-12, 1999, Barcelona, Spain,
pp: 1-20.

Askaruinisa, A. and AM. Abirami, 2010. Test case
reduction technique for semantic based web services.
Int. J. Comput. Sci. Eng., 2: 566-576.

Biswas, S., R. Mall, M. Satpathy and S. Sukumaran,
2009. A model-based regression test
selection approach for embedded applications.
Software Eng. Notes, Vol 34. 10.1145/1543405.
1543413,

Do, H. and G. Rothermel, 2008. Using sensitivity
analysis to create siumplified economic models
for regression testing. Proceedings of the
2008 ACM International Symposium on Software
Testing and Analysis, July 20-24, 2008, New York,
USA.

Do, H., S. Mirarab, L. Tahvildari and G. Rothermel, 2010.
The effects of time constraints on test case

prioritization: A series of controlled experiments. IEEE

Trans. Software Eng., 36: 593-617.

179

Harrold, M.J, R. Gupta and MIL. Soffa, 1993. A
methodology for controlling the size of a test

suite. ACM Trans. Software Eng. Methodol.,
2: 270-285.

Tin, W, A Orsoand T. Xie, 2010. Automated behavioral
regression testing. Proceedings of the 3rd

International Conference on Software Testing,
Verification and Validation (ICST), April 7-9, 2010,
Paris, France, pp: 137-146.

Karlsson, J. and K. Ryan, 1997
approach for prioritizing requirements. IEEE Software,
14: 67-74.

Kim, JM. and A. Porter, 2002. A history-based test
priortization techmque for regression testing in
resource constrained environments. Proceedings of
the 24th International Conference on Software
Engineering, May 19-25, ACM Press, pp: 119-12%.

Leon, D. and A. Podgurski, 2003. A comparison of
coverage-based and distribution-based techniques
for filtering and prioritizing test cases. Proceedings of
the 14th TInternational Symposium on Software
Reliability Engmeering, Nov. 17-21, IEEE Computer
Society Washington, DC., USA., pp: 442-453.

Malaiya, Y.K. and T. Denton, 1999. Requirements volatility
and defect density. Proceedings of the 10th
mtermnational Symposium on Software Reliability
Engineering, November 1-4, 1999, Boca Raton,
Florida, pp: 285-298.

Mariani, L., S. Papagiannakis and M. Pezz, 2007.
Compatibility and regression testing of COTS-
component-based software. Proceedings of the 29th
International Conference on Software Engineering,
May 20-26, 2007, Washigton, DC., USA.

Mei, L., WK. Chan, TH. Tse and R.G. Merkel, 2009.
Tag-based techmques
prioritization for service testing. Proceedings of the
Sth International Conference on Quality Software,
August 24-25, 2009, Teju, South Korea, pp: 21-30.

Pravin, A. and S. Srimivasan, 2012. Efficient algorithm

detecting suitable test

prioritization. Proceedings of the International

A cost-value

for black-box test case

selection for case
Conference on Recent Advances and Future Trends
i Information Technology, March 21-23, 2012,
Patiala, Punjab, India, pp: 28-31.

Sherriff, M., M. Lake and L. Williams, 2007. Prioritization
of regression tests using singular
decomposition with empirical change records.
Proceedings of the 18th IEEE International
Symposium on Software Reliability, November 5-9,
2007, Trollhéttan, Sweden, pp: 81-90.

value

Asian J. Inform. Technol., 11 (5): 169-180, 2012

Smith, AM. and G.M. Kapthammer, 2009. An empirical
study of incorporating cost into test suite reduction
and priortization. Proceedings of the 2009 ACM
symposium on Applied Computing, March 9-12, 2009,
New Yorl, USA.

Srikanth, H., L. Williams and J. Osborne, 2005. System test
case prioritization of new and regression test cases.
Proceedings of the 4th International Symposium on
Empirical Software Engineering, Nov. 17-18, TEEE
Computer Society, pp: 10-10.

Srivastava, P.R., 2008. Test case prioritization. I
Theoretical Applied Inform. Technol., 4: 178-181.

180

Steven, J., P. Chandra, B. Fleck and A. Podgurski,

2000. jRapture: A capturefreplay tool for
observation-based testing. Proceedings of the
International Symposium on Software Testing and
Analysis, August 21-24, 2000, Portland, OR., TJSA .,
pp: 158-167.

Yoo, S., M. Harman, P. Tonella and A. Susi, 2009.

Clustering test cases to achieve effective and
scalable prioritisation incorporating — expert
knowledge. Proceedings of the 18th International
Symposium on Software Testing and Analysis, July
19-23, 2009, Chicago, IL., USA., pp: 201-212.

	169-180_Page_01
	169-180_Page_02
	169-180_Page_03
	169-180_Page_04
	169-180_Page_05
	169-180_Page_06
	169-180_Page_07
	169-180_Page_08
	169-180_Page_09
	169-180_Page_10
	169-180_Page_11
	169-180_Page_12

