Asian Journal of Information Technology 15 (11): 1723-1730, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

An Optimal Algorithm for Range Search on Multidimensional Points

T. Hema and K.S. Easwarakumar
Department of Computer Science and Engineering, Anna University, 600025 Chennai, India

Abstract. This study proposes an efficient and novel method to address range search on multidimensional

points in 0(t) time where t is the number of points reported in R* space. This is accomplished by introducing
a new data structure, called BITS kd-tree. This structure also supports fast updation that takes 6(1) time for
insertion and O(log n) time for deletion. The earlier best known algorithm for this problem is O(log® nt+t) time

in the pointer machine model.

Keywords: BITS kd-tree, threaded trie, range search, algorithm, time

INTRODUCTION

The kd-trees introduced by Bentley (1975, 1979) are
multidimensional binary search trees commonly used for
storing k dimensional pomts. They are also used to
perform search operations such as exact match, partial
match and range queries. Range queries are mostly used
in GIS applications to locate cities within a certain region
i a map. Similarly, in the geometrical view of a database,
one can use orthogonal range search to perform a query.
Generally, kd-trees with n nodes have a height n and
hence the complexity for insertion and search are high.
Although many multi-dimensional search structures are
found in the literature (De Berg et al., 2008; Preparata and
Shamos, 1985; Samet, 1974; 1990), they differ from the
standard kd-trees mainly in the space-partitioning
methods used. Recall that a 2-d tree stores two-
dimensional point data of the form (x, y). A 2-d tree splits
primarily on the x coordinate of a point at even level and
then on the corresponding y coordinate at the odd level
and so on. Hence, the trees are unbalanced and are not
efficient for search operations. Also, the worst case time
complexity for range search on a 2-d tree is 0/ +1t) where
t 18 the number of points reported and for k dimensions it
is O(n'**+) (Bentley, 1975; Lee and Weng, 1977). In
general, most of the kd-tree variants get unbalanced when
the data is clustered thereby affecting query operations.
The PK k-d tree, Bucket PR k-d tree (Orienstein, 1982), PR
k-d trees (Nelson and Samet, 1986) and Path level
compressed PMR k-d trees (Nilsson and Tikkanen, 2002)
are some of the trie-based kd trees used to store point
data. However, these trees are not always balanced,
especially when the data 1s clustered. One of the dynamic

versions of k-d tree is the divided k-d trees (Kreveld and
Overmars, 1991) for which the range query time is O(n'™
log"*+4).

The best known dynamically balanced tree uses
bitwise interlaced data (Tropf and Herzog, 1981) over
kd-trees mapping k dimensions to one dimension.
Although their search time 15 O(k{log n+t)) for reporting
t points, bitwise interlacing leads to discarded areas
during range search. In the case of squarish, kd-trees
(Devroye et al., 2000), an x, y discriminant 1s based on the
longest side of rectangle enclosing the problem space
instead of alternating the keys. Recently, hybrid versions
of squarish ld-tree, relaxed kd-tree and median kd-trees
{Crespo, 2010) have overcome the problem of height
balancing. An amortized worst case efficiency of range
search for the hybrid squarish kd-trees, relaxed and
median trees for k-dimensional partial match queries are
1.38628 log, n and 1.38629 log, n and 1.25766 log, n
respectively. Their experimental results match the
aforementioned theoretical results, where they show that
the hybrid median trees outperform the other variants.
However, as far as query handling i1s concemed, these
structures perform only partial match queries for two
dimensions efficiently. The most recent work in the
pointer machine model is an orthogonal range reporting
data structure with O(n{log nflog log n)*) space that
address range queries in O(n(log n/log log n)™* " +t)
time where d=4 (Afshani et al., 2012).

Range trees of (Bentley and Sax, 1979; Bentley, 1979)
are yet another class of balanced binary search trees used
for rectangular range search which showed mmprovement
in the query time of O(log"® ntt) over O(n"**+) of k
d-trees where k 1s the dimension for a set of n points and

Corresponding Author: T. Hema, Department of Computer Science and Engineering, Anna University, 600025 Chennai, India
1723

Asian J. Inform. Technol, 15 (11): 1723-1730, 2016

t is the number of reported points. This was later
improved to O(log™' ntt) using fractional cascading in
layered range trees (Willard, 1978) but the space
requirements are relatively high of O(n log"' nt+t). A
kd-Range D SL-tree performs k-dimensional range search
in O(log® ntt) time was proposed by Lamoureux and
Nickerson (1995).

Recently, Chan ef al. (2011) have proposed two data
structures for 2d orthogonal range search in the word
RAM model. The first structure takes O(nlglgn)
space and O(lg lg n) query time. They show improved
performance over previous results (Alstrup ef al., 2000) of
which O(nlg® n) space and O(lg lg n) query time or with
O(n Ig g) space and O(lg* lg n) query time. The second
data strucure 15 based on O(n) space and answers
queries in O(lg® n) time that outperforms previous O(n)
space data structure (Nekrich, 2009), answers queries in
O(g n/lg 1g n) time.

Furthermore, they also propose an efficient data
structure for 3-d orthogonal range reporting with
O{n 1g"*+n) space and O(lg* Ig nt+k) query time for points
in rank space where €>0. This improves their previous
results (Chan ef al., 2011) with O(n lg’ n) space and
O(lg lg n+k) query time or with O(n lg"* n) space and
O(lg? 1g ntk) query time where k points are reported.
Finally they have extended range search to higher
dimensions also.

Since, such range queries are common among
multi-dimensional queries in database applications, we
have mainly considered an orthogonal range search on
multi-dimensional poimnts.

MATERIALS AND METHODS

Our contributions: In this research, we make use of the
BITS-tree (Easwarakumar and Hema, 2013), a segment tree
variant that performs stabbing and range queries on
segments efficiently in logarithmic time. Most importantly,
the distribution of the data pomts (umform or skewed)
does not affect the height of the BITS-tree and in turn
facilitates faster search time. Here, we actually use the
BITS-tree structure to store points related to each
dimension and thereby form a multi-level tree, called BITS
kd-tree. In addition, certain nodes of the BITS-tree
assoclate to a variant of the trie data structure called
threaded trie, to facilitate fetching a required node in
constant time. Unlike, k-d trees, it does not associate
co-ordinate axis, level wise, for comparison to locate or
msert a pomt. Instead, the tree at the first level has nodes
with a key on only distinct values of first co-ordinate of
the pomts. Therefore, this tree corresponds to one
dimensional data. This tree is then augmented with

another tree at second level and there in key values of the
nodes associated with distinet first two co-ordinates of
the points. In general, ith tree corresponds to the distinct
first i co-ordinates of the set of points given. Moreover,
in each tree, the inorder sequence provides the sorted
sequence. That is, BITS k-d trees is a multi-level tree and
its construction is illustrated in the subsequent studies.
BITS-trees to be removed.

Originally, the BITS-tree (Balanced Inorder Threaded
Segment Tree) (Easwarakumar and Hema, 2015) is a
dynamic structure that stores segments and also answers
both stabbing and range queries efficiently. Unlike
segment trees, it also permits insertion of segment with
any interval range.

Definition 1: A BITS- tree is a height balanced two-way
inorder-threaded binary tree T that satisfies the following
properties:

» Bachnode v of T 1s represented as v([a,b], L) where
[a,b] is the range associated with the node v and L. is
the list of segments containing the range [a,b], i.e., if
[c,d]eL then [a,b]<[c.d].

s Givenv,{[ab], L) then v, ([a,b], L,)#v, ([a,,b,]) then:

[b,]if 2, = b,
[aby] N [ay.ba] = {[bsJif & = by

@ otherwise

l.e., ranges can either overlap only at end points or
do not overlap at all.

» Suppose v, ([a,b], L,) appears before v, ([a,,b,]) n the
morder sequence, then b, <a,

+ Ithas a special node, called dummy node denoted by
D with range and list as #(empty)

» Suppose v; ([a,b], L) and v, ([a,,b,]) are the first and
last nodes of the inorder sequence respectively, then
InPred(v,) = In Succ(v,)and the range, say [a,b] of
any node contained in [a,,b], 1.e, [a,b]c[a,,b,]

Here, the functions InPred() and InSucc(),
respectively returns inorder predecessor and successor.
A sample BITS-tree is shown in Fig. 1. Note that the
dangling threads actually point to a dummy node which
13 not shown m Fig 1. The BITS-tree 13 originally
developed for storing segments, but we use this for a
different purpose of storing pomts. Thus, we modify this
structure to suit our requirement as described.

Each node v([a,b], L) is replaced by v(p, L, T) where
p is a point in RY, kzland L' is a pointer to the list of
collinear pomts in dimension k+1 having p for the first k
co-ordinates. However, this list is maintained in the
tree at the next level which is described n the following

1724

Asian J. Inform. Technol, 15 (11): 1723-1730, 2016

: b i !
' S T ' !
T : ’. l

HE i Voe
5) i5 R

(a)

b
(12,15

([13.21]) 4 List ([5, 10]) = {a}
ot e i
........... h T [[10.12]}'-‘ {a,b}

List ([12, 15]) = {b}

Fig. 1: a) Set of segments; b) BITS-tree for the given segments

subsection. Now, T is either null or a pointer to a threaded
trie which is elaborated m the next section. For any two
points p, and p, stored i a tree,p,#p,. Suppose v,(p,, L,,
T,) appears before v,(p,, L, T,) in the inorder sequence,
then p,<p; as per the following defimtion.

Definition 2: Let, p, = (x.x},..x}) and p, = &f.x2...x)) be two
points in a k-dimensional space then:

* p,=p;implies x,=x} foreachj=1,2,..k
* p<(or)> p, mmplies head(p,, j) = head(p,, j) and
X'y <(or =) x°,, for some j

In the subsequent sections, for better clarity, we use
hyphen(-) for a certain parameter of a node to denote that
the particular parameter is irrelevant with respect to the
context. For mstance, (p, -, T) denotes that the list
contents are wrelevant for that point p at this time.

Threaded trie: Threaded tries are variants of tries that
consists of two types of nodes viz. trie node and data
node. For instance, n Fig. 2, A-C are trie nodes and the
rest are data nodes. Unlike in tries, the trie node here does
not have a field for blank (b). However, each of these trie
nodes contain two segments. One is the index pointer and
the other 1s a tag value which 15 either 0 or 1 where 0
denotes the corresponding mdex point m a thread and
otherwise it will be 1. Here, all null pointers are replaced
by threaded pointers which point to the next valid node,
if one exists. For mstance, the thread pointers of 1-3 of
node A points to the node C as this is the next valid node.
Similarly, thread pomters of 0 and 1, in C pomts to the
data node 42. Note here that ordermng on the nodes
provides the sorted sequence. Also, data nodes appear at
the same level. This 13 accomplished by having uniform
width for all data. For instance, the data 8 1s treated as 08
in Fig. 2.

Construction of multi-level BITS-tree: Multi-level

BITS-trees are constructed using a collection of

f [10,12]) List ([18,21]) = {¢}
(b)
o] o
of1
o 2
of 3
Tag Index of 4
ilo _ -|o| s
ol o|e
ol= o] 7
RE 118
2| = - N o] @
o| s -~
o|se ~
ol 7 .
ols \o o]
=N K] (o1 |[—2~
A -
i 3
BEss
o al—
o (=]
o 7
o 8
o]le|

Fig. 2: A sample threaded trie

BIT S-trees one at each level, and interlinkang the trees of
two consecutive levels in a specified manner which are
due to the following definitions. These multi-level
BITS-trees are termed here as BITS-kd trees.

Definition 3: Given a pomt p= (x,, X,, ..., %) and an mteger
1<k, the head of p and tail of p are defined, respectively as
head(p,l) = (x,, X5, ..., %) and tail(p,1) = (Kepirs Xpizs s Xid)-
Also, having (head(p,), v, ¥ s ¥i) = K %3, -o0s Xpp Y1y Voo
o ¥u), leads to (head(p,l), taal (p, k-1)) = p.

Definition 4. Given S as the set of points in R¥and |S| =
n, the set S, 1s defined as s =J! (&) pe 8 and head(p,1) = (x)} -
That 1s, S, i1s the set of distinet x values of the
points in S. In general, s, = {x.%,. %)) pes and
head(p,j) = (x,, X, ..., x;) where 1 <j<k.
Definition 5: For a point p = (x,, x,, ..., %) in S, the term x;
is said to be the dimensional value of p as the set of
points in §, is used to construct jth level BITS-tree.

1725

Asian J. Inform. Technol, 15 (11): 1723-1730, 2016

T + 8,
=T \ 4 T,
=3 o .I <k
=3 \\a ! _I“‘
| \ 5l .)
I ! 3] -
9 —C-: |8 \\ ,’/'% i ;‘:4-
]
t Q2 - 1: [!I]
14+ o G o D - =1 \I: ' I[I\
12 | 2 4 l.l : \\-h \.\ |I T:2
10 o g | o !
- i 6,6 %A i - 1
g a8 Vg '.I e} \ TN
o ¥ i d I
Wi~ | (2.6 !(j% >} oy
4 : aJ_u' : : Iy ~3
F E g | | i 1
2r 2 . 2 [z} 3 =W ‘I 147
0O 2 4 6 & 10 12 14] -.e.rl_:) b -‘Eli_,8 ol A '
s ' I R,
| L
| 214 :
& :
1 | 2 [I o) I
4 § O |7 i3 - o (2
= —= — thread links (&l 7
— == _ (r08s links 1
— — > _ trie links

(C))

(b)

Fig. 3: ABITS 2d-tree: a) Spatial representation of points; b) BITS-2d tree for points shown in (a)

Definition 6: A BITS kd-tree 1s a multi-level tree winch 1s
constructed as follows:

¢ Create separate BITS- trees, T, for each 5, 1 <j<k

¢ LetX =(x.%, ..,x) Now, for each nede, say v, = (X,
L,-) of T.,1<j<k, the list I points to the node v,
= (X, ¥)~) of T, where), =min{x, | head{p, j) = X;
and (head(p,j), x,,)€S8,,}. We term these links as
cross links and the node v,., as a cross link nede in
T..

. Ir]1 T,, there is only one cross link node which is the
first node m the in order sequence and the tree
pointer always points to this node

¢ For each node v=((X_.x}-T) in T, 1<j<k, T is
pointer to the threaded tree if v 1s a cross link node
and otherwise T is set to be null

¢ For every cross link node v;=((;,.x)-T) in T}, the
data node of T for a key, say k', points to the node
((X;.k),—-y in T, That is, T provides links to the
nodes in {((X, x)). -,)| (¥, x)eS;} and these links

are termed as trie links.

A BITS 2d-tree for the sample pomts in Fig. 3a 1s
shown in Fig. 3b. Since, BITS kd-trees are multi-level trees
with binary morder threaded search trees at each level, the
height of the trees at each level is O(log n). Also, each
node in T, has a cross link to a node in T, which has the
least value for the ith co-ordinate with respect to the head
value of the node in T, ;. Note here that at least one such
point exists. This link is useful to locate a list of collinear

pomts n the ith dimension, associated with a pomtin
T, Also, the trie links are useful to locate a point in a
given range window in constant time. The cross link and
trie links also make the structure much suitable to address
range queries efficiently.

Normally, kd-trees perform insertion by a smnple
comparison between the respective co-ordinates at each
level. However, deletion is tedious due to candidate
replacement. This is because, candidate for replacement
can be anywhere n the subtree. Also, it requires a little
more work when the right subtree 1s empty. Now, to find
a candidate for replacement, it is required to find the
smallest element from the left subtree to avoid violation of
the basic rules of kd-trees and then it is required to
perform a swap of left and right subtrees as many possible
candidate keys exist in the left subtree. To handle such a
situation, we make use of a collection of BIT S-trees, one
for each dimension. Here, deleting a pomnt may or may not
require a replacement but if so, it is only the inorder
successor and that can be located in 6(1) time as inorder
links exist for each node. Also, the cross links that exist
between two consecutive levels, practically provide a
faster search on next level trees. Another advantage of
this structure 13 that when a node 13 pruned out at a
particular level, it need not be considered in the
subsequent levels. That is, nodes that have head values
as these will be ignored in the subsequent levels. To the
best of our knowledge, there 1s no such structure using
multi-levels of balanced binary search trees with two-way
threads mtroduced in this work, for storing pomnt data and
to perform range search efficiently.

1726

Asian J. Inform. Technol, 15 (11): 1723-1730, 2016

Range search for window query: Given a rectangular
range in the form of a window, a range query finds all
points lying within this window. Let [x x,]%[y,: v;] be a
glven query range. First, we use a trie stored in the first
node, which 1s the only cross link node, 1n the tree at level
1 to find the smallest point larger than or equal to x; n S,.
The non-existence of such a point 1s determined from the
trie itself. On the other hand, once such a point p is
located, subsequent points that fall within [x;: x,] can be
determined using the inorder threads as the inorder
sequence is in sorted order. Let us say that the reported
set of points as S'. However, if the dimensional value of
the point T, 18 greater than x,, it implies absence of
required candidates.

Now, using cross links of the node n T, that
corresponds to each pomt in S, further search 1s
performed at T, in a sumilar fashion. Note that each cross
link node n T, has a trie structure that supports quick
access to a node m T, where the dimensional value 1s in
[¥i: val. In case, the dimensional value of the cross link
node is within [y;: y,], the respective trie structure need
not be locked into, instead the inorder threads are used to
find the remaining candidates.

Example 1: For instance, let us consider Fig. 3 with search
range [1:8]x[5:7]. First, we use the only cross link node
present n T,. As its dimension value, 1.e., 2 lies within the
range [1:8], we do not use the respective trie. Instead, we
use the inorder threads to identify the candidate points,
which are 2, 6 and 8. Now, for each of these candidates,
further search 1s continued respectively from (2,2), (6,2)
and (8,10) in T, as these are the corresponding cross link
nodes. Now, by looking at the tries of these cross link
nodes we find a pomnt whose dimensional value 1s the
smallest one is [5:7]. Thus, tries of (2,2) yields (2,6), (6,2)
vields (6,6) and (8,10) yields nothing. Further, by
performing inorder traversal from (2,6) and (6,6), the final
reported pomnts for Q, are E(2,6) and C(6,6). Also, for Q,
1e, ([5:8]x[12:14]), no points will be reported.

Notice that one can stop the search at T, without
traversing T if there 1s no candidate node n T, within the
givenrange. This 1s also applicable in k-d trees because
if there 1s no candidate node in the lgher tree, the lower
level trees need not be searched. Thus, this structure
prunes the search in some cases and thereby practically
reduces the time for reporting a query.

A range search on k-dimensional points can be
performed by extending the search on T, T,, ..., T, similar
to that of T, as in the case of 2d range search. However,
i T, and T,, we need to perform the search as described
for 2d range search. That 1s, when we take the query

range as [x;:x Ix[x;:x;1% [x,:x,], the search is performed
to find candidates within the range of [x,:x1 in T, [x;:x.]
mnT,, [x:x] in T, and so on. Finally, the pomnts reported
from T, will be m Q. It is important to note that the search
requires comparison of keys within the given range of the
particular co-ordinate dimension in each of T, T, ..., Ty
This simplifies subsequent searches at the next level.

RESULTS AND DISCUSSION

Two dimensions: Given a set of two dimensional pomts in
R?, a two-level tree (BITS 2d-tree) is constructed in O(n)
time as a point may require at most two insertions, one at
T, and the other at T,. But, the position at which insertion
1s to be made in T, and T, could be determined in constant
time as described mn the proof of Lemma 5. Thus, to msert
n nodes requires O(n) time. Also, it may be required to
create a cross link for each node of T, in the case of BITS
2d-tree. Since,T, cammot have more than n points, the
number of cross links created cannot exceed n. Also, the
number of trie links created cannot exceed the number of
nodes in T, and T, which is O(n). Moreover, construction
of a trie requires only constant tume as the height of the
trie 18 constant due to fixed size of the key. Thus, all these
factors lie within O(log n) for each insertion. Regarding
space requirements in a BITS 2d-tree, it is O(n) as the
second tree 1s the one that contains all the n points and
fewer or equal number of points in the first tree. Also, the
number of trie nodes is O(n) as the height of a trie is
constant which is due to the size of (number of digits) of
the key. Thus, we obtain the following lemma.

Lemma 1: Construction of BITS 2d-tree for O(n) points
requires O(n) time and O(n) space.

Now, searching a candidate node in T, is done
through the trie in T, and that requires only constant time
as the height of the trie is fixed. Once such a point is
identified, subsequent points are identified through
mnorder threads. Thus, for identifying candidate ponts, 1t
takes only 0(1,) time, if there are t, candidate points in T,.
Now, using cross links of each of these nodes, we can
locate the required tries in constant time and further
search 13 to be done mn a sunilar fashion as described
earlier. Thus, it leads to the following lemma.

Lemma 2: Range search for window query using
BITS 2d-tree can be addressed i 0G(t) time where t stands
for the number of points reported.

Higher dimensions: A straight forward extension of BITS
2d-tree to k-dimensions is made easy by connecting
{cross links) to the corresponding nodes m the tree at next

1727

Asian J. Inform. Technol, 15 (11): 1723-1730, 2016

Table 1: Theoretical comparison of kd-trees, divided k-d trees, range trees, k-d Range D8I -trees, layered range trees and the proposed BITS kd-trees

Description Storage Construction Update Range search
kd-Trees (Bentley, 1975) o) Of(n logn) O(log* n) O(n log'+t)
Divided k-d trees (van Kreveld and Overmars, 1991) O(n) O(n logn) O(logt! n) O(n “™Mog!™ nrt)
Range trees (Bentley, 1980) O(n logt! n) O(n logt! n) O(log* n) O(logt ntt)
kd-Range DSL-Trees (Lamoureux and Nicolson, 1995) O(n log<! n) O(n log* n) O(n log<! n) O(log" n+t)
Layered Range Trees (Willard, 1978) O(n logt! n) O(n logt! n) O(log* n) O(logt! ntt)
BITS kd-Trees O(n) O(n) Tns. 8(1) Del. Olog n) o)

n =No. of points, k-dimensions, t =No. of points reported

level. Unlike, range trees (Bentley, 1980) which build
another range tree at a given node from the main tree, we
maintain the trees T, T,. ..., T, dimension-wise such that
the inorder traversal provides an ordered sequence of
points stored in the tree. This definitely reduces the
overall time taken for range search across k-dimensions.
As described in the previous section, the time required to
find a candidate pomnt m any T;, 1 <i<k 1s only a constant.
Thus, it leads to the following lemma.

Lemma 3. Let 5 be a set of points in k-dimensional space,
k>1. A range search on BITS kd-tree reports all points
that lie within the rectangular query range in 6(t) time,
where t is the number of points reported.

Lemma 4: Given a set of n points, a BITS kd-tree can be
constructed in O(n) time and O(n) space.

Proof: Since, we construct T, T,, ..., T,, such that T, at
level k has at most n nodes, it follows that N(T,)<N(T,,,),
1<i<k and N(T,) = n where N(T,) is the number of nodes
in T, Note that levels correspond to dimensions and
hence may be used mterchangeably. Also, the number of
trie nodes 1s k O(n) as its height 1s constant. Therefore, for
k levels, a BITS kd-tree uses O(n) storage in the
worst case as k 1s a constant. Now, construction of BITS
kd-tree is considered as a sequence of insertions. Each
msertion, may or may not alter T, 1 <1<k, a BITS tree of a
particular level. However, if a BITS-tree T; is altered, due
to insertion, all trees T, will be altered. Let j be the least
index such that the tree T,,,, T,.;, T, is altered. Thus, for
T, Ts ... T,; with trie links and cross links, cne can
determine that the required values are already stored in
those trees within constant time. Now, from a particular
cross link in T, followed by a trie link in T}, cne can find
a position for the new value in T, This requires cnly
constant time. Then, while inserting the value if the tree is
unbalanced, atmost one rotation is required to balance the
tree. So, for T, too, it requires constant time. Let n, be the
new node inserted in T;. Now, by taking cross link of
inorder successor of n, one can determine the position of
the new node in T, and that as inorder predecessor of
cross link node of morder successor of n. This new node
mn T, need to have a trie, which again be created in

constant time. Then, the process is to be continued for
Ttz -, T Here, updation in each T,]<i<k takes only
constant time and hence each msertion takes 0(1) time.
So, construction of BITS kd-tree for n pomnts requires O(m)
tune.

Lemma 5: Insertion and deletion of a pomnt in a
BITS kd-tree can be respectively done in 6(1) and
O(log n) time.

Proof: As per the description given in the proof of
Lemma 4, insertion of a point in BITS kd-tree takes only
6(1) time. But for deletion, finding a node to be removed
from a BITS-tree requires only constant time. However, if
that node 1s not a leaf node a cascading replacement with
inorder successor 1s required until reaching a leaf node to
be removed physically. Certainly, the number of such
replacements to be done cannot exceed O(log n). After
that, it may require a sequence of rotations on the path
from the physically removed leaf to the root and that too
in at most O(log n) rotations. So, deletion of a point in
BITS kd-tree requires O(log n) time.

Performance: Table 1 summarizes the performance of
kd-trees, divided k-d trees, range trees, kd-range DSL.-
trees, layered range trees and the BITS kd- tree proposed
in this work. Furthermore, our theoretical comparison of
the BITS kd-tree is made with kd-trees adapted for
internal memory (pointer machine model) and not with any
of the other bulk loading ld-trees(RAM model). The
results give an 0(t) query time using the BITS kd-tree that
shows a reduction in time as compared to the existing
bounds. Since we try to capitalize on the efficiency of
balanced search trees at all the levels by using cross links
and trie links, we ensure that the number of nodes visited
during a range query 1s considerably reduced i BITS kd-
tree. Observe that the storage is increased from
O(n) inkd-trees to O(n log™'n) in range trees while BITS
kd-tree still maintains an O(n). Notice that the update time
for BITS kd-tree has been reduced considerably. To
summarize, although the storage requirements of BITS
kd-tree are comparable to k-d trees, divided k-d trees, the
construction and update time are improved considerably.
Moreover, the overall query time is improved to O(t) time

1728

Asian J. Inform. Technol, 15 (11): 1723-1730, 2016

where t is the number of points reported as it prunes
points falling outside the query region for each
dimension.

CONCLUSION

A BITS kd-tree for storing k-dimensional points
having update and query operations efficiently than
kd-trees is proposed. The main advantage of this tree is
that it effectively handles the collinear points. As a result,
number of nodes visited during search is much less
compared to other kd-tree variants that are either not
height balanced or update operation is complex. In the
case of height balanced kd-trees, having better search
efficiency, msertion 1s tedious. A k-d range DSL tree gives
a logarithmic amortized worst case search time with
efficient updates mainly for partial match cueries and not
for window cueries. In BITS kd-tree, overall insertion time
18 8(1). Moreover, points can be dynamically updated at
each level. Since, co-ordmate dimensions at each level are
distributed and using threaded tries, we quickly find
points falling within the query range. Also, points falling
above and below the search range are pruned efficiently
using cross links to the next level and morder threads
similar to the BITS-tree. In addition, threaded tries
introduced in this work link the node, having cross link,
by means of trie links to find the points within the given
range in constant time. Therefore, range search for points
in a rectangular region using BITS k-d tree takes 6(t) time
where t is the number of points reported, and therefore the
loganthmic factor in earlier worst case bounds 1s reduced.
Hence, it 13 defimitely a remarkable improvement over
O(n'* +t) of kd-trees and O(log *n+t) time of k-d range
DSL trees.

REFERENCES

Afshani, P., L. Arge and K.G. Larsen, 2012.
Higher-dimensional orthogonal range reporting and
rectangle stabbing in the pointer machine model.
Proceedings of the 28th Annual ACM Symposium on
Computational Geometry, Tune 17-20, 2012, ACM,
New York, USA., ISBN: 978-1-4503-1299-8,
pPp: 323-332.

Alstrup, S., G.S. Brodal and T. Rauhe, 2000. New data
structures for orthogonal range searching.
Proceedings of the 41lst Annual Symposwum on
Foundations of Computer Science, November 12-14,
2000, IEEE, Redondo Beach, Califorma, ISBN:
0-7695-0850-2, pp: 198-207.

Bentley, I.L. and 1.B. Saxe, 1979. Decomposable searching
problems. Inf. Process. Lett., 8: 5-9.

Bentley, I.1.., 1975. Multidimensional binary search trees
used for associative searching. Commun. ACM, 18:
509-517.

Bentley, I.L., 1979. Multidimensional binary search trees
in database applications. Software Eng. TEEE. Trans.,
4: 333-340.

Bentley, I.L., 1980. Multidimensional divide-and-conquer.
Commun. ACM., 23: 214-229.

Chan, T.M., K.G. Larsen and M. Patrascu, 2011.
Orthogonal range searching on the RAM, revisited.
Proceedings of the 27th Annual Symposium on
Computational Geometry, June 13-15, 2011, ACM,
New York, USA., ISBN: 978-1-4503-0682-9, pp: 1-10.

Crespo, MM.P, 2010. Design, analysis and
mmplementation of new variants of Kd-trees. Master
Thesis, Polytechnic University of Catalonia,
Barcelona, Spain.

De Berg, M., O. Cheong, M. Van Kreveld and
M. Overmars, 2008. Computational Geometry:
Algorithms and Applications. 3rd Edn., Springer,
New York, ISBN-13: 9783540779735, Pages: 386.

Devroye, L., J. Jabbour and 7.C. Cura, 2000. Squarish kd
trees. SIAM.]J. Comput., 30: 1678-1700.

Easwarakumar, K.S. and T. Hema, 2015. BITS-tree-an
efficient data structure for segment storage and
query processing. Int. J. Comput. Technol., 11:
3108-3116.

Kreveld, M.I.V. and M.H. Overmars, 1991. Dividedk-d
trees. Algorithmica, & 840-858.

Lamoureux, M.G. and B.G. Nickerson, 1995. Deterministic
skip lists for K-dimensional range search. University
of New Brunswick Technical Report TR95-098,
Revision, 1.

Lee, D.T. and CK. Wong, 1977. Worst-case analysis for
region and partial region searches in
multidimensional binary search trees and balanced
quad trees. Acta Inf., 9: 23-29.

Nekrich, Y., 2009. Orthogonal range searching in linear
and almost-linear space. Comput. Geom., 42: 342-351.

Nelson, R.C. and H. Samet, 1986. A consistent hierarchical
representation for vector data. Proceedings of the
Conference on ACM SIGGRAPH Computer Graphics,
August 4, 1985, ACM, New York, USA.,
[SBN:0-89791-196-2, pp: 197-206.

Nilsson, S. and M. Tikkanen, 2002. An experimental study
of compression methods for dynamic
Algorithmica, 33: 19-33.

Orenstein, J.A., 1982, Multidimensional tries used for
associative searching. Inf. Process. Lett., 14: 150-157.

Preparata, F. and M.I. Shamos, 1985. Computational
Geometry: An Introduction. Springer-Verlag, New
York.

tries.

1729

Asian J. Inform. Technol, 15 (11): 1723-1730, 2016

Samet, H., 1974. Fundamentals of Multi-Dimensional and Tropf, H. and H. Herzog, 1981. Multidimensional range

Metric Data Structures. Academic Press, New York, search in dynamically balanced trees. Angew. Inf., 2:
TUSA.. 71-77.

Samet, H., 1990. The Design and Analysis of Willard, D., 1978. New Data Structures for Orthogonal
Spatial Data Structures. Addition Wesley, New Quertes. Harvard University, Harvard University,
York. Pages: 38.

1730

	1723-1730_Page_1
	1723-1730_Page_2
	1723-1730_Page_3
	1723-1730_Page_4
	1723-1730_Page_5
	1723-1730_Page_6
	1723-1730_Page_7
	1723-1730_Page_8

