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Abstract: This study describes Fast Fourier Transform implementation using fused floating point operations

1n parallel fashion. The Fast Fourier Transform processors use butterfly unit for computations on complex data.

These operations are performed by FFT processors using complex butterfly operations that consist of

multiplication, addition and subtraction operations. The main contribution in this research includes a radix-8

butterfly unit with higher efficiency. Also this butterfly umt performs faster than the conventional butterfly.
The area recuired is reduced with the use of FFT Fleating Point Butterfly unit as compared to the conventional

butterfly umt. The complete architecture is synthesized and simulated using Xilinx ISE Software. The
comparison of owr proposed method with similar FFT architecture using radix-4 exhibited about 26.36%

reduction i area and about 50.22% reduction in overall power consumption.
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INTRODUCTION

Fast Fourter Transform (FFT) 13 used in many
applications like spectrum analyzers, multidimensional
transform, spectral music, OFDM based wireless
broadband communication system and many signal
processing applications. Discrete Fourier Transform 1s a
powerful tool to perform frequency analysis of a signal.
The main disadvantage being the number of com putations
required to calculate the DFT coefficients. Fast Fourer
Transform is an efficient algorithm that avoids redundant
calculations in computing the DFT of a signal. The FFT
algorithm also reduces the computation time as well as
computation complexity when compared to direct
computation of DFT.

Types of FIF'T algorithms

Decimation in Time (DIT): In Decimation in time
algorithm, the divided mto
subsequences, 1.e., even and odd sequences. These
subsequences are again divided in possible manner.

mput sequence 1s

The DFTs of these sequences are calculated and then
finally combined. In this algorithm, sequence is
smaller subsequences
show how the

split 1nto in tme domain.

Figure 1 Decimation in Time
algorithm works. Here, we have considered 8-Point
DFT using Decimation in Time algorithm. The steps are

given below:

+  First 8-points are divided into two N/2 points DFTs

¢ Then, these N/2 point DFTs are again divided into
N/4 DFTs

¢ Finally, outputs of these N/4 DFTs are combined to
get FFT

We divide
shown n Fig. 2-5.

until, we get 2-pomt DFT as

Decimation in Frequency (DIF): In decimation in
Frequency algorithm, of dividing the
sequence in time, Frequency samples of DFT are

nstead

decomposed into smaller sequences. In this algorithm
frequency samples are divided into even and odd
samples. This decomposition 1s continued till we get the
2-point DFTs. In Decimation in Frequency algorithim,
from

of decomposition 1s reversed

in time, i.e., decomposition proceeds

symmetry
Decimation
from left to right. Figure 6 shows the final flow graph
of 8-pomt DFT using Decimation in Frequency FFT
algorithm.

Realization of DIF And DIT FFT: Now days, FFT
processors are very popular in the field of digital signal
processing applications (Takahashi, 2003). The Fast
Fourier Transform is one of the important functional unit
1n various signal processing and wireless commurncation
applications (Ayinala et al., 2012).
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The N-point FFT is computed using butterfly  be called as radix-r FFT where ‘1" is the size of butterfly.
operations. Depending on the size of butterfly, FFT can The basic radix-r architecture is very well known for the
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Fig. 7: Basic architecture of FFT processor

use of FFT processors. This radix-r butterfly unit is used
to calculate the FFT of input signal. The radix-r butterfly
consists of two main blocks. One Computational Elements
(CE) and other i1s Twiddle Factor (TF). Radix-r FFT
processor contains these two blocks along with one
additional block called Reordering Element (RE). Signal
Data from the input flows in one direction along the lines.
These lines carry the r-complex data. While, other lines
carry -1 complex data from Twiddle Factor block to
calculate the FFT of the input signal. These computational
units vary depending upon the type of FFT algorithm
used. 1.e., decimation in Time or Decimation in Frequency
algorithm.

Decimation in Time FFT butterfly unit calculates the
FFT as complex multiplication followed by sum and
difference network whereas Decimation m Frequency FFT
butterfly unit calculates the FFT as sum and difference
network followed by multiplication. The N radix - butterfly
unit calculates the r N-point FFT. The data rate on the
FFT processor line can be calculated as r*clock rate on
each clock cycle. From this we can conclude that radix-8
is 8 times faster thanradix-2 and 2 times faster than
radix-4.

Basic FFT structure: Figure 7 shows the general block
diagram for the FFT processor. General FFT processor
consists of RAM bank and radix-r butterfly unit. Radix-r
butterfly unit consists of complex multiplication and
add-subtract umt. The address generator generates the
location of the input in the RAM bank that is to be fed to
the butterfly unit. The butterfly unit computes the output
by utilizing the coefficients that are stored in the ROM
and the outputs thus computed are reloaded in the RAM
banks. The process is repeated for the assigned number
of stages. All the operations in the butterfly are carried
out with use of Multipliers and adders. Previously
Discrete fused floating point multipliers and adders are
used in butterfly unit to calculate FFT. Second generation

RISC CPU are implemented by using Multiply-add Fused
Floating Pomt Unit (MAF). MAF can replace floating
pomt multipliers and floating point adders.

Floating point multiplication is very important
application in the DSP applications that are related to
large dynamic range (Salehi er al,, 2013) like Binary 32, 64,
128. Floating pomt multiplication of two numbers can be
done in the following sequence:

»  Add exponent of two numbers and subtract the bias
from their result

»  Multiply the sigmficant of two mumbers

+  Sign of the final result can be calculated by XORing
the sign of two numbers

In conventional method, multipliers or shift-add
multipliers does multiplication of the significand bits of
two floating point numbers. This multiplication is done in
serial fashion and that is relatively slow. If they are
performed in parallel fashion then silicon area on FPGA
platform and power consumption increases. Hence
conventional multipliers are not efficient for FFT
computations. But the parallel method of floating point
multiplication provides the best throughput. This study
describes the power efficient method for floating point
multiplication in parallel implementation that can be used
in radix-8 and 4 butterfly unit.

Fused floating point arithmetic: In the previous years
fixed point anthmetic 13 much popular than floating
pomt arithmetic, since the delay 15 ligh, requires more
area and power consumption is increased (Lienhart et al.,
2006; Allan and Lulk, 2001). But in the recent years,
floating point arithmetic 1s more attractive i the
implementation of Digital Signal Processors as it
reduces the computational complexity. Now a days, after
the realization of general purpose processors, fused
floating point multipliers are given much attention than
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discrete floating point multipliers as it reduces the area on
FPGA and also reduces the power consumption
(Quinnell et ai., 2008).

In case of FFT, complex butterfly operations are used
to compute the transform. The computation of radix-2
butterfly requires 1 complex multiplication and 1 complex
addition and subtractions operation. Whereas, radix-4
requires 3 complex multiplication and 8 complex addition
and subtractions. This study presents, the radix-8
butterfly umt with fused dot product and Fused
add-subtract unit for multiplication and additiion-subtract
operation.

Two-term Fused Floating Point dot product is the
extension of Fused Multiply-Add (FMA) (Huang et al.,
2012) Unit. Equation 1 and 2 denotes conventional dot
product and fused dot product, respectively:

X =PQ+RS (1
X =PQ+RS 2

Fused dot product allows the difference of the
product too along with addition that is useful in the
umplementation of complex multiplication.

Another operation performed using fused floating
point arithmetic 1s the fused add-subtract operation.
Computing the sum and difference of two floating point
operands 13 used many times in DSP algorithms. Fused
add-subtract unit 13 based on conventional add-subtract
unit. Fused add-subtract unit performs the addition and
subtraction on same pair of floating point operands in
parallel fashion. Equation 3 given below shows the fused
add-subtract operation on same operands:

X:P+Q (3)
X=P+Q

Related work: Over the years many floating point
architecture are proposed for FFT computation.
Hokenek et al (1990) proposed floating point with
multiply-add fused architecture for Second generation
RISC chips. Multiply-add Fused (MAF) Umt described
throughput. It floating point
performance and accuracy of complex floating pont
calculations. It can execute the double precision
mstruction, ie., W = (XxYHZ in pipeline manner in two
cycles with just one rounding error. About 40 ns cycle
time was comparable to other CMOS RISC systems. Also,
the performance of this floating point unit gets extended
to Bipolar RISC systems.

mncreases ncreases

Low-cost reconfigurable architecture for FFT
processor was proposed by Xiao et al. (2008). Fixed point
FFT 18 used m this architecture. It employs shared
memory and pipelined architecture design to make single
port SRAM available. Core area and power is greatly
reduced at the cost of Execution time.

Fused Floating Point arithmetic architecture was
proposed by Hani and coauthors for DSP applications.
Fused Floeating Point unit is used in radix-2 butterfly
unit for the computation of FFT. This simplifies the
computation  complexity.  When, compared to
conventional floating point multipliers and adders,
area is reduced to 72% using fused FFT butterfly. Also,
the time required for floating point operation is reduced to
87% to that of conventional floating point operation.

Ashrafy er al (2011) proposed efficient floating
point multiplier. Overflow and Underflow cases in the
computation of compex operations in FFT is handled by
this multiplier. This gives more precision when used in
Multiply and Accumulate Unit excluding the Rounding
operation. The performance is improved due to pipelining.
This also increases the maximum operating frequency of
the multiplier.

Seidel and Even (2004) proposed delay optimized
implementation of Floating Point Addition. Floating
point adder is presented for Floating point addition and
subtraction operation. Using various optimization
technique, the proposed Floating Point adder (FP Adder)
reduces the latency. All rounding modes of TEEE
standards are supported by this architecture and the
output 1s rounded, normalized as per IEEE standard.

Low power multiplier with bypassing and tree
structure was proposed by Kuo and coauthors. In this
technique switching activities are mimmized using
bypassing in the multiplier. Also, the critical path is
decreased due to tree structure of the multiplier. So, the
low power advantage is achieved in this multiplier
architecture.

Garrido et al. (2013) implemented the radix-2*
feedforward FFT architectures. The implemented designs
include radix- 2% radix-2° and radix- 2 architectures. The
paper showed that radix-2* could be used for any number
of parallel samples with a power of two. Accordingly,
radix-2" FFT architectures for 2, 4 and 8 parallel samples
were bestowed. Those architectures were shown to be
more hardware-efficient than previous feedforward and
parallel feedback designs in the literature. That makes
them very attractive for the computation of the FFT in the
most demanding applications.

A high-speed low-complexity modified radix-25 FFT
Processor for High Rate WPAN Applications was
implemented by Cho ef @l (2011). In their research, the

1910



Asian J. Inform. Technol., 15 (12): 1906-1915, 2016

modified radix-2’ algorithm and the eight parallel data-path
512-point modified radix 25 FFT processor have been
umnplemented with 2.5 GS/s for OFDM-based WPAN
applications. The number of complex Booth multipliers
and twiddle factor LUTs were reduced using the modified
radix 2° algorithm. Their medified radix 2° FFT processor
was the most area-efficient architecture for the eight
parallel 512-point MDF FFT processors. The highest
throughput rate is up to 2.5 GS/s at the clock frequency of
310 MHz. In addition, SQNR can reach 35 dB for 16-QAM
modulations with a 12 bit word length. The architecture
has potential applications in high-rate OFDM-based
WPAN systems.

Addition,
multiplication are the major operations m an FFT
processor. In conventional methods, these operations are
performed using conventional adders and Multipliers.
Among these the multiplier occupies more silicon
area and power consumption when comparing with
addition and subtraction. Hence most researches
contribute on area and power reduction of multipliers.
Mottaghi-Dastjerdi er af. (2009) proposed low power
multiplier called bypass zero that mimimized switching
activities of the shift add multiplier. Digital signal
processing is classified into two major categories based
on their representation: fixed and floating point. Floating
point DSPs typically use a mimimum of 32 bits to store
each value whereas the Fixed pomnt DSPs usually
represent each number with a mimmum of 16 bits.
However, with DSPs the speed is about the same, a result
of the hardware being highly optimized for math
operations. The internal architecture of a floating point
DSP is more complicated than for a fixed point device. All
the registers and data buses must be 32 bits wide
instead of only 16; the multiplier and ALU must be able to
quickly perform floating pomt arithmetic. Floating point
arithmetic units when used leads to better precision in
results with more hardware and less throughput. Hence,
n recent years various architectures on fused floating
point are proposed that can reduce the delay and area on
FPGA platform for the processors. The floating-point
FMA has several advantages over discrete floating-pomt
adders and multipliers in a general purpose processor.
The FMA reduces the latency of a multiplication followed
by an addition. Also, a single FMA may be used to
replace the floating-point adder and the floating-point
multiplier in a system. Some DSP algorithms have been
rewritten to take advantage of the presence of FMA units.

This study describes fused floating point operation
using radix-8 butterfly unit in the FFT computation.
Modified fused dot product unit for radix-8 butterfly is
proposed. The proposed architecture 1s implemented

Problem statement: subtraction and

using radix-8 DIT FFT butterfly with fused floating point
arithmetic. This architecture also proposes a power
efficient method of multiplier for floating point
multiplication.

MATERIALS AND METHODS

Proposed method

Fused floating point dot product unit: As discussed
earliar, Fused dot product Unit is same as conventional
dot product that extend to calculate the difference of two
dot products along with addition. Proposed Fused
Floating Point Dot Product Unit 1s shown in Fig. 8 It
consists of four main blocks that perform the complex
multiplication operation as follows:

»  Exponent compare

»  Two proposed radix-8 multipliers

»  Alignment

» Leadmng zero anticipator and normalize
+  Rounding

The Fused Dot Product Unit computes the sum and
difference of the two term dot product as we know. From
Fig. 8, 2’s complement 1s used for subtraction of two term
dot product.

Exponent logic extracts the exponent and adds them
and subtracts the bias. The Exponent compare element
consists of two 8-bit exponent adders. These adders add
the exponents of the input C&D and A&B following
single precision IEEE floating point format If two exponent
adders are used the delay 1s twice when compared to the
exponent adder that worles in parallel.

Alignment element determines the operation to be
performed between sum and carry of A*B and C*D.
Alignment block consists of Shifter block. Shifter block
arranges the output sum and carry of the two term dot
product significand multiplication 1e. output sum and
carry of CxD and A =B significand multiplication.

Leading Zero Anticipator has Pre-encoder and
Leading Zero Detector as shown in Fig. 9. Normalization
counts the leading zeros in the output of sigmficand
adder and shifts the sum to left to get leading one as the
left most digit. So the Normalization is done with the help
of LZA ( Leading Zero Anticipator).

The result is always rounded to one of the selected
TEEE rounding modes in the case of floating point
arithmetic. Rounding 1s followed by post normalization in
case of overflow. Post normalization after rounding 1s
accomplished by shifting the bits.

Proposed radix-4 and 8 butterfly unit: In this study, we
investigate the performance of radix 4 and radix 8
butterfly unit designed using the proposed fused dot
product unit.
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The radix-4 Butterfly 1s shown in Fig. 10, radix-4 FFT
reduces the number of stages required in the computation
of FFT algorithm. But, the number of computations
required to compute radix-4 FFT 1s more. The number of
multiplications required to compute radix-4 FFT 1s less
when compared to radix-2 FFT, to compute FFT of the

same size. This is shown in Fig. 10. The discrete

umplementation of radix-4 butterfly requires 12 multipliers
and 22 adders to perform 3 complex multiplications and 8

1912

complex additions.

But with the proposed fused
implementation of radix-4 butterfly requires 6 Fused Dot
Product (FDP) Units and 8 Fused Add-Subtract (FAS)
Units to perform 3 complex multiplications and 8 complex
additions required for radix-4 butterfly. This 1s shown in
Fig. 11.
In a similar way, radix-8 butterfly is designed taking
the advantage of fused dot product umit for FFT
implementation. This radix-8 butterfly again reduces the
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Fig. 11: Fused Floating Point implementation using radix-4
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Fig. 12: The radix-8 butterfly Fig. 13: Fused dot product umt using radix-8
number of stages and number of complex computations in Figure 12-14 shows the  implementation

the FFT algorithm. Tt requires less number of  ofradix-8 FFT  wing Fused Dot  Product
multiplications than radix-2 and 4 butterfly of same size. Unit (Fused DP) and Fused Add-Subtract (FAS)
Radix-8 butterfly unit 1 shown n Fig. 12. Unit.
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Fig. 15: Power consumption in the proposed radix-8 Fused Floating point butterfly

RESULTS AND DISCUSSION

In this study, the experimental results of our
proposed method related to area and power are presented.
The synthesis and simulation for the proposed module 1s
performed using Xilinx ISE Software. The area report can
be obtained from the device utilization summary generated
from the synthesis of our design. Area of the proposed
radix-8 Fused Floating point butterfly is shown in the
following Table 1.

The proposed design use 844 slice registers among
the available 12480 umts mn the target device.
About 2948 slice LUTs out of 12480 are only

used by our proposed design contributing about 23%
utilization of the available. A 100% utilization of IOBs is
obtained by the proposed architecture. The power
report for our design is obtained using the Xpower
analyzer tool i Xilinx ISE. Figure 14 shows the power
consumption m the proposed radix-8 Fused Floating pomnt
butterfly.

Proposed radix-8 Fused Floating point butterfly is
area efficient than radix-4 and 2. Power consumed by
the fused floating point butterfly unit is also less.
Comparing to radix-4 our method shows 26.36% savings
i cell area and about 50.22% reduction in power
consumption (Fig. 15).
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Table 1: Area of proposed radix-8 Fused Floating point butterfly

Device utilization summary (estimated values)

Logic utilization Used Available Utilization (%)
No. of slice register 844 12480 6
No. of slice LUTs 2948 12480 23
No. of fully used LUT-FF pairs 411 3381 12
No. of bonded TBOs 172 172 100
No. of BUFG/BUFGCTRLs 1 32 3

Table 2: Area and power comparison

Butterfly unit
Parameters FP based radix-8 FP based radix-4
Cell area 1,84,184 um”™2 250099 um"2
Power 142 mw 225 mw
CONCLUSION

In this research, a FFT implementation with fused
floating point Dot Product using radix-8 butterfly parallel
fashion was proposed. The background and the
literatures relating to our work were clearly discussed and
the research methodology was also analyzed. The
complete description of our proposed method that we
have discussed in Section 4 was coded n verilog-HDL
using Xilinx-ISE. The generated results after the synthesis
and simulation were also presented under the section
results and discussion. The comparison of our proposed
method with the smmilar architecture using radix-4
exhibited about 26.36% reduction in area and about
50.22% reduction in overall power consumption.
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