Asian Journal of Information Technology 15 (14): 2526-2530, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

Prioritizing Components of Real-Time Dynamic Reconfigurable Software
Systems for QoS Improvement

'P. Sudhakar, *Senthil Prakash and 'G. Mohana Prabha
'Department of Information Technology, M. Kumarasamy College of Engineering,
Thalavapalayam, 639113 Tamil Nadu, India

Department of Computer Science, Shree Venkateshwara Hi-Tech Engineering College,
Otthakkuthirai, 638455 Tamil Nadu, India

Abstract: The problem of service disruption in dynamic reconfiguration has not been studied well for the
quality assurance. The dynamic reconfiguration must reduce the level of system transformation without disturb
the service that much. We propose a new dynamic reconfiguration strategies for the components of the
software system which will be prioritized based on the completeness measure. We use the state of cob for the
selection of service for the user request and which helps the dynamic reconfiguration of components without
disturbing the ongoing services. The completeness measure is computed based on the frequency of successful
completion and failure completion of the service. We broadly explore the service reconfiguration strategies and
we describe the model for reconfigurable compenents. The proposed compenent model 1s evaluated with the
benchmark methods of reconfigurations. The notable inference of our examination is that the classified QoS
physiognomies can be fully achieved under some acceptable restraints.

Key words: Dynamic reconfiguration, prioritized components, QoS assurance, system evolution, cob

INTRODUCTION

The component based model which 15 followed by
the software systems has more mnpact in the area of
information technology and in various area of the
software computing. Whatever, the automation process
employed in the real world industry could be viewed as a
bundle of components. For example, an ATM machine of
any bank consists of a set of interfaces for specified
components to get access to the accounts of the user.
The customer 1s able to withdraw the money from
his/her account through the mterface of the components
available. What happens while withdrawing the money is
the customer is requested to feed the card and then
account pin number and other options. So, there 1s a set
of functionality exist with the component of banking
software which is available at the ATM.

The management of the banking system may think to
adapt some other fimctionality to be adapted with the
component available at the software system. The service
disruption occurs at modification or updating the
component which affects the quality of service
parameters. The service availability which got affected at
the time of component updating because the system will
be shut down for reconfiguration. The ongoing

transactions and services will get affected due to the
service reconfiguration because they end up in an
incomplete state. These factors have to be considered
while reconfiguring services.

The dynamic reconfiguration is the process of
reconfiguring the services without shutting down the
whole software system. The thing 1s the software system
has to maintain backup services to be provided under the
minimum service requirement. The dynamic
reconfiguration has to be performed at the back end
without disturbing the ongoing services and service
availability (Raskhe and Polze, 2008, Wurtluinger ef af.,
2010a, b).

The components of the software system have to be
prioritized n some way to provide service to the user n an
efficient way. There may be thousands of services
available but the successes of the software system
depend on providing the correct service for the correct
user so that the services has to be prioritized mn providing
access to the user and to support user goals.

Background: Tn quality of service assurance for dynamic
reconfiguration of component-based software systems, a
proof-of-concept model called the reconfigurale
component model is employed to assist the illustration

Corresponding Author: P. Sudhakar, Department of Information Technology, M. Kumarasamy College of Engineering,
Thalavapalayam, 639113 Tamil Nadu, India
2526

Asian J. Inform. Technol., 15 (14): 2526-2530, 2016

and testing of the reconfiguration policies. Second, a
reconfiguration benchmark is proposed to expose the
whole spectrum of QoS problems. Third, each
reconfiguration strategy 1s verified against the standard
and the testing results are evaluated.

Host side dynamic reconfiguration with infiniBand
(Guay et al, 2010) report an employment of
flexible/runtime reconfiguration of such host side
data-structures. The scheme jams the queue pairs and lets
the application run with no disturbance. With this kind of
operatiory, an inclusive result to fault tolerance mn an
InfimBand network has been established, where dynamic
network reconfiguration to a topology-agnostic routing
function is used to evade and duck faulty components.
This result 13 in source describes that let applications run
repeatedly on the cluster as long as the topology 1s truly
associated. With the help of dimension on test cluster,
increased cost of proposed system in setup is slight and
there 1s only a tiny concession m throughput during
reconfiguration.

Dynamic reconfiguration for Tava applications using
AOP (Kim and Bohner, 2008) is delivered to reduce the
efforts of software engineers which is to allow automated
dynamic reconfiguration which 1s to ensure the ntegrity
of software systems. The key area of the research is
component-based application and addition, removal and
replacement of components takes place.

Reliable dynamic reconfigurations in a Reflective
component model (Leger et al, 2010), delivered a
explanation for consistency
reconfigurations in fractal element structural design with
a design oriented on mtegrity constraints for example
structural invariants. Consistency of reconfigurations is
confirmed thanks to a transactional method which permits
us both to promote with error recovery and to manage
distributed and concurrent reconfigurations in Fractal
applications.

DynaQoS-RDF (Li, 2011, 2012) delivered various QoS
plans and offers a standard for valuing QoS-assurance
plans for the dynamic reconfiguration of dataflow
process. This benchmark is implemented using the
DynaQoSC-RDF v1.0 Software platform. Several plans,
containing those from the research works are
benchmarked, and the best efforts for QoS-assurance are
recognized.

Emergence of component based
engineering (Mandal and Pal, 2012) 1s to gain attention

configurations and

software

towards this new component based software development
paradigm and to highlight the benefits and impact of the
approach for making it a successful software development
approach to the concemed commumty and industry.
Researchers presents various readings of reusability and

presents a approach of reconfiguring the victim workings
(Basha and Moiz, 2012). The CBO measure helps in
identifying the component to be reconfigured. The
proposed strategy 18 simulated using HR portal domain
specific component system.

A strategy to identify components using clustering
approach for component reusability, presents a strategy
has been proposed for the identification of a business
component using clustering methodology. This approach
will be useful in identifying the reusable components for
different domains. The proposed approach has identified
the reconfigured component using the CBO measure to
reduce the coupling between the objects. By considering
this proposed strategy, the productivity can be increased
in the organization.

MATERIALS AND METHODS

Component model: The component is a collection of
software interfaces through which we can access some
software module or set of services. From Fig. 1 the
component has interfaces to access the services named
message and encryption. The dynamic configuration of
this component may be addition of some services or
removal or updating a service. In a dynamic
reconfiguration of the components are handled in such
a way that the service provider does not bother
about the assurance of quality of services. We
focused on providing quality of service assurance with
state of the art (Truyen et al., 2008).

Dynamic reconfiguration model: The proposed dynamic
reconfiguration model has three different working
modules which help addition, deletion and updating of
components without disturbing the ongoing services.
The proposed method uses the active and passive
states of the components for each of the process to
perform (Fig. 2).

Addition: The addition of an interface and service is
performed on any component using two strategic
approaches. One is new versioning technique with the
new service added to the component and another one is
activate and passive state of the component. Tnitially a
new version is generated and the source component of
the new version is compiled and added to the component
base. The component base maintains details of
components deployed to the system and its version
details.

The new component added will not disturb the
ongoing services of the existing components. The newly
added component will be taken for service only at the next
service request which is handled by the service prioritizer
(Alogrithm A).

2527

Asian J. Inform. Technol., 15 (14): 2526-2530, 2016

Message

4

Fig. 1: Example component model

Componer
t Base

Fig. 2: Proposed architecture

Algorithm A deletion of service:
Stepl: start
Step2: read component base CB.
Step3: read component details CD.
Stepd: it Component Addition Request then
Create new version CBV.
CBV= {Parameters, Services,
Interfaces, NewService};
Compile Comp onent.
Deploy New Component version.
End.
Steps: set component state as active.
Ste6: look for previous request to end
Set previous version state as Passive.
Step7: stop.

Deletion: The deletion of a component or service occurs
when it is outdated. The deletion of a service from a
component can be performed dynamically without

disturbing the nature and ongoing request and service
handling. The deleted service from the component will be
getting effective at the new service request. The deletion
of service will be performed using the state of art like
active and passive state of the component. Initially the
component state will be set as passive which will not be
available for the next new request and then will be
removed or deleted and the newly compiled component
will be deployed (Alogrithm B).

Algorithm B deletion service:
Step 1: start
Step2: read component base CB.
Step3: read component details CD.
Stepd: if Component Deletion Request then
Pcb=Check for previous version of cormponent.
If Pcb exist then
Set state of Pcb active.

End

Set CB state as Passive.

Read component CB..
CB= {Parameters, Services, Interfaces };
Delete service CB(s) from CB.
CB = CB=CB(Ser).
Compile Component CB.
Deploy CB.
Set CB state as Active.
Set Pcb state as Passive.
End.
Step3: stop

Service updating: The dynamic updating of object
configuration 1s performed as like the deletion and
addition of software components and will not be disturb
the ongoing service requests using the active and passive
states of software components. The prioritization of
compoenents 1s the key here which helps the all features of
the dynamic real time reconfiguration of the software
systems.

Component prioritization: The service selection 1s
performed on receiving the service request from the user
side. Imitially the set of available services 1s retrieved from
the component based and from the retrieved service set
we 1dentify the services and components with active and
passive state. For the requested component and service
we identify sets of available active components.

For the active component set we compute the service
completeness measure which shows the reliability of the
Based on the

select the top wvalued

service service

completeness

on user access.
measure, we
component to serve the user request. The service
reconfiguration procedure does not affect the service

handling and prioritization because it uses the state of art

as the key for everything (Fig. 3).

2528

Asian J. Inform. Technol., 15 (14): 2526-2530, 2016

Identify
Active

Select Top
Scored Service

services S=
_[: [Seva)y

AS=@(SL)
XSIAN

Fig. 3: Flow diagram of component prioritization

102
100

L0 Camponent

- — WS0Compenent

Ratic in percentagze

100 Companent

Avalabilty Continuty (osAssurance

Fig. 4: Shows the quality of service assurance parameters
RESULTS AND DISCUSSION

Experimental analysis: Testing process has been
proposed between or on two systems, one 15 called single
processor system and the other 1s called as two-processor
system. Both systems were designed with the same
version of Microsoft Windows 7 operating system and
the same Java SE 6 runtime. The variant platforms
were selected to exhibit the individuality of RCM

ooOOoODOoOOoO O
(e TR NTEEN S, Fa

B Time in
Seconds

Fig. 5: Shows the response time of the proposed approach

Table 1: Comparison of reconfiguration overhead

Method Number of Time taken Reconfiguration
components seconds overhead

Tranquility 10 1.8 21

REDAC 10 1.5 18

Trynarnic 10 0.85 9

Reconfiguration

Prioritized 10 0.35 3.6

reconfiguration plans and the reproducibility of outcome.
On system-1 (Processor from Intel (Core 2 Duo) and
Memory of 2 GB RAM), the testing platform was
produced for CPU saturation, while on machine-2 (P4
from, 3.00 GHz Processing speed and limited memory of 1
GB RAM), the platform was produced for CPU non
saturation (Fig. 4).

Figure 4 shows the quality of service parameters
achieved by the proposed method at different number of
components deployed. We evaluate the proposed
approach by deploying a number of components and
tested by generating huge number of requests generated
from different machines. The results show that the
proposed approach has produced a higher rate of quality
of service than other methods (Fig. 5).

Table 1 shows the overhead introduced by different
algorithms by performing reconfiguration of components.
It 15 clear that the proposed prioritized dynamic
reconfiguration approach has produced less overhead
than other methods.

CONCLUSION

We proposed a new real time dynamic reconfiguration
strategy where the services or components are prioritized.
We have mmplemented a new service prioritization
algorithm which sorts the service based on service

completeness measure. The service completeness

2520

Asian J. Inform. Technol., 15 (14): 2526-2530, 2016

measure has been computed using the service history of
components and services about the state of fimshing.
This helps us to reconfigure the components and we used
state of art which shows the state of components as
whether 1t 1s active or passive. The proposed method has
increased the efficiency of the reconfiguration and
produced good results.

REFERENCES

Basha, NM. and S5.A. Moiz, 2012. A methodology to
manage victim components using CBO measure. Intl.
I. Software Eng. Appl., Vol.3,

Guay, W.L., SA. Reinemo, ©O. Lysne, T. Skeie and
BD. Johnsen et al, 2010. Host side dynamic
reconfiguration with infiniband Proceedings of the
2010 IEEE International Conference on Cluster
Computing, September 20-24, 2010, TEEE, New York,
USA., ISBN: 978-1-4244-8373-0, pp: 126-135.

Kim, D K. and 3. Bohner, 2008. Dynamic reconfiguration
for Tava applications using AOP. Proceedings of the
TEEE Conference on SoutheastCon, April 3-6, 2008,
TEEE, New York, USA., ISBN: 978-1-4244-1883-1,
pp: 210-215.

Leger, M., T. Ledoux and T. Coupaye, 2010. Reliable
Dynamic Reconfigurations mn a Reflective Component
Model. In: International Symposium on
Component-Based Software Engineering. Grunske, T..,
R. Reussner and P. Frantisek (Eds.). Springer
Berlin Heidelberg, Heidelberg, Germany,
ISBN: 978-3-642-13238-4, pp: 74-92.

Li, W, 2009. DynaQoS-RDF: A best effort for QoS
assurance of dynamic reconfiguration of dataflow
systems. J. Software Maintenance Evol. Res. Pract.,
21: 19-48.

1, W., 2011. Evaluating the impacts of dynamic
reconfiguration on the QoS of rumming systems. I.
Syst. Software, 84: 2123-2138.

L1, W., 2012. QoS assurance for dynamic reconfiguration

of component-based software systems. ITEEE.
Transac. Software Eng., 38: 658-676.

Mandal, A. and S.C. Pal, 2012. Emergence of component
based software engineering. Int. I. Adv. Res. Comput.
Sci. Software Eng., 2: 311-315.

Mandal, A., 2009. BRIDGE: A meodel for modern software
development process to cater the present software
crisis. Proceedings of the IEEE International
Conference on Advance Computing, March 6-7, 2009,
TEEE, New York, USA., ISBN: 978-1-4244-2927-1, pp:
1617-1623.

Rasche, A. and A. Polze, 2008. ReDAC-Dynamic
reconfiguration of distributed component-based
applications with cyclic dependencies. Proceedings of
the 2008 11th TEEE International Symposium on
Object and Component-Oriented Real-Time
Distributed Computing (ISORC), May 5-7, 2008, IEEE,
New York, USA, ISBN: 978-0-7695-3132-8,
pp: 322-330.

Truyen, E., N. Janssens, F. Sanen and W. Joosen, 2008.
Support for distributed adaptations in aspect-oriented
middleware. Proceedings of the 7th International
Conference on Aspect-Oriented Software
Development, March 21-April 4, 2008, ACM, New
York, USA., ISBN: 978-1-60558-044-9, pp: 120-131.

Wurthinger, T., C. Wimmer and T.. Stadler, 2010. Dynamic
code evolution for Java. Proceedings of the 8th
International Conference on the Principles and

September

USA.

Practice of Programming in Java,
15-17, 2010, ACM, New Yok,
ISBN: 978-1-4503-0269-2, pp: 10-19.
Wurthinger, T., W. Binder, D. Ansalom, P. Moret and
H. Mossenbock, 2010. Improving aspect-oriented

E

programming with dynamic code evolution m an
enhanced Java virtual machine. Proceedings of the
7th Workshop on Reflection, AOP and Meta-Data for
Software Evolution, June 21-25, 2010, ACM, New
York, USA., ISBN: 978-1-4503-0536-5, pp: 1-5.

2530

	2526-2530_Page_1
	2526-2530_Page_2
	2526-2530_Page_3
	2526-2530_Page_4
	2526-2530_Page_5

