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Abstract: Parallel and distributed system plays a key role in the development of high performance systems. To
achieve the high performance of a system, task scheduling 1s an important issue. At commeon, the problem of
task scheduling has been considered to be NP-hard. Several algorithms put inte practice to find the optimal
schedule for task scheduling. Evolutionary algerithms are one of the best. In an evolutionary kind of algorithms,
the time taken to find an efficient schedule 1s high. This study presents the implementation of Non-domimated
Sorting Genetic Algorithm (NSGA-IT) with MapReduce model. In a distributed system, most of the task
scheduling problem 15 formulated as multi-objective optimization problem. For multi-objective problem
formulation, minimization of makespan and flowtime is considered. MapReduce model can automatically
parallelize the execution of NSGA-TI. The algorithm is tested on a set of benchmark instances. Experimental
results show that NSGA-II with MapReduce model minimizes the amount of time taken, makespan and flowtime
than a Weighted Sum Genetic Algorithm (WSGA) with MapReduce model which is also implemented in this
study for better comparison.
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INTRODUCTION

Distributed and parallel computing environment has
systems
mtercommected by commumnication channels to process
complex computational problems. Efficiency and the use
of Distributed Heterogeneous Computing System (DHCS)
depend on the capacity of the system to satisfy
computational requirements of complex computational
problems. As the computing nodes are heterogeneous

a collection of heterogeneous computing

n a multiprocessor environment, execution time of tasks
varies on each processor. Scheduling of tasks 15 a key
1ssue, to achieve the high usability of supercomputing
capacity of distributed computing environment. To
ensure efficient utilization of resources, suitable
scheduling algorithms are used to assign the tasks to the
available processors efficiently. Scheduling methods
are static or dynamic. Static scheduling methods are
useful to analyze the heterogeneous computing
environment (Braun et af., 2001). Static methods are also
used n grids and clouds to distribute the computing
resources to tasks (Foster and Kesselman, 2003). Hence,
this study focuses on static scheduling.

To effective utilization of resources several factors
like response time, resource usage, throughput, reliability,
network traffic and others are to be optimized. This study
considers the minimization of makespan and flowtime.

Makespan 1s defined as the time when last task 1s finished
and flowtime is the sum of finalization time of all the tasks
(Liu et al, 2010). Since, both the objectives are
contradicted with each other, multi-objective formulation
1s needed for this problem. Multi-Objective Optimization
Problem (MOOP) has two approaches. First method
combines the multiple objectives into a single objective
before optimization using scalar cost function. Second
method finds the set of Pareto optimal solutions or a
subset. The second method 1s preferable for real life
applications {Chankong and Haims, 2008).

In general, task scheduling on DHCS is complex due
to the computational complexity of tasks. Multi-objective
evolutionary methods are more suitable for this kind of
environments. GA is one of the promising evolutionary
techmques to schedule the complex computational task.
GA 15 used in many areas like scheduling, biology,
chemistry and CATY/CAM. GA finds an optimal solution
ina complex search space (Goldberg, 1989). GA considers
the entire problem space as individuals and use
optimization method to search near optimal individuals by
generating offspring. This is a time consuming process for
complex tasks. To overcome this, Parallel Genetic
Algorithm (PGA) was developed (Lim et al., 2007). The
PGA used to divide the complex search space into smaller
subspaces and find the sub optimal solution for each
small space and then this sub optimal solution forms the
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optimal solutions. A lot of development difficulties like
communication and synchronization between distributed
computing resources are there m the PGA. Ths
encourages the research on implementing NSGA-II with
MapReduce programming model.

The MapReduce model is used to develop
distributed applications. It provides the parallel design
method to simplify the distributed application
development. Tt divides the complex problem into small
and automatically parallelizes the execution of small tasks.
Google proposed this model to process data intensive
applications i a large number of resources easily. It
allows users to run the complex application in a
distributed environment without worrying about the
commumication and synchromzation among the
distributed resources. The coordinator 1s used to perform
all the sequential works. In this study, WSGA and
NSGA-IT with MapReduce programming model is applied
to the complex scheduling problem. This technique will
ensure time reduction to find the best optimal schedule
without facing the difficulty of coordinating distributed
component.

Related work: In the past, a lot of heuristic methods are
implemented for scheduling independent tasks in a
distributed environment. To find optimal schedule, all the
heuristic methods for scheduling tasks to processors
depends on some perception and performance differs
depending on the conditions used (Tzakian et al,
2009). A few well known heuristic methods are min-max
(Munir ef af., 2007), suffrage (Maheswaran ef al., 1999),
min-min, max-min (Freund ef al., 1998) and LIFR-SIFR
(Abraham ef ai., 2008). These above heuristic methods are
more time consuming process. In recent, several meta-
heuristic methods are developed to solve complex
computational problems. The most popular methods are
GA, Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO) and Simulated Annealing (SA). The
description of eleven heuristics and comparison on the
various distributed environment was done by Braun et al.
(2001) and illustrates the effectiveness of GA with others.
All the above meta-heuristic methods considered single
objective and aimed to minimize the makespan.

There are some methods considered multiple
objectives, while scheduling tasks in distributed
environments. Izakian et «al. (2009) compares five
heuristics depends on the machine and task
characteristics for minimizing both makespan and
flowtime but calculated separately. Several nature inspired
meta-heuristic methods like GA, PSO, ACO and SA for
scheduling tasks in a grid computing environment by
using single and multi-objective optimization was done by

Table 1: An example ETC matrix

Tasks Processor 1 Processor 2
Task 1 5 3
Task 2 2 6
Task 3 4 1
Task 4 3 7

Abraham et al. (2008). Carretero ef al. (2007) implemented
GA based scheduler. All the above methods convert the
multi-objective optimization problem into a scalar cost
function which makes single objective before
optimization.

To minimize the amount of time to find the best
optimal schedule (Lim ef af,, 2007) implemented PGA,
Durillo implemented parallel execution of NSGA-IT and
these methods have the difficulties to make
communication and synchronization between the
resources in a distributed environment. Chao implemented
MRPGA to combine GA and MapReduce, but they extend
the basic MapReduce model to MapReduceReduce.
Verma et al. (2009) shows GA can be combined with the
MapReduce model without extension. This study
implements WSGA and NSGA-TT with MapReduce
programming model to find the best optimal schedule. Tt
makes the task scheduling as an efficient real time
multi-objective optimization problem.

Problem statement: Real world heterogeneous computing
systems are complex combinations of hardware, software
and network components. The problem is formulated as
follows. M is set of p machines in a heterogeneous
computing environment and T 18 set of n tasks assigned
to the machines. As scheduling 1s performed for
independent tasks, there 1s no commumnication among
tasks and a task is assigned to a processor exclusively.
The pre-emption of task 1s not allowed. As scheduling 1s
performed statically, computing capacity of machine,
computational load of the task and prior load of the entire
machine 1s estimated. Expected Time to Compute matrix
(ETC) can be built by having the workload of task and
computing capacity of machines. An ETC matrix is a nxp
matrix where each position, ETC[n][p] indicates the
expected time to compute task n in machine p. Each row of
ETC matrix has the execution time of a task on each
processor and each column specifies the estunated
execution time of a processor for all the tasks. An example
ETC matrix is given in Table 1 for 4 tasks and 2
processors. ETC matrix is explicitly provided and
MapReduce programming model is used to reduce the
time taken to find the optimal schedule.

Fitness function formulation: The objective is minimized
of makespan and flowtime. Makespan 15 the time when
last tasl is finished and flowtime is the sum of finalization
time of all the tasks described as follows:
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F (1)

makespan = min, gy, (Hlaxmasks t)

flowtime = mll'lsj e3ch {Ztatasks Ft I (2)

Where:
F, = Completion time of jth task
Sch = Overall schedule and tasks 1s set of all tasks want

to be scheduled
MATERIALS AND METHODS

Multi-objective GA: GA is fitted for multi-objective
problem in a population based approach. GA has the
ability to search the different regions in a solution space
for finding a diverse set of solutions to the complex
problems. The crossover operator produces the new
mndividual by mterchanging the genes of the parents.
Mutation alters one or more genes in an individual.

WSGA: The weighted sum method 15 used to make a
multiple objective into single objective. GA s
computerized optimization and search algorithm based on
the mechanics of natural genetics and natural selection
which comes under the type of optimization techniques
and non-traditional search used for searching large
solution spaces. According to the survival of the fittest,
natural populations evolved after many generations.
The real world problems have been encoded
suttably for GA to find the solutions (Abraham ef al,
2008). This study uses the following template of GA
(Doulabi et al., 2012).

Algorithm templates of GA:

Initialization : Produce the random initial population
(pop) of n individuals.
Fitness . Calculate the each individual fitness
(pop (D).
While (not met stopping criteria) do
{
Selection  : Select m pairs from pop (t),

popl (t) =select (pop (£
Crossover : Perform crossover on pairs of individuals (m), with probability
pe,

pop2 (t) = crossover (popl (t)). Pop2
(t) has offspring.

Mutation : Mutate each offspring in pop2 (t) with probability pm.

Fitness : Calculate the fitness of offspring,
pop3 (t) = cale (pop3 (1))

}

Return best solutions

Schedule encoding: In evolutionary algorithms, encoding
of an individual in the population is a key issue. The
mndividuals are solution of the problem. Encoding

1 2 3 1 2 1 3

Pmcessor1| Task 1 | Task4| 'Ihskﬁl

Pmcsm'Zl Task 2 | Task 5 |

|Task3|'1hsk7|

Fig. 1: Task assignment and schedule representation

determines the type of operators used for evolution.
The behavior of evolutionary algorithm depends on
representation and reproduction operators.

Representation: Each individual is represented as a
vector which is also called as schedule. The length of a
schedule is equal to the number of tasks. The value
available in position n in the schedule represents the
resource to which the task n 1s allotted. The values of the
schedule are numbers m the range (1, mumber of
resources). The resource number can appear more than
once m the schedule. A task assignment and schedule
representation of 7 tasks and 3 resources in Fig. 1
(Subashini and Bhuvaneswari, 2010).

Fitness function: As makespan and flowtime are
considered for calculating fitness function, weighted sum
method 1s used. Fitness value 1s calculated as:

Minimize fitness = wl.makespan +w2x (3)

mean flow timeMinimi ze

Subject to:

wl+w2 =1

where, wl and w2 are the weights assigned. To minimize
the combined objective function, the individual with lower
fitness value is selected.

Selection: Selection operator 1s used to select best
offspring for the next iteration. Large tournament selection
produces better results. The N individuals are
participating mn the tournament and the best will be
selected for the next iteration.

Genetic operators: Tn this study one point crossover and
swap mutation is implemented for WSGA.

One point crossover: Tt selects the pair of individuals and
chooses a random position between 1 and a number of
tasks. The random position 1s known as cut point. It splits
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each individual into two parts. The first part of each
mdividual 13 interchanged and produces new
offspring.

Swap mutation: It interchanges the tasks between two
resources in the individual. To apply this mutation
operator the two tasks should be assigned to different
resources.

After completing one generation, the available
individuals are considered as the parent for the next
generation. This procedure is executed continuously till
the number of iterations given.

Elitist Non-Dominated Sorting Genetic algorithm: At
first, Goldberg (1989) proposed Pareto based fitness
assignment. The basic idea is assigning equal probability
for producmg all non-dominated mdividuals m the
population.  NSGA-IT has fast, non-dominated sorting
method with complexity O (k p2) to provide the solution
close to Pareto optimal solution. A crowdmng distance
assignment and combined ranking method ensure the
range of the individuals in the population. Elitism concept
15 used to preserve the best parent solution for the next
iteration. NSGA-IT is one of the efficient methods for
multi-objective optimization problem. This study presents
the following template of NSGA-IL (Deb ef al., 2002):

NSGA algorithm:

Step 1: Initialize the population of size N randomly (pop (1)).

Step 2: Perform non-dominated sorting of the population to classify it into
a number of fronts.

Step 3: Perform crowded tournament selection by assigning crowding
distance.

Step 4: Perform crossover and mutation to produce the offspring of size M.
child () = mutate (cross (pop (£)).

Step 5: Combine parent and offspring of size 2MN.
total (t) = pop (t) U child (t)

Step 6: Update the population by copying the individuals from lowest front
to size N. 8mall crowding distance individual will be dropped in
the tie.

Step 7: Stop the process, once the stopping criteria are met. Otherwise, go

to step2

Genetic operators: This study implements one point
crossover and swap mutation for NSGA-IL.

Non-dominated sorting: Tt is used to find the solution to
the next iteration by classifying the population. The
procedure for non-dominated sorting is given below
(Deb et al., 2002):

Elitist Non-Dominated Sorting Genetic algorithm:
Step a: For each solution x in population N
Step b: For each sohition y in population N
Step ¢: If x andy are not equal
Compare x and y for all the objectives
Step d: For any x, v is dominated by x, mark solution v as dominated
First non-dominated set is formed from unmarked solutions
Step e Repeat the procedure till the entire population is divided into fronts

Selection: Crowded tournament selection operator is
used. An mdividual x wins the toumnament with another
individual y, if any of the following is true:

*  Anindividual x has better rank, i.e., rank x<rank y

»  The mdividual x and y have the same rank (rank
x = rank y) then the individual x has better crowding
distance (in less crowded areas, 1.e., d x = d y) than
individual y

Crowding distance calculation: Crowding distance is
used to break the tie between individuals which are
having the same rank (Deb et al., 2002). The following
steps are used to calculate the crowding distance:

Crowding distance algorithm:

Step a: Initialize the number of individuals (x) in the front (Fa)

Step b: Set the crowding distance, di=0,1=1, 2.x

Step ¢: Sort the individuals (x) in front (Fa) based on the objective function
(obj). obj =1, 2..m. m is the number of objectives and 8§ = sort
(Fa, obj)

Step d: Set the distance of boundary individuals as S (d1) =< and S (d x)

Step e: Set k =2to (x-1) and calculate S (d2) =8 (d x-1) as follows:

s(k +1)f, — Sk —1)f,

max min
fm - fm

“

S(dy y=38(d, )+
S¢k)f,, is the kth individual value in 8 for m th object function

Multi-objective GA with MapReduce programming
model: Hadoop is a framework used to provide a reliable,
distributed storage and processing. The storage portion
of Hadoop is called as Hadoop Distributed File System
(HDFS) and processing part 15 called as MapReduce.
Several other components are available in Hadoop for
different purpose. Hadoop helps the users to have
customized scripts to analyze complex data sets.

HDFS: Ttis a primary distributed storage used by Hadoop
applications. Hadoop works with any distributed file
system which is mounted by underlying OS but it needs
to know which servers are near to the data. HDFS is
developed with Hadoop for locality, fault tolerance and
reliability. HDFS is a part of Hadoop cluster and it can be
act as stand-alone general purpose distributed file system.
HDFS splits the large file into a number of chunks and
stored it in the different nodes. Each chunk is replicated
at the nodes of Hadoop cluster. At the time of failure data
1s re-replicated by the active Hadoop monitoring system.
HDFS consists of name node and data node. Name node
coordinates HDFS and it has metadata information and
secondary name node has a replication of metadata.

MapReduce: Tt supports distributed processing of
terabytes of data n the nodes of the cluster with fault
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Fig. 3: Workflow on MapReduce and HDFS

tolerant and reliable manner. It splits the processing mto
sub processes to execute simultaneously on different
nodes that are available on the same server or remote
server. In general, it is master slave architecture. The
architecture of MapReduce is presented in Fig. 2.

Master splits the task into sub tasks and assign to
different slaves. Map phase divides a user program into
sub tasks and generates a set of key-value pairs. It will be
submitted to the reducer after a shuffle. The reduce phase
performs user supplied reduce function on same key
values to generate single entity. The reduce phase 1s also
called as merge phase. MapReduce has job tracker and
task tracker. The job tracker 1s available in the master. All
the nodes in the Hadoop cluster have a task tracker. The
workflow of MapReduce is presented in Fig. 3. The
MapReduce function is represented as, map:: (input
record) => list (key, values), reduce:: (key, list (values) =>
key, aggregate (values).

WSGA with MapReduce: WSGA 15 mnplemented as
MapReduce programming in two ways:

*  Global parallelism
*  Local parallelism

Global parallelism: In this method, the fitness evaluation
of WSGA alone has done parallel in the number of
worlkers available in the map phase. The evaluation of
individuals 18 executed parallel because the fitness
calculation is independent from others in a
population:

»  The imitial population is seeded into the coordmator

¢ The coordinator produces the offspring population

»  The job tracker divides the offspring population mto
sub populations and assigns to workers in the map
phase

¢+ The workers perform the fitness evaluation for
assigned individuals concurrently

»  The workers of reduce phase collect the fitness
values and perform merge operation then send it
back to the coordinator for the next generation

Local parallelism: This approach can parallelize the
crossover, mutation and fitness evaluation of individuals.
The crossover operation performed on a pair of
individuals belongs to same worker. The mutation
operation and fitness of an individual is independent of
other individuals in a population. Workflow for local
parallelism of WSGA with MapReduce consists of
following steps:

»  Initial population 1s stored in the coordinator

¢+  Coordinator evaluates the fitness and perform
selection

s After selection, job tracker splits the population and
assigns to workers of map phase

¢ The workers perform crossover, mutation and
produce offspring, then evaluate the fitness of
offspring assigned

»  The workers of reduce phase collect the fitness value
and perform merge operation, then send it back to the
coordinator for the next generation

NSGA-II with MapReduce: Like W3SGA, NSGA-II can be
implemented as MapReduce program.

Global parallelism: The fitness evaluation of offspring
alone has done parallel in the workers available in the map
phase. Non-dominated sorting, crowded toumament
selection is performed on an entire population. So, it
carmot be fit into concurrent process:

s TInitial population is loaded into coordinator

»  Coordinator evaluates the fitness value; perform
non-dominated  sorting, crowded tournament
selection, crossover and mutation. The offspring
generated by coordinator sends to job tracker
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¢ The job tracker splits the offspring population and
send to workers of map phase to the evaluate fitness
value in parallel manner and send it to reduce phase

*  Shuffle operation 1s performed between map and
reduce phase

*  The workers of reduce phase aggregate the fitness
value and send it to the coordinator

Local parallelism: This approach can parallelize the
execution of crossover, mutation and fitness evaluation.
The crossover performed on a pair of individuals in same
worker. Mutation and fitness evaluation of individuals are
independent from others in a population. The flow of local
parallelism for NSGA-IT with MapReduce has following
steps:

¢ The initial population is stored in coordinator

* The coordmator performs a fitness evaluation,
non-dominated sorting and crowded tournament
selection and send it to job tracker

¢ The job tracker splits the population and send to the
worker nodes

¢+ The workers perform the crossover, mutation and
fitness  evaluation of different individuals
concurrently

*  The reduce phase collects all the fitness values and
send it to the coordinator

RESULTS AND DISCUSSION

Experimental setup: Expected Time to Compute (ETC)
matrix for 512 tasks and 16 processors are sumulated
(Abraham et al., 2008) to compare the performance and
execution time of global and local parallelism of WSGA
and NSGA-II. In this study, the MapReduce programming
model 15 used to implement the WSGA and NSGA-II then
performance and execution time are compared.

Hadoop setup: Hadoop 1.2.1 stable version is used to
setup 4 node clusters which i1s backed up by HDFS.
Hadoop cluster is running on Ubuntu Linux platform and
Java 1.6 15 used for writing the code. All the 4 systems
have 15 processor, 4GB RAM and 500GB hard disk.

Data set description: At first, ETC matrix for 512 tasks and
16 processors 13 simulated randomly using the following
specifications. Using repeatedly choosing m uniform
random floating point values between 1 and ¢t an mx1
baseline column vector A is generated. Each value A (i) in
A 15 multiplied by a uniform random numbers which
has an upper bound of ¢s. Each row in the ETC matrix is
then given by A (1) xs one row requires n different
values of s.

Table 2: Parameter setting

Parameters WSGA NSGA-TIT
Population size 200 200
Number of iterations 1000 1000
Crossover probability (p,) 0.8 0.8
Mutation probability (p,)  0.01 0.01
Crossover type Single point Single point

Mutation type Swap Swap
Selection type Large toumament Large tournament
Weights used wl =0.75, w2=0.25

This process 1s repeated for each row until the m=n
matrix 1s full. The vector A 1s not used in the actual matrix.
Hence, the values in the ETC matrix are within the range
(1, @t, ps).

To get real heterogeneous environment, different
kind of ETC matrices is simulated based on task
heterogeneity, processor heterogeneity and consistency.
The possible variance in execution time of tasks is known
as task heterogeneity. High task heterogeneity was
considered as @t = 3000 and low task heterogeneity @t =
100. Varation in execution time of a task m all the
processors is called as processor heterogeneity. The high
processor heterogeneity was ¢s = 1000 and low task
heterogeneity @s = 10. Three various ETC consistencies
are consistent, inconsistent and semi consistent which are
used to capture the real heterogeneous environment. An
ETC matrix 1s said to be consistent, if a processor Pm
executes task j faster than processor Pn, all the tasks
should be executed faster by Pm than Pn. Inconsistency
means that a processor Pm executes some task faster and
some tasks slower than Pn. A semi consistent ETC matrix
is set in an inconsistent matrix which has a predefined size
of consistent sub matrix. To generate a consistent matrix,
each row of the matrix was sorted independently with
processor Pn executes task j slower than processor Pm.
Inconsistent matrices are generated randomly. To model
seml consistent matrix, in each row even column elements
are sorted and odd column elements are left as same. The
various instances are labelled as x-yy-zz that represents
the following:

s+ x-Consistency type (c-consistent, i-inconsistent and
s-semi consistent)

¢ yy-Task heterogeneity (hi-high and lo-low)

»  zz-Processor heterogeneity (hi-high and lo-low)

Parameter description: All the heuristic methods are
depending on the parameter. Extensive simulations are
used to find the values of parameters. In this study,
Table 2 represents the parameter used which are found by
preliminary simulation.

Test results: The algorithm, global and local parallelism
WSGA and NSGA-TT apply to all 12 problem instances and
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Fig. 4: Local and global parallelism of WSGA and
NSGA-II comparison of low task, low processor
heterogeneity; a) consistent; b) semi consistent;
¢) inconsistent

simulated using the above parameter settings specified in
Table 2. To compare the performance of multi-objective
scheduling algorithm, the Pareto optimal solutions
produced by each algorithm are plotted m Fig. 4-7 for all
the instances.

The values of makespan and mean flowtime are
measured in same time units and obtained Pareto optimal
solutions are plotted on a scale of ten thousands of time
umit. The plotted graphs indicate that global parallelism of
NSGA-IT with MapReduce model produces best schedule
mn terms of the mimimization of objectives for all cases
compared to other methods. The algorithms are run for
1000 iterations and 200 imtial populations were taken. It 1s
also noted that the number of solutions obtained in
NSGA-II increases by increasing number of population
and number of iterations.
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Fig. 5. Local and global paralleism of WSGA and
NSGA-II comparison of low task, high processor
heterogeneity, a) consistent; b) semi consistent;
¢) inconsistent

Performance comparison of WSGA and NSGA-II: A
fuzzy based approach 1s used to choose best compromise
solution for the obtained non-dominated set of solutions.
The fuzzy sets are defined using a triangular membership
function. Consider fmax and fmin are maximum and
minimum values of each objective function and kth
objective function of a solution in a Pareto set fk is
represented by a membership function p, defined as:

1, f,=f,
fmax - f min max
My = W, i <f, <f} (5)
Q, f,=f,

The value of membership function indicates how far
a non-dominated solution has satisfied the objective. In
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order to measure the performance of each seclution to
satisfy the objective, the sum of membership function
values L, is computed where k =1, 2,..., m objectives. The
performance of each non-dominated solution can be rated
with respect to the entire N non-dominated solutions by
normalizing its performance over the sum of the ability of
N non-dominated solutions as follows:

W=7 ©

Where:
n = No. of solution
m = No. of objective functions

The solution has the maximum value of ' 1s the best
solution. The malkespan and mean flowtime value for the

. .I c_hi_hi{GA_local)
< c_hi_hi{MSGA-II_local)

:.(6) c_hi_hi{GA_global)
c_hi_hi{NSGA-II_global)

22000
E -
:

! 218000 e N

o
E

14000

1200 1400 1600

makespan

T Ogc i hilGa_global)  ms_hi_hilGA_local)
=_hi_hilNSGA-II_global) *s_hi_hi|NSGA-II_local)

26000
. < Uy
| § 22000
i
(=
S 18000 '
14000
1200 1800 2400 3000
makespan
i_hi_hi(GA_global) Wi_hi_hi({GA_local)

i_hi_hi{NSGA-II_global] > i_hi_hi(NSGA-II_local)

33000
i)
)

P
)}
[l
[==]
[==]

21000

me an flowtime

15000

1200 1600 2000 2400 2800
makeszpan

Fig. 7. Local and global parallelism of WSGA and
NSGA-II comparison of high task, mgh processor
heterogeneity; a) consistent; b) semi consistent;
¢) inconsistent

best compromise solution obtained for global
parallelism is listed in Table 3 and local parallelism is
listed in Table 4. The percentage of reduction in
makespan and mean flowtime NSGA-II over WSGA 1s
calculated as:

%xloo (7
MSP.

WEGA

Makespan reduction =1-

%xloo (8)

WSGA

Mean flowtimereduction =1-

Where:
MSP = Makespan
MFT = Mean flowtime

The makespan and mean flowtime reduction
percentage for global parallelism is presented in Table 3
and local parallelism is presented in Table 4. NSGA-IT
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Table 3: Comparison of global parallelism of WSGA and NSGA-IIT

WSGA (global parallelism)

NSGA-II (global parallelism)

Percentage reduction
in mean flowtime

Percentage of
reduction in

Instances Makespan Mean flowtime Makespan Mean flowtime makespan by NSGA-I by NSGA-IT
c lolo 7453.29 99471.16 6546.28 90838.43 1217 8.68
¢ lo hi 482742.86 655473422 376851.95 5133760.26 21.94 21.68
c hi lo 2235924 3167581.74 216064.67 2846845.19 3.37 10.13
¢ hi hi 13856432.42 191843113.60 12548739.42 152960763.32 9.44 20.27
g lo lo 7230.64 109855.63 6145.27 80376.11 15.01 26.83
s lo_hi 652923.17 8547249.07 449285.18 5304352.69 31.19 37.94
s hi_lo 240591.15 3327845.62 184273.52 2368543.50 2341 28.83
s _hi_hi 19264052.79 254051003.09 12864 789.63 160436981.84 3322 36.85
i_lo_lo 8623.04 115783.24 6389.37 76943.33 25.90 3355
i_lo_hi 801363.16 9987848.35 522843.21 5679384.21 3476 43.14
i_hi lo 263219.12 3569280.18 180437.35 2344622.15 3145 3431
i hi hi 23395748.84 20801 7438.50 13901746.88 167435439.50 40.58 43.99

Table 4: Comparison of local parallelism of WSGA and NSGA-TT

WSGA (global parallelism)

NSGA-II (global parallelism)

Percentage reduction
in mean flowtime

Percentage of
reduction in

Instances Makespan Mean flowtime Makespan Mean flowtime makespan by NS GA-IT by NSGA-IT
c lolo T835.70 10753839 7046.58 95616.65 10.07 11.09
¢ lo hi 522865.28 6886582.03 416359.15 5477872.14 20.37 20.46
c hi lo 235263.09 3247896.12 223180.67 2958973.26 5.14 8.90
¢_hi_hi 15219391.38 215490836.86 14612699.98 171819265.18 3.99 20.27
s lo_lo 8103.61 112471.83 7087.60 84968.77 12.54 24.45
s lo_hi 702865.79 8825134.91 502881.89 5591758.23 28.45 36.64
s hi_lo 242531.97 3207138.69 186832.54 2457632.42 2297 25.46
s _hi_hi 21425760.16 258606633.30 1424934826 164273685.36 33.49 36.48
i_lo_lo 9135.21 119563.56 6781.38 78953.64 2577 33.97
i lo hi 817628.14 1045560247 537054.62 5853643.89 34.32 44.01
i hilo 267865.12 3680847.23 186359.13 2417565.89 30.43 34.32
i hi hi 24653628.75 316794482.50 14367126.70 18444967810 41.72 41.78
Table 5: Comparison of execution time CONCLUSION
WSGA NSGA-TI  Percentage
Methods (sec) (sec) of reduction o )
Sequential 37903 34.680 3.55 In distributed and parallel computing systems,
Global parallelism with MapReduce  32.256  31.714 4.64 efficient allocation of tasks to the machines with minimal
Local parallelism with MapReduce 30.337 29.098 6.92

achieves a reduction for global parallelism m makespan
and flowtime by 24 and 29% and for local parallelism in
makespan and flowtime by 22 and 28%, over the values of
WSGA. NSGA-II out performs for global and local
parallelism over W3GA.

Execution time comparison of WSGA and NAGA-II:
Sequential WSGA and NSGA-IT are executed in a single
machine. Global and local parallelism with the MapReduce
programming model for WSGA and NSGA-TT is executed
in 4 node Hadoop cluster.

The time taken by all the algorithms to find
the optimal schedule is listed in Table 5. Tt is
noted that local parallelism with MapReduce of
NSGA-TT has less execution time than other methods.
As the number of nodes in a Hadoop cluster is
increased, the execution time of these algorithms will be
reduced.

amount of time 13 a key step for better utilization of
resources and task execution. In this study, global and
local parallelism with the MapReduce programming model
for WSGA and NSGA-IT is implemented and their
execution times are compared. The aim of these algorithms
schedules independent tasks m a heterogeneous
computing environment by minimizing makespan and
flowtime in less execution time. From the obtained results,
it 1s noted that global parallelism with MapReduce of
NSGA-II produces an efficient schedule and local
parallelism with MapReduce of NSGA-IT has minimal
execution time. The experimental results also imply that
the number of nodes n a Hadoop cluster 13 in direct
proportional to execution time of the algorithm.

Future work could be extended by implementing
all the evolutionary kind of algorithms with the
MapReduce programming model to execute its parallel
without coordination i1ssue. Also, the master of the
MapReduce programming model may replace the
coordinator.
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