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Abstract: Determining Protein-Protein Interaction (PPI) in biological systems 1s of significant importance and
prediction of PPT has tum out to be a popular research area. Although, different classifiers have been developed
for PPI prediction no single classifier seems to be intelligent to predict PPI with high confidence. Here, it 15
postulated that by combimng individual classifiers the accuracy of PPI prediction could be surely unproved.
In this research, here developed a method called Modified Protein-Protein Interaction Prediction Classifiers
Merger (MPPCM) and this method combines output from two PPI prediction tools, GO2PPT and Phyloprof,
using Ada Boost algorithm. The performance of MPPCM was tested by Area Under the Curve (ATIC) using
an assembled gold standard database that contains both positive and negative PPT pairs. Our AUC test showed
that MPPCM significantly improved the PPI prediction accuracy over the corresponding individual classifiers.
We found that additional classifiers incorporated into MPPCM could lead to further improvement in the PPT
prediction accuracy. Furthermore, cross species MPPCM could achieve competitive and even better prediction
accuracy compared to the single species MPPCM. Thus study established a robust pipeline for PPI prediction
by mtegrating multiple classifiers using Ada Boost algorithm. This pipeline will be useful for predicting PPI in

nonmodel species.
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INTRODUCTION

Protein-Protein Interactions (PPIs) stand for the
mtentional physical contacts built between multiple
proteins for proper biological activities (Gavin et al.,
2002). Generally, PPTs play vital roles in diverse essential
molecular processes including signal transduction, cell
metabolism and muscle contraction (Devos and Russell,
2007). With the increasing research attention on PPIs, a
number of approaches have been proposed to investigate
how they interact (Gavin et al, 2006). In the existing
literature, the most widely-adopted experimental
technologies are Yeast two-Hybrid (Y2H) and Tandem
Affinity Purification (TAP). However, the computational
process of both of the aforementioned biological
techniques 1s tume consuming. In addition, the accuracy
of these approaches is still not satisfying. To resolve
these two 1ssues simultaneously, efficient computational
approaches are required for the effective analysis of
PPIs (Franceschini et al., 2013; Von Mering ef al., 2002;
Planas ef al., 2013; Sussman et al., 1998; Hart et al., 2006).

Thereafter, a number of computational approaches
have been proposed and implemented to speed up the
predictionprocess of PPIs (Gallone et al, 2011).
Nevertheless, with the scale of protein sequences getting
larger and larger, most of the existing computational
approaches become invalid and unsuitable due to the
following reasons. These methods are generally proposed
to manage with various data types such as protein
domain, genomic information and protem structure
information and the prior information of protein pairs is
needed to properly predict PPIs. However, the data
complexity also increases when the data scale gets large
such protein pairs are hard to directly obtain and thus,
invalidate these computational approaches. Therefore, the
protein sequence-based approaches are preferred as they
directly derive the necessary information from the amino
acid sequence. Recently, Hosur, ete. (Yu ef al., 2010)
proposed a threading-based approach to predict PPIs
directly based on protein sequences. Moreover,
Guilherme Valente, etc. (Garcia et al., 2012) named their
method Universal In Silico Predictor of Protein-Protem
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Interactions (UNTSPPT) which classified PPIs based on the
original protein sequence mformation with a sustaiung
ACCUracy.

Protein-Protem Interaction (PPI) networks play
important roles in many cellular activities including
complex formation and metabolic pathways (Gavin et al.,
2002) and 1dentification of PPI pairsmay provide important
msights into the molecular basis of cellular processes
(Alberts, 1998). Several high-throughput experimental
approaches have been developed for PPI identification
mcluding two-hybrid assays (Devos and Russell, 2007),
tandem affimty purification followed by mass
spectrometry (Gavin ef al., 2006) and protein microarrays
(Kumar and Snyder, 2002). These high-throughput
methods have produced a large amount of PPI data
which have been accumulated in the public PPI databases
such as DIP (Xenarios et al, 2000) and STRING
(Franceschini et «l., 2013). Though, the results
generated by these high-through put methods may
lack reliability (VonMering et al., 2002) and have
limited coverage of PPIs in any given organism
(Tglesias et al, 2013). Further, experimental information
for PPI 1s also available mcluding the X-ray structures of
protein complexes n the PDB databank (Sussman ef al.,
1998). Nevertheless, the information from protein structure
complexes may belimited compared to the large volume
of protein sequences available in the public databases
(Hart et al., 2006).

To overcome the limitations in PPI identification
using experimental methods, computational approaches
have been developed to achieve large-scale PPI prediction
in variousorgarisms (Gallone ef al., 2011; Yu et al., 2010,
Garcia et al., 2010, Maetschke et al., 2012; Linet al., 2014,
Song et al, 2014). Out-of-date mput features for PPI
prediction are mainly from biological data sources which
may be divided mnto four categories: Gene Ontology-(GO-)
based, structure-based, network topology-based and
sequence-based features (Lin et ¢/, 2014). Each individual
computational PPI prediction method utilizes only one or
few mputsources for PP prediction. For example, BIPS
only takes protein sequences as input for Interolog
searching (Smialowski et al, 2010). Bio: homology:
mterolog walk takes protemn sequences and well-known
PPI networks as input (Gallone et af., 2011). Although,
thesemethods using single or several features as input
can generate fairly accurate results, they are unable to
take advantageof other mput features that could be
helpful for PPI prediction. Thus, machine learning
methods (e.g., Bayesian classifiers (Herman et al., 2011),
Artificial Neural Networks (ANN) (Simonsen et al., 2012),
SupportVector Machines (SVM) (Zhang et af., 2012) and
Ada Boost (Augusty and Izudheen, 2013) have been
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developed to integrate multiple featuresas inputs.
Machine learning approaches have shown better per
formances compared to some other methods; among them,
Ada Boost method seems to show the best performance
(Theofilatos et al., 2011). In addition, PPI prediction is
associated with imbalanced data problem. Zhang et al.
(2012) proved thatthe imbalanced data problem could be
solved by ensemble methods. Augusty and Izudheen
(Song et al., 201 4) further showed that Ada Boost method
could improve Zhang’s methods indealing with the
imbalanced data problem.

MATERIALS AND METHODS

Construction of a gold standard dataset: It is created
training and test dataset containing direct interacted
proteinpairs of yeast for Protein-Protein Interaction (PPI)
prediction using a method. Briefly, 2865 positive PPI pairs
were obtained from the DIP database (Xenarios, 2000).
These direct interaction protein pairs were tested tobe
highly confident PPI pairs by small-scale experiments.
Meanwhile, there was insufficient high-confidence
negative data, negative PPI pairs were generated by
randomly pairing proteins followed by removing the
positive PPI pairs. Finally, the positive PPI pairs and the
negative PPl pairs were combined by a ratio of 1-100
into a “Gold Standard” dataset. Tt has been proved
that the AUC value is not sensitive to the different
positive-to-negative ratios.

Selection of features for PPI prediction: The results of
PPI prediction classifiers were used as features of
MPPCM. Specifically, Phyloprof has three kinds of input
parameters including four PPT prediction methods, eight
Reference Taxa Optimization methods and four PPI
networks. Without the time consuming PPI prediction
method “RUN,” there were 102 different classifiers based
on different combinations of parameters provided by
Phyloprof. As mentioned above, GO2PPT has three kinds
of input parameters as well, including two machine
learming methods, seven GO terms or terms combinations
(BP, CC, MF, BPCC, BPMF, CCMF and BPCCMF) and
seven PPI networks. In the same way, there were 98
different combinations of classifiers provided by GOZPPI.
It 15 used combined GO terms 1n this study because the
best accuracy was achieved by the mntegration of three
GO terms in the GO2PPT paper.

PPI prediction using mppcm pipeline: Specifically, a
protein pair 18 first evaluated by classifier sprovided by
PPI prediction software such as GO2PPT and Phyloprof.
Then, the classification scores from individual classifiers
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Fig. 1: a)PPI prediction based on classifiers related to SC;
b): PPI prediction based on classifiers related to
cross species and c¢) PPI prediction based on
classifiers related to all species
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are used as input features to produce the final PPI
prediction score using Ada Boost algorithm, implemented
in the MATLAB. GO2PPI has 98 PPI prediction classifiers,
among which 14 are SC-related and 84 are not SC-related
(cross species) classifiers. Phyloprof has 96 PPI prediction
classifiers, among which 24 are SC-related and 72 are not
SC-related (crossspecies) classifiers.

Evaluation of PPl prediction accuracy: The a
forementioned gold standard database that contains
about 30,000 PPT pairs with a positive-to-negative PPI
ratio of 1:100 was used to evaluate the PPI prediction
accuracy. The following measures were used to evaluate
PPI prediction results: the true positive rate (TPR also
called sensitivity), defined as the ratio of correctly
predicted positive PPT pairs among all positive PPT pairs,
the true negative rate (TNR also called specificity),
defined as the ratio of correctly predicted negative PPI
pairs among all negative PP pairs and the False Positive

Rate (FPR also called Type T error), defined as the ratio of
incorrectly predicted PPI pairs among all negative PPI
paurs. The FPR 1s one minus TNR. The Receiver Operating
Characteristic (ROC) curves were created by plotting TPR
versus FPR. The Area Under the Curve (AUC) was used
asa measure of the prediction accuracy. The AUC value
was calculated using the following equation:

n
AUC:%Z((xk+xk_1)(Yk +Y,)) (1)
k=1
Where:
%, = The FPR atk pair
v, = The TPR at k pair in the ranked PPT pair list. The
prediction process was repeated 25 times and the
average AUC value was reported

In our research, evaluated the PPI prediction accuracy
of MPPCMs and the classifiers in GO2PPT and Phylopr of
using AUC. Here, 1t 13 mtroduced tlwree categories of
MPPCM  including GO2PPI, Phylopr of and
GO2PPT+Phylopr of with each further divided to three
Sub-Categories (3C) cross species and allspecies (1.e., SC
plus cross species) (Fig. la).

RESULTS AND DISCUSSION

Performance of MPPCM in GO2PPI category: Using
the gold standard dataset, the average AUC of the
14 SC-related classifiers in GO2PPT (Table 31) was 0.61
and rflbpcc|SC was the most accurate classifier with an
AUC of 0.63, among these 14 classifiers (Fig. 2). The
average AUC of the 84 cross species related classifiers in
GO2PPI (Table 51) was 0.59 and rf]bpce[HS was the most
accurate classifier with an ATUC of 0.60, among these 84
classifiers (Fig. 2b).

The average AUC of all the 102 (all species) classifiers
in GO2PPT (Table S1) was 0.59 and rflbpec|SC was the
most accurate classifier withan AUC of 0.64, among these
98 classifiers (Fig. 2). The AUCs of MPPCMs are 0.71,0.70
and 0.69 for SC, cross species and all species MPPCM,
respectively (Fig. 2). These results indicate that MPPCMs
significantly improved PP prediction accuracy compared
with their corresponding classifiers m GO2PPI category
compared with the most accurate classifier m GO2PPL
category, the cross species MPPCM improves AUC by
12%.The improvement of MPPCM in 8 C MPPCM was
only 9% (Fig. 2), indicating that the cross species
MPPCM had better performance than the SC classifier.
The better performance of cross species MPPCM
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Fig. 2: Comparison of PPI prediction accuracy in the
GO2ZPPI+Phyloprof category

(containing 84 features) than SC MPPCM (contaimng 14
features) suggests that the larger number offeatures
incorporated inte MPPCM enhanced PPI prediction
accuracy m GO2PPI category.

Performance of MPPCM in the Phyloprof category:
Again, using our gold standard dataset, the average AUC
of the 243C-related classifiers in Phyloprof (Table 32) was
0.64 and SCJmi|et was the most accurate classifier with an
AUC of 0.71, among these 24 classifiers. The average
AUC of the 72 cross species related classifiers in
Phyloprof (Table S2) was 0.61 and EC|mi|et was the most
accurate classifier with an AUC of 0.72, among these 84
classifiers (Fig. 3b). The average AUC of all the 96 (all
species) classifiers in Phyloprof (Table S2) was 0.62 and
milet [EC was the most accurate classifier with an AUC of
0.72, among these 96 classifiers. The AUCs of MPPCMs
are 0.72,0.76 and 0.77 for SC, cross species and all species
MPPCM, respectively (Fig. 1). These results indicate that
MPPCM ssignificantly improved PPI prediction accuracy
compared with their corresponding classifiers in the
Phyloprof category. Compared with the most accurate
classifier in the Phyloprof category, the cross species
MPPCM mmproves AUC by 6% while the improvement by
SC MPPCM 15 only 1%, indicating that the cross species
MPPCM had better performance in AUC improvement.
The better performance of cross species MPPCM
(contaimng 72 features) than SC MPPCM (contaimng 24
features) suggests that more features incorporated mto
MPPCM could enhance PPT prediction accuracy in the
Phyloprof category.

Performance of MPPCM in GO2PPI+Phyloprof category:
After separate evaluation of MPPCM in the GO2PPT and
Phyloprof categories, we assessed the performance of
MPPCM i the GO2PPI+Phyloprof category which
combined all the classifiers in both GOZPPI and Phyloprof.
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The AUCs of MPPCMs in the GOZPPI+Phyloprof
category were 0.83, 0.85 and 0.86 for SC, cross species and
all species MPPCM, respectively (Fig. 2) which are
significantly higher than those of MPPCMs in either
GO2PPI or Phyloprof category separately. Compared with
the lmghest AUCs of mdividual classifiers m GO2PPI and
Phyloprof category, the cross species MPPCM improves
AUC by 18% and the improvement by SC MPPCM was
18%. These results indicate that MPPCM based on all the
194 classifiers from both GO2PPI and Phyloprof could
generate more accurate PPl prediction than MPPCM
based on a fewer number of classifiers in GO2PPI or
Phyloprof  mdividually, further supporting the
aforementioned premise that more features mcorporated
into MPPCM would enhance PPI prediction accuracy. In
summation, based on our combinatorial approach, our
cross species MPPCM  results vyield informative
predictions that will help build high-quality PPI networks
for nonmodel orgamsms. Such predicion will be
valuable for nonmodel organisms that lack biological data
and PPI prediction software for nonmodel organisms
(Hosur et al., 2010).

Recently, ensemble classifiers for example, LibD3C,
were developed based on a clustering and dynamic
selection strategy (Maetschke ef al., 2012). In order to
compare the performance of Random Forests method
applied by ouwr MPPCM with the latest ensemble
classifiers, we performed ensemble classifiers
calculationon our all species traimng and testing
datasets of the GO2PPI+Phylopof category by LibD3C
in Weka-3.7.12 with default setting. The average AUC
by LibD3C was 0.8640.03 which is in an excellent
agreement withour Ada Boost result (0.86+0.02).
Therefore, Ada Boost method applied by our MPPCM
shows very similar performance with the latest ensemble
classifiers (LibD3C).

CONCLUSION

In our research postulated that by combining
individual classifiers the accuracy of PPT prediction could
be improved. Here, it is developed a method called
Modified Protein-Protein Interaction Prediction Classifiers
Merger (MPPCM) and this method combines output from
two PPI prediction tools, GO2PPI and Phyloprof, using
Ada Boost algorithm. The performance of MPPCM was
tested by Area Under the Curve (AUC) using an
assembled gold standard database that contains both
positive and negative PPI pairs. Our AUC test showed
that MPPCM significantly improved the PPI prediction
accuracy over the corresponding individual classifiers. It
is found that additional classifiers incorporated into
MPPCM could lead to further improvement in the PPT
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prediction accuracy. Furthermore, cross species MPPCM
could achieve competitive and even better prediction
accuracy compared to the single species MPPCM. This
study established a robust pipeline for PPI prediction by
integrating multiple classifiers using Ada Boost
algorithm. This pipeline will be useful for predicting
PPT in nonmodel species.
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