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Abstract: Virtualization is a key technology to enable cloud computing. A vast mass of popular content is
transferred frequently across network links in the cloud. In network-level Redundancy Elimination (RE)
techniques, 1t mimmizes traffic flow on bandwidth-constrained network paths by eliminating the transmission
of repetitive byte sequences. In previous research, the protocol 1s independent of redundancy elimmation
which cannot eliminate duplicate packets from within arbitrary network flows. In emerged cloud we require a
potent technique to improve the performance of network links in the face of frequent data. Our proposed
research present the packet reduction technique 1s used for finding and removes the duplicate packets in a
network environment. In addition, the data itself can be moreover large to store on a single machine. In order
to reduce the time it takes to process the data and to have the storage space to store the data, we introduce a
new approach called map reduce method. In this approach, it has to separate the workload among computers
n a network. As an outcome, the performance of map reduce robustly determined on how equal it distributes
this workload among the computer. In map reduce, workload allocation depends on the algorithm that
separating the data. To avoid the issues of uneven distribution of data we use data sampling. By using the
partitioning mechanism, the partitioning is done on the data which depends on how huge and representative
the sample 1s and on how well the samples are examined. In addition to that we use partitioning methods to
divide the workload into small tasks that are dynamically scheduled at runtime based on deadline. To mnprove
the accuracy in scheduling, we propose a novel method called deadline constraints based task scheduling
algorithm in map reduce. This method allows the user to specify a job’s deadline and attempts to formulate the
job to be completed before the deadline. This method 13 simple and efficient systems with high-throughput,
low-latency task schedulers and proficient data materialization.
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INTRODUCTION

Cloud computing has significantly transformed the
method various critical
customers for instance, the software, platform and
mnfrastructure as a service models and by the same time
has raised new problems to data centers. The outcome is
a complete, innovative generation of large
mnfrastructures, carrying an unprecedented level of
workload and server consolidation that require new
programiming representations, management procedures
and hardware platforms. Simultanecusly, it provides
remarkable capabilities to the mamstream market, thus,
offering opportumities to build new services that need
large scale computing. Hence, data analytics is one of the

services are delivered to

scale

more iunportant fields that can advantage from next
generation data center computing. The mtersection
among cloud computing and next generation data
analytics services indicates towards a future in which
large amounts of data are available and users will be
capable to process this data to create high value services.
As a result, building new models to implement such
applications and mechanisms to maintain them are open
challenges. An instance of a programming representation
specially well-suited for large-scale data analytics 1s map
reduce, initiated by Google in 2004.

At the present time cloud computing is developing its
services to data-mtensive computing on distributed
platforms like map reduce, dryad and hadoop. In namely
distributed models on clouds, physical machines are
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virtualized and a huge range of Virtual Machines (VMs)
form a virtual cluster. Execution time aims of map reduce
jobs play a sigmficant function in achieving higher
revenues or utility for the content suppliers. Depending
on whether or not a task is allocated to a node by its input
data (local task or non-local task), the execution time of
the task capacity differs considerably. However, to boost
locality when a task s scheduled, the computing node
with the equivalent data must have free computing slots
to execute the task. If not the task has to be allocated to
a remote node which needs remote data transfer from
another node for the task to execute. The challenge that
requires to be considered is how efficiently, we can
schedule the jobs such that both data locality and
deadline conditions are fulfilled.

Map reduce workloads commonly include a very
huge number of small computations executing in parallel.
High levels of computation partitioning and moderately
small individual tasks are a planming point of map reduce
models (Dean and Ghemawat, 2008). At the same time as
it was innovatively used mainly for batch data processing,
it utilize has been expanded to distribute, multi-user
environments in which submitted jobs may have execute
in different priorities (Zaharia et @l., 2010). This transform
builds scheduling even more relevant. Task selection
and slave node assignment direct a job prospect for
development and thus control job performance.

One of the propose objectives of the map Reduce
framework is to enhance data locality over working sets
(Polo et al, 2010a) in an try to minimize network
bottlenecks and improve overall system throughput. Data
locality 1s attained when data are saved and developed
with the same physical nodes. Failure to develop locality
15 one of the famous shortcomings of most multi-job
map reduce schedulers while placing tasks from various
jobs on the similar nedes will contain a negative achieve
on data locality (Polo et al., 2010b).

All together, there is a development towards the
adoption of heterogeneous hardware and hybrid systems
in the computing industry. Heterogeneous hardware will
be controlled to enhance both performance and energy
consumption, developing the best features of every
platform. For imstance, a map reduce framework
facilitated to run on hybrid systems has the possible to
have considerable impact on the future of several fields,
healthcare and smart
cities-style data management. Map reduce offers an easy
and a suitable method to expand massively shared data
analytics facilities that utilize all the computing power of
these large-scale services. A large cluster of hybrid a lot
of core servers will carry workload consolidation

inveolving financial analysis,

approaches one action closer in future data centers.

Further, map reduce recommended as a service in the
cloud provides an attractive usage model for enterprises.
A map reduce cloud service will permit enterprises to
cost-effectively analyse large volumes of data without
creating large infrastructures of their own. Using Virtual
Machines (VMs) and storage hosted in the cloud,
enterprises can basically create virtual map reduce
clusters to analyse their data.

A significant challenge for the cloud provider 1s to
maintain multiple virtual map reduce clusters executing
simultaneously, a diverse set of jobs on distributed
physical machines. Concretely, every map reduce job
produces various loads on the distributed physical
infrastructure computation load: number and size of each
VM (CPU, memory), storage load: amount of input, output
and mtermediate data and network load: traffic generated
during the map, shuffle and reduce phases. The network
load is of special concern with map reduce as large
volumes of traffic can be produced in the shuffle phase
when the output of map tasks 1s transferred to reduce
tasks. As every reduce task requires to read the output of
all map tasks, an unexpected explosion of network traffic
can considerably deteriorate cloud performance. This is
particularly true when data has to traverse a greater
number of network hops as going across racks of servers
1n the data center.

To minimize network traffic for map reduce workloads,
we dispute for improved data locality for mutually map
and reduce phases of the job. The amn 1s to minimize the
network distance among storage and compute nodes for
mutually map and reduce processing for map phase, the
VM executing the map task must be close to the node that
stores the mput data (favourably local to that node) and
for reduce phase, the VMs executing reduce tasks should
be close to the map-task VMs which produce the
intermediate data utilized as reduce input. Enhance the
data locality in this manner is valuable in two ways it
minimizes job execution times as network transfer times
are large components of total execution time and it
mimimizes cumulative data center network traffic. At the
same tume as map locality 1s well understood and executed
onmap reduce systems, mimmize locality has surprisingly
received little concentration in spite of its important
potential impact.

In a map reduce permitted computing cloud, a map
reduce cluster 1s setup by different VMs orgamzed mn the
cloud data center. We transfer to the VMs that host the
map reduce nodes as the map reduce instances and the
VMs that host another cloud application as the non-map
reduce instances. To minimize the maintenance cost of the
cloud data center, VMs’ workload 1s combined by
correctly groupmg well-suited VMs collectively and
allocating them to the appropriate physical servers. But,
combining the VM workload will warm up the competition
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Fig. 1: Map reduce-based parallelization of the reuse detection workflow

for hardware resource between VMs. As the parallel
computing environment of the map reduce model dictates
that the performance of the map reduce applications
depends on the slowest map reduce instances in the
cloud data center and it 1s also very responsive to the [/O
bandwidth (e.g., disk I/O, network bandwidth) competition
between other co-located non-map reduce instances.
Consequently, map reduce instances must be hosted by
homogeneous and remote VMs that have contributed 'O
bandwidth engaged separately from other non-map
reduce VMs. Therefore, it may not be useful for the ¢loud
providers to create such remote VMs while the reserved
I/O bandwidth cannot be distributed between other VMs.
An mnovative VM consolidation method specifically
designed for map reduce allowed computing clouds which
consolidate VMs based on the features of the map reduce
model 13 required.

The early map reduce framework was planed for
off-line data processing. Further, at present it is popularly
functional m heterogeneous, sharing and multi-user
models. The study of the map reduce scheduling
algonthm mainly in four parts: the data locality of the map
reduce tasks. It 1s the result of the data allocation to task
scheduling; fault-tolerant scheduling and expectation
execution time in a heterogeneous model, resource
sharing: for the Hadoop cluster how to distribute the
computing resources through scheduling the wuser
groups; resource aware scheduling algorithm. Tt is based
on the significance of the cluster resources, namely
memory, disk IO, network and other factors; real-time
scheduling. It 15 the study of the map reduce real-time
scheduling environment. At the present time, the map
reduce scheduling algorithms mainly involve FIFO
(First Input First Output), LATE (Longest Approximate
Time to End) (Zaharia et al, 2010), fair scheduler
(Zaharia et al., 201 0) and capacity scheduler. Fundamental
features such as data locality, user priority, fault-tolerant
and faimess are all considered with these algorithms.

Furthermore, few algorithms have considered the
user’s job deadline constraints such as n the flexible
cloud computing environment or online service system
(Alexandraki and Paterakis, 2005). During the job deadline,
we can build a model to advance the reliability of the task
remaiming tme estimating m the heterogeneous
environment, formulate the use jobs can be completed
before the deadline.

The remarkable growth in the computer networks
increase the network bandwidth available to users has
resulted in the generation of large volumes of data. For a
single computer the volume of data produced is too large
so that the computation of the data obtamns more time and
also mncreases the storage space. In order to minimize the
computation time and reduces the storage space the
workload is shared on two or more computers. In addition
to that allocation of workloads depends upon the node
capacity so that we realize the effective scheduling. The
essential property that some of the content on the internet
15 highly admired results some data being frequently
transferred across the network. Our proposed systems
challenge to mnprove the efficiency of the network by
removing these redundant transfers.

Literature review: Candan et al. (2011) proposed a rank
loud, a scalable, ranked media, query-processing system.
Rank loud avoids waste by mtelligent partitioning the
data and allocating it on available resources to minimize
the data replication and indexing overheads and to prune
superfluous low-utility processing.

As shown in Fig. 1, the last phase of the operation
involves post processing to eliminate false positives.
When attempting to parallelize the underlying workflow
using a map reduce based framework, however, we have
seen that the benefits of using more servers drop quickly
for high target-recall rates. This drop in the scalability is
primarily due to the number of unnecessary candidates
that are being generated and processed. In short, in many
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large-scale media-processing applications such as
content-overlap analysis to be effective,
resources must be allocated to pay the most attention to
the most promising and relevant (that 15 highest-utility)
words, sentences, paragraphs or other media features. To
avoid waste and achieve the scalability needed for
large-scale media processing and mimng, data-processing
systems must employ data partitioming and resource
allocation strategies that can prune unpromising data
objects from consideration without having to use
available resources to enumerate results that will be
eventually eliminated.

Josh Rosen and Bill Zhao the research, we will
explore the challenges of skew and stragglers, survey
existing techniques to mitigate them and explore how
fine-grained micro-tasks can effectively mitigate skew.
Partitioning skew is caused by uneven map output
partition sizes/record counts which may be caused by
poor choices of partitioning functions. We introduce our
approach for avoiding skew and stragglers during the
reduction phase. The key technique is to run a large
mumber of reduce tasks, splitting the map output into
many more partitions than reduce machines m order to
produce smaller tasks. These tasks are assigned to reduce
machines in a “just-in-time” fashion as workers become
idle, allowing the task scheduler to dynamically mitigate
skew and stragglers.

Rumning meny small tasks lessens the impact of
stragglers for the work that would have been scheduled
with slow nodes when using coarse-grained tasks can
now be performed by other idle workers. With large tasks,
1t can be more efficient to exclude slow nodes rather than
assigning them any study. By assigning smaller units of
study, jobs can derive benefit from slower nodes.
Micro-tasks can also help to mitigate skew. Increasing the
number of hash partitons generally leads to smaller,
more-even partitions because there is a lower probability
of collision in the key’s partitioning function. This does
not provide the same partitioning quality guarantees as a
system that manually partitions the most expensive keys
but it has a high probability of producing even partitions.
For inputs containing few distinct keys, fine-grained
partitioning may result in many empty reduce tasks that
receive no data. These empty reduce tasks are
unproblematic, since they can be easily detected and
ignored by the scheduler. Jobs with few distinct keys are
the most sensitive to partitioning skew, since there may
not be enough other study to mask the effects of a
straggling task created by a key collision in the hash
partitioning function. For jobs with large numbers of
distinct keys, the impact of key collisions 1s small. Liu H,
Orban D describes how we mmplement Cloud mapreduce

available

using the Amazon cloud OS. We start with the high level
architecture and then delve into detailed implementation
1ssues we have encountered. We use the Word Count
application as an example to describe our unplementation.
We use four infrastructure services that Amazon provides
today. We use EC2 APIs to spawn up new virtual
machines (also called instances) to process new map
reduce jobs. We store our input and possibly output data
in S3. By leveraging the distributed nature of S3, we can
achieve higher data throughput since data come from
multiple servers and commumcations with the servers
potentially all traverse different network paths. We also
use SQS which is a critical component that allows us to
design mapreduce in a simple way. A queue serves two
purposes. First, it 15 a synchromzation point where
workers (a process running on an instance) can
coordinate job assignments. Second, a queue serves as a
decoupling mechanism to coordinate data flow between
different stages. There are several SQS queues: one nput
queue, one master reduce queue, one output queue and
many reduce queues. As its name implies, the input queue
holds the inputs to the map reduce computation. The map
reduce framework collects the output key value pairs from
the map function, then writes them to the reduce queues.
A reduce key maps to one of the reduce queues through
a hash function. A default hash function is provided but
the users could also supply their own. Once the map
workers finish their jobs, the reduce workers start to poll
work from the master reduce queue. Once a reduce worker
dequeues a message, it is responsible for processing all
data in the reduce queue indicated by the message.

Edward Bortmkov introduces a map reduce system
can simultaneously run multiple jobs competing for the
node’s resources and traffic bandwidth. These conflicts
cause slowdown in the execution of tasks. The duration
of each phase and hence the duration of the job is
determined by the slowest or straggler, task. We use the
slowdown metric the ratio between the task’s execution
time and the median running time of a sibling task mn the
same job to characterize stragglers.

We address the above shortcomings by introducing
slowdown predictor a novel machine learned oracle
component that detects potential or existing bottlenecks
in MR clusters based on patterns mined from historical
performance data. The oracle exposes a simple APT: given
a task-node pair ht, ni, it produces an estimate for the
slowdown of t running on n. In this context, both the task
and the node are modeled as feature vectors assembled
from MR-level and system metrics. Slowdown prediction
can serve both the scheduling and the speculative
execution scenarios. Consider, for example, augmenting
Hadoop’s capacity scheduler with a predictor oracle. The
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scheduler manages a pool of execution slots at each node
and assigns the free slots to tasks waiting for execution.
In its current form, it will always use a slot, should a task
be waiting for it. With a predictor’s help, the scheduler
can avoid creating task to- node assignments for which
the slowdown estimate is high. For example, it can prevent
allocating congested hardware to resource-savvy tasks
(despite the existence of free slots), hence avoiding the
emergence of stragglers.

The predictor abstraction generalizes the currently
existing heuristics wlhile being far better amenable to
tuning for specific workloads. In this study, we
demonstrate a specific predictor implementation which is
trained on a Hadoop performance dataset collected at
Yahoo!. Our evaluation shows that slowdown can be
effectively predicted, especially for mappers, thanks to the
dominance of large periodic jobs in production
environments.

Gonzalez et al (2012) to address the challenges of
power-law graph computation, we mtroduce the power
graph abstraction which exploits the structure of
vertex-programs and explicitly factors computation over
edges instead of vertices. As a consequence, power
graph exposes substantially greater parallelism, reduces
network communication and storage costs and provides
a new highly effective approach to distributed graph
placement. We describe the design of our distributed
implementation of power graph and evaluate it on a large
EC2 deployment using real-world applications. We
introduced the power graph abstraction which exploits the
Gather-Apply-Scatter Model of computation to factor
vertex-programs over edges, splitting high-degree vertices
and exposing greater parallelism in natural graphs. We
then mtroduced vertex-cuts and a collection of fast
greedy heuristics to substantially reduce the storage and
commumication costs of large distributed power-law
graphs.

Hammoud et al. (2012) investigate the problems of
data locality and partitioning skew m Hadoop. We
propose Center-of-Gravity Reduce Scheduler (CoGRS), a
locality-aware skew-aware reduce task scheduler for
saving mapreduce network traffic. In an attempt to exploit
data locality, CoGRS schedules each reduce task at its
center-of-gravity node which 15 computed after
considering partitioning skew as well. mapreduce, this
study explores the locality and the partitioning skew
problems present in the current Hadoop implementation
and proposes Center-of-Gravity Reduce Scheduler
(CoGRSB), a locality-aware skew-aware reduce task
scheduler for mapreduce. CoGRS attempts to schedule
every reduce task, R, at its center-of-gravity node
determined by the network locations of R’s feeding nodes

and the skew in the sizes of R’s partitions. The network is
typically a bottleneck in mapreduce-based systems. By
scheduling reducers at their center-of-gravity nodes, we
argue for reduced network traffic which can possibly
allow more mapreduce jobs to co-exist on the same
system. CoGRS controllably avoids scheduling skew, a
situation where some nodes receive more reduce tasks
than others and promotes pseudo-asynchronous map and
reduce phases.

Hammoud and Sakr (2011) describe Locality-Aware
reduce task Scheduler (LARTS), a practical strategy for
improving map reduce performance. LARTS attempts to
collocate reduce tasks with the maximum required data
computed after recognizing input data network locations
and sizes. LARTS adopts a cooperative paradigm seeking
a good data locality while circumventing scheduling
delay, scheduling skew, poor system utilization and low
degree of parallelism. We propose a novel strategy,
LARTS wlich applies data locality to reduce task
scheduling in mapreduce. We empirically analyze
Hadoop’s performance and network traffic. We observe
that the process of interleaving the execution of map tasks
with the shuffling of partitions employed by native
Hadoop improves performance but increases network
traffic. We show how LARTS manages to maintain the
advantage of the interleaving process besides diminishing
network traffic.

Hindman et al. (2011) propose Mesos, a thin resource
sharing layer that enables fine-grained sharing across
diverse computing frameworks by giving
frameworks a common interface for accessing cluster
resources. The main design question that Mesos must
address is how to match resources with tasks. This is
challenging for several reasons. First, a solution will need
to support a wide array of both current and future
frameworks, each of which will have different scheduling
needs based on its programming model, communication
pattern, task dependencies and data placement. Second,
the solution must be lighly scalable as modemn clusters
contain tens of thousands of nodes and have hundreds
of jobs with millions of tasks active at a time. Third, the
scheduling system must be fault-tolerant and highly
available as all the applications in the cluster depend on
it.

cluster

This approach would be for Mesos to implement a
centralized scheduler that takes as input framework
requirements, resource availability and organizational
policies and computes a global schedule for all tasks.
While this approach can optimize scheduling across
frameworks, it faces several challenges. The first is
complexity. The scheduler would need to provide a
sufficiently expressive API to capture all frameworks’
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requirements and to solve an on-line optimization problem
for millions of tasks. Even if such a scheduler were
feasible, this complexity would have a negative impact on
its scalability and resilience. Second as new frameworks
and new scheduling policies for current frameworks are
constantly being developed it 1s not clear whether we are
even at the point to have a full specification of framework
requirements.  Thirdly,
umplement their own soplusticated scheduling and moving

many existing frameworlks
this functionality to a global scheduler would require
expensive refactoring.

Slagter et al. (2013) mapreduce is a programming
model developed as a way for programs to cope with large
amounts of data. It achieves this goal by distributing the
workload among multiple computers and then working on
the data in parallel. From the programmers perspective
mapreduce is a relatively easy way to create distributed
applications compared to traditional methods. It 1s for this
reason map reduce has become popular and 15 now a key
technology in cloud computing. Programs that execute on
a map reduce framework need to divide the work into
two phases known as map and reduce. Each phase has
key-value pairs for both input and output. To unplement
these phases, a programmer needs to specify two
functions: a map function called a mapper and its
corresponding reduces function called a reducer. When
a map reduce program is executed on Hadoop, it is
expected to be run on multiple computers or nodes.
Therefore, a master node is required to run all the required

services needed to coordinate the communication
between mappers and reducers. An input file (or files) is
then split up mto fixed sized pieces called mput splits.
These splits are then passed to the mappers who then
work in parallel to process the data contained within each
split. As the mappers process the data, they partition the
output. Each reducer then gathers the data partiton
designated for them by each mapper, merges them,
processes them and produces the output file. Task

scheduling is an important process as described by Jawad
(2006).

MATERIALS AND METHODS

Mapreduce computing framework: As a distributed
computing framework on commercial computer, one of the
map reduce most important benefits is that it offers an
abstraction that hides many system level details from
programmer. It processes data by separating the progress
nto two parts: map and reduce. Each map function
obtains a split file as its input data which locates in the
distributed file system and includes the key-value data.
The split file can be co-location with the map function or
not. If the split file and the map function don’t in the same
node, then the system will transmit the split file to the map
function. This process will delay the execution of map
task. Figure 2 show that the map function 1s concerned to
each input key-value pair and produces an arbitrary
mumber of intermediate key-value pairs. The process of
map task involves:

Input key*value Input key*value
_Ppairs _pairs
L 5 B >
map map J
Data stora 1 Data store n
(kéy 1, (key 2, (Rey 3, (kéy 1, (key 2, (key3,
valyes...) values...) values...) values...) values...) values...)§
X 1 L] L 5
== Barrior == : Aggregates intermediate values by output key
' key 1, key 2, key 3,
intermediate intermediate intermediate
values values values
reduce reduce reduce
ﬁnal'key 1 ﬁnal'key 2 ﬁnal'key 3 ;
values values

Fig. 2: A map reduce computation

values
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¢+ Read: Reading the input split and creating the
key-value pairs

+  Map: Executing the user-provided map function

* Merge and write: collecting the map output into a
buffer and partitioning. Writing the buffer to disk as
a spill file. Merging the file spills into a single map
output file. Merging might be performed in multiple
rounds

And the procedure of reduce task includes:

¢  Shuffle: Copying the map output from the mapper
nodes to a reducer’s node and decompressing if
needed. Partial merging may also occur during this
phase

*  Merge: Merging the sorted fragments from the
different mappers to form the input to the reduce
function

* Reduce: Executing the wuser-provided reduce
function

«  Write: Wnting the output to HDFS (Hadoop

Distributed File System)

The reduce function is applied to all values that
associated with the same intermediate ey and generates
output key-value pairs as the final result. In the map
reduce framework, map or reduce codes can be moved
among the cluster nodes and the data can be transferred
from a node to another. If the code and data on the same
node, we call this “data locality”. The cost of migrating
code 15 extremely lower than migrating data. So, the ideal
situation is to move the code, not data.

Duplicate packet reduction based on map reduce
framework: A packet 13 then split up into fixed sized
pieces called input splits. These splits are then overtaken
to the mappers who then worl in parallel to process the
data included within every split. As the mappers process
the data, they partition the output. Each reducer then
gathers the packet partition designated for them by each
mapper, merges them, processes them and produces the
output file.

It 1s the partitioning of the packet that determines the
workload for each reducer. In the map reduce model, the
workload should be balanced m order for resources to be
utilized effectively. Similarly each partitioning paclkets are
matched and redundant packet are removed m map
reduce. In this study two algorithms is proposed. First
algorithm is task partitioning; it is significant then that the
partition role evenly shares task pairs between reducers

for suitable worlload distribution. Second algorithm is
DTSM, partiioned task are scheduled based on the
deadline constraints.

Task partitioning algorithm:
Input:

TT: Set of Tnput Tasks

i: index in the partition array

Partition size: Size of the partition array
Partition count: Total number of partitions
Key count: Number of prefixes in the partition array
k: Partition number

Qutput: PT: a set of partitioned tasks
Create IT by extracting n samples from source data.
For each Task T in IT

tc = Code (T)

If (partition[tc] = FALSE)

Key Countftc] =1

Else it (partition[tc] = TRUE)

Key Count|te] = key Countlte]+1;

End if

End if

Partition[tc] = TRUE

End for

Fori = 0 to partitionSize

Tatalkey = totalkey+key Count [i]

End for

Split Size = totalkey/partitionCount
Fori = 0to partition Size

If (partition [i]] =TRUE)

8plit = split + key Countfi]

Tf (split =split Size)

k=k+1

Split =key Count [1]

End if

Pt; add (partition [i])

End if

End for

In this research, the scheduling algorithm sets dual
deadlines: map and reduce-deadline. And reduce-deadline
is presently the users’ task deadline. In direct to get
map-deadline; we require knowing the map task’s time
proportion on the task’s execution time. In a cluster with
range of resources, map slot and reduce slot number 1s
determined. For an arbitrary given task with deadline
constraints, the scheduler has to plan reasonable with the
remaining resources in direct to promise that all tasks can
be completed before the deadline constramts.

We build a model to compute the remaining time of all
running map or reduce tasks. In order to obtain the slot
constraint of running task, we must calculate the
remaimng task execution time.

T = (M, R, A, D) means a map reduce task. M, R, A
and D denotes map task set, reduce task set, task arrived
time and task deadline constraints, respectively. N<n,, n,,
n,, ..., n> 1s the set of nodes.

CM (T, n) denotes the completed task T's map task
set which run on the node and CR (T, n) means the
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already completed reduce task set which ran on the node;
TM,, denotes the task M "s (M CM (T, n)) completion
time; Tr, denotes the task R.’s (R.CR (T, n)) completion
time. The average completion time of task T s map tasks
which run on the node should be calculated by all the
maptasks that run on the node’s completion time divided
the completed task T°s map task set which run on the
node. So:

Mean,, (T, n) :(E(MM)ECM(T,n))(TMm)/(‘CM(T’ HD

And the average completion time of task T's reduce
tasks” which run on the node should be calculated by all
the reduce tasks that run on the node’s completion time
divided the completed task T’s reduce task set which run
on the node. So:

)

We use UM(T) and UR(T) to denote waiting task set
of the task T's map and reduce task type, respectively.
Mm,, (T, n) denotes the completion time of task T's map
task which runs on the node. So, the completion time of a
running task equal to the runmng time that have spent
and the remaining execution time. That is:

Mean,, (T,n) = (E (R!)GCR(T’H))(TRr) / (|CR(T,n

MM_ (T,n)=RTM, +CTM,

Where:

CTM,, = The m-th map task’s running time that have
spent

RTM,, = The m-th map task’s remaining execution time

So, the m-th map task’s remaining execution time of
task T 1s:

RTM,, =MM,, (T,n)-CTM,

The completion time of a certain tasks which run on
the nodes belonging to the same capacity level, will tend
to be the same. We know that Mm, (T, n) is
approximately, equal to Mean TM (T, n):

RTM,, =Meany,, , —CTM

)| m

In the same way, we can get the running reduce
task’s remamingexecution time:

RTR, = Mean,, CTR

() T

where, CTR, denotes the runmng time that have spent.
Because the value of RTM,, or RTR, which is based on the

tasks’ mean time, s0 we can not get the first map or reduce
task’s remaining time value. In the experiment we simply
treat it as an infinity value in the beginning. Now, we can
calculate the sum of the remaining map and reduce task’s
execution time of T which running on the nodes:

SM(T,n)= ¥ RTM_

1=i€m

SR(T,n)= Y RTR,

112y

Uses empirical data to quantize the value of P, and P,.
We use a data sample from user’s input data and run the
code on the data and then we get the map and reduce
task’s execution time T, and T,. So:

P
T,+T
And:
-
T, +T

Now, we can calculate the map-deadline by P,
D_=A+{D-A)xP_

where, A and D means the task’s arrived time and
deadline, respectively. According to map-deadline, we can
acquire the current map task’s slot number it needs and
with reduce-deadline, we can get the current reduce task’s
slot number 1t needs. We estimate the time needed for the
remaining task on the lowest level node. By this way, we
can find the emergency degree of current task and the
minimum map slot requirement of task T can be computed
as follows:

Y cuen SM(T)+ UM(T, x MM(T, 1]

8T =
T ‘Dm — Current Time‘

Similarly, the mimmum reduce slot number

requirement of task T 1s:

Y enen SR{T,0) + UR(T)x MR (1,1)

o = - CurentT
- mrentTlme|

The scheduling strategy of DTSM is based on 87 and
8. The minimum map and reduce slot number required of
task T can be denoted as 8F and & respectively. The

2652



Asian J. Inform. Technol., 15 (15): 2645-2655, 2016

symbol reflects that map tasks should be scheduled at
present in order to meet task T s map-deadline as well as
to meet the reduce-deadline (task deadline) 8. reduce
tasks should bescheduled. In the scheduling process, we
take 8¢ and 8 as the basic criteria of priority allocation.

Algorithm 2 DTSM algorithm:
Collection assignTask(TaskTracker t)

M =t.freeMapSlots

R =t.freeReduceSlots

PT,=0

T=@

Compute the slot requirement for tasks in each partitioner PT,
Update tasks’ priority in each partitioner PT),
Resort the tasks in each partitioner PT,

For each taskePT, do

Count =0

If count <task MapSlotRequirementCount
If job exists waiting map task and M=
Task t = task.obtainMapTask()

T=Tu{t}

Remove amap slot in M

Count++

Else break

Else break

For each taskePT, do

Count =0

Tf count<task.ReduceS lotRequirementCount
If task exists waiting map task and R =&
Task t = task.obtainReduceTask()
T=Tu{t}

Remove a Reduce slot n R

Count++

Else break

Else break

Return T

But there are some special cases must be considered:
at the begmning of the job be submitted, there 1s no data
available, so the scheduler can’t calculate approximately,
the required slots or the execution time of tasks. In this
case, the job’s precedence is over than the others. In
some situations, jobs may have previously missed their
deadline. The approach we use is the same as the
previous case: set such jobs’ tasks with the highest
priority. Algorithm 2 proposes the DTSM method. The
mput parameter t which including the free map slots and
reduce slots, represents a request to enquire for waiting
tasks. And the return value 1s a collection T which holds
the tasks to be assigned to task tracker.

The mapreduce scheduling flows m cloud is as
follows: the scheduling manages a each partitioner; the
work node which is called task tracker asks the scheduler
for tasks periodicity When a request arriving, the
scheduler decides which task to be assigned to the
task tracker according the scheduling algorithm. In
algorithm 2, we firstly compute 8 and 8, for each task in
partitioner and resort the task’s order (see lines 6-8).
Secondly, on lines 9-21 and lines 22-34, we schedule the

waiting map and reduce tasks correspondingly. Finally,
return the task collection T to the task trackter and the
task tracker will run the tasks.

RESULTS AND DISCUSSION

In owr experimental cloud setup simulation is
performed by using cloudsim Ex. Using cloudsim EX we
create the 700 host machines and 1000 virtual machines
with different requirements. Each virtual machine runs the
more number of tasks. We compare the proposed task
partitioning based deadline aware scheduling strategy
with the with existing technique as Multilevel Queue
Scheduler (MQS) in terms of performance time,
performance map, CPU utilization rate and the throughput.
We have used CloudSim Ex to implement our proposed
methodology which is based on mapreduce concepts.

Performance time: This metric defines the overall time
taken to process the task partitoning and the task
scheduling process with the concern of deadline. The time
taken to process the entire workload by the proposed
methodology and the existing methodology is shown in
the following graph.

The corresponding values of total time for the number
reduces are the plotted in Table 1. Figure 3 indicates the
comparison graph of total time taken to schedule the tasks
for different number of reducers. In the x axis, number of
reducers is plotted whereas in the y axis total time taken
to process the scheduling is plotted.

Performance map: The performance map defines the
mapping performance. The mapping performance defines
the percentage of mapping is performed by the number
map task. The immproved mapping of the proposed
methodology than the existing methodology 1s shown in
the following graphical representation (Fig. 4).

This graph indicated the performance improvement
obtained for the corresponding mapping metric than the
existing methodology. This Fig. 4 shows, in the x axis
mumber of map tasks are plotted and in the y axis
percentage of map tasks are plotted. The exact values of
percentage of mapping are shown in Table 2.

Table 1: Total time values

Total time
Number of reducers MOS TPA-DTSM
1 550 400
2 1000 900
3 1600 1400
4 2000 1800
5 2800 2100
6 3300 2600
7 3900 3000
8 4400 3400
9 5000 3900
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Table 2: Mapping performance

Map (%0)
Number of map task MQS TPA-DTSM
1 65 73
2 77 88
3 72 82
4 70 80
5 71 90
6 69 90
7 78 81
8 79 90
9 T2 80

CPU utilization: CPU utilization refers to a computer’s
usage of processing resources or the amount of work
handled by a CPU. Actual CPU utilization varies
depending on the amount and type of managed
computing tasks. The CPU utilization comparison of
proposed methodology and the existing methodology 1s
shown in Fig. 5.

This graph plots the CPU utilization range of
processing the number of tasks submitted in the
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Fig. 5: CPU utilization
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Fig. 6: Throughput

Table 3: CPU utilization

CPU utilization

Number of records MOS TPA-DTSM
100 28.0 33.0
200 33.0 43.2
300 371 47.0
500 51.6 85.4
1000 64.4 97.0
2000 82.0 121.8
3000 102.1 153.0

mapreduce component. The x axis plots the number of
records executed and the y axis plots the CPU utilization
consumed. The exact values of CPU utilization taken for
plotting the graph is indicated in Table 3.

Throughput: Throughput defined as the number of
packets can be transmitted in a particular period of time.
The through put of the proposed methodology is
increased than the existing work and the graphical
llustration of the throughput 1s shown n Fig. 6.

Figure 6 shows the throughput comparison of
existing work with the proposed methodology in terms of
different number of records. In the x axis, the numbers of
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Table 4: Throughput comparison

Throughput
Number of records MQS TPA-DTSM
100 140 180
200 350 380
300 500 520
500 770 850
1000 1250 1790
2000 3100 3700
3000 4100 5100

are plotted and in the y axis throughput value obtained 1s
plotted m terms of kbps unit. The exact values obtained
for the throughput of existing and proposed methodology
is given in Table 4.

CONCLUSION

In this study present the packet reduction technique
15 used for find and removes the duplicate packets in
network environment. In order to reduce the time it
acquires to process the data and to have the storage
space to store the data, we introduce a new approach
called map reduce method. In this approach, it has to
separate the workload among computers mn a network. By
umproving network performance, mapreduce programs can
become more efficient at handling tasks by reducing the
overall computation time spent processing data on each
node. The proposed partition algorithm used for
partitioning the task that decides the workload for each
reducer. In the mapreduce frameworl, the workloads have
to be balanced in categorize for resources to be utilized
efficiently. The DTSM proposed in this study focuses on
user’s deadline constraints problem. For a random
submitted task with deadline constraints, the scheduler
must schedule reasonable with the remaimng resources in
arrange to promise that all jobs can be completed before
the deadline constraints. If the data are partitioned
equivalent between the nodes then the execution time for
the overall map reduce job is minimized.

RECOMMENDATIONS

In the future, we would like to employ the proposed
task scheduler architecture and achieve additional
researches to determine performance using straggling or
heterogeneous nodes. We extend to examine other profits
of micro-tasks, inwvolving the use of micro-tasks as a
substitute to preemption when scheduling combinations
of batch and latency-sensitive jobs.
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