Asian Journal of Information Technology 15 (16): 2846-2850, 2016

ISSN: 1682-3915
© Medwell Journals, 2016

A Strategic Aproach with Automated Safe Composable Model
Testing Using Petrinets for Safety Critical System

'Smitha and *Sankar Ram
"Department of Computer Science and Engineering,
Velammal Engineering College, Anna University, Tamil Nadu, India
“Department of Computer Science and Engineering,
RMK College of Engineering and Tech, Anna University, Tamil Nadu, India

Abstract: Testing with vast requirements is a challenging task especially with interoperability system.
Traditional testing approaches to safety critical distributed system has to be rethought as most of the
approaches are based on testing from extensive requirements which is very time consuming. The idea proposed
here 1s to design an automated safe composable testing model with compatible and composable components
by designing with petrinets and hence into test sequences. Petrinets addresses issues concerning parallel
system with automatic conversion and hence reducing time and cost.

Key words: Petrinets, test sequence, composable, safe, component

INTRODUCTION

Software testing plays a crucial role m the
development of quality software. Testing cost occupy
about 30-50% of software development (Beizer, 1990).
Automated test case generation has a strong impact on
testing process (Anand et al, 2013) which reduces the
cost of testing effort. Testing of safety critical system
provides many challenges as there should be =zero
tolerance in propogation of errors. The key aspect of
testing include minimizing time and maximizing the chance
of identifying more defects. Model Driven Software
Development (MDD) 1s a new paradigm which reduces
effort and time in software development process and
mnproves product quality. Model driven testing
(Utting and Legeard, 2006; Mussa et al., 2009) reduces
testing time for safety critical system by testing
composable components which are compatible, mstead of
testing with requirements. Component Cl can be
considered as a quadraple of:

C1=(F,LP Ta)
Where:
Cl = The component
F = Theset of function in the component
I = Theset of input/output
P = Theset of parameter passed to the component
Ta = Theactivation time (Smitha and Sankarram, 2014)

C=<(fl, 12, ...,), VO, (pl, p2, ..., p1). (Ta)=

Component based model reduces the requirements
for extensive development process that have to be
followed for safety system. Composability is the ability to
select and assemble, combine and recombine, configure
and reconfigure simulations reusable components
(Rozenburg and Engelfriet, 1998). Two components are
said to be compatible when they are able to work 1n the
same environment. Components, therefore, need to be
tested to determine 1if they are safe mn the context into
which they will be deployed. Each reuse of a component
will require a reassessment of the suitability and safety of
the compenent and if previous testing of the component
did not cover all the circumstances of the new context,
further testing must be performed (Wilkinson et af., 2014).
The software components are self-checked based on the

criticality of the mformation.

The key research question raised here is:

» How to simulate petrinets of a component model

» How test sequences can be generated from a
composable model

* How to automate test sequences and generate code
from composable model

The answer to first research question is the
development of petrinets from components. Petri nets are
state-transition systems that extend a class of nets called
elementary nets.

Corresponding Author: Smitha, Department of Computer Science and Engineering, Velammal Engineering College,

Anna University, Tamil Nadu, India

2846

Asian J. Inform. Technol., 15 (16): 2846-2850, 2016

Fig. 1: Safe Composable Testing Model (SCTMP)
Definition 1: A petrinet is a triple where:

» P and T are disjoint finite sets of places and
transitions, respectively
¢« FNPXT UTXP)is asetof arcs (or flow relations)

Definition 2: GivenanetN = (P, T, F), a configuration is
a set C so that CcP (Rozenburg and Engelfriet, 1998).
The 1987 volume contains the most comprehensive
bibliography of petrinets (Drees ef af., 1986) listing 2074
entries. Model based testing (Ravi and Kailash, 2008,
Linzhang et al, 2004) takes UMIL (Unified Modeling
Language) which is a proclaimed standard by OMG and
finite state machine facilitates the construction of
behavioral models early m the development of the
lifecycle, thus exposing ambiguities in the specification
and design.

The answer to second and third research question of
how to automate test generation specifies the use of a
tool named CPN which automate the test sequence from
Petrinets. For a software system specified as a state
machine, a test generator may attempt to generate test
cases that execute all the state transitions of the
state-machine model (Braione et al., 2014). Bertolino
(2003) articulated that test case generation is a most
challenging and an extensively researched activity. A test
sequence 1s a hugh level test where a sequence of tasks or
operations 1s directly generated from a high level
behavioral model according to a particular test objective
(Farooq et al., 2008). Test generation can be done either
manually or automatically. Recent research focus is
towards automation of test generation because of the time
constraints for testing. Subsequently coding 1s generated
from petrinets with coverage analysis of 100%.

MATERIALS AND METHODS

Safe Composable Testing Model with Petrinet (SCTMP):
In order to reduce testing time and to increase the
efficiency of safety critical system, SCTMP framework 1s
developed as in Fig. 1. Parallel system 1s designed with
Petrinets which 1s composable and compatible and thus

Composable
component Parallel Automation of Test sequence
system with petrinets with generation with
petrinets reduction of — decision table
Compatible states
component l
Test coverage

safety 13 ensured through reachability, boundedness and
liveness property. Automated test sequence is generated
with decision table and coverage analysis 1s done with
function coverage.

Example: anti collision device for train protection system
on indian railways considering distributed links: The
Anti Collision Device (ACD) is a form of Automatic Train
Protection invented by and used on Indian Railways. The
ACD Network 13 a Train Collision Prevention system
wwvented by Rajaram Bojj and patented by Konkan
Railway Corporation Limited (A Public Sector Undertaking
of Ministry of Railways, Government of India). This
example specifies a signaling device when two trains
are on the same track to avoid accident through GPS
{Global Positioning System) and MicroController. The
ACD (AntiCollisionDevice), built as a first-of-its-kind
system in the world, worlks with the help of Global
Positioning Systems (GPS) installed trains, railway
stations and at key points on the tracks. The ACDs
constantly read the exact position of the trams and
communicate with each other through the GPS. The
GPS data is fed to the microcontroller. If two trains
happen to be moving on the same track within a
Distance (D) of 3 km of each other, the microcontroller on
receiving the GPS data and after identifying that both
trains are on the same track activates the automatic
braking system making the trains to come to a halt. Figure
2 explamns anti collision device with multiple tramns running
parallel on different tracks namely Track 1-3 with Trains
T1-Té6.

Design of pertrinets: Petrinets are designed for parallel
system for anti collision device with tramns T1-T4
representing objects. These objects when receiving GPS
signal and calculating Distance (D) with the ability to stop
the trains on opposite track will be in safe state otherwise
it is unsafe as in Fig. 3.

Algorithm for SCTMP
Algorithm for verification: Identify the components from
requirement specification:

2847

Asian J. Inform. Technol., 15 (16): 2846-2850, 2016

T1 T2
Track 1 | | D<3KM
—> | |
Track 2 D<3KM
T3 “—> T4
Track 3 D<3KM
L | —> | |
T6 T5

Fig. 2 ACD demonstrated as parallel system

3

0

Wait

T4
No

signa

Unsafe

Fig. 3: Petrinet model

with common functionalities related to hardware and software
Int i, j, a[], b[], testcase [, n

/1j represents the iteration through components

/fm is the number of comp onents

For (i=1ton)

=2

Tnput the no. Of components n

Compare (A[i] with b[j]) where a[1] and b[j] are components
If (a[i] and b[j]) is dependent related to interfaces, o/p, control, function call
Compose (a[i] and b[j])

Check for compatible(ali] and b[j]) with external environment
Form a network with (a[i] and b[j])

Repeat the above process until n

Let s1,52....sn represents the states of comp onents

S[n+1 |=sate,s[n+2]=unsate

Int Time t=0;

If (t) connectwithc ondition(s1, 52)

Generate Petrinets with safe and unsafe state

Testcase[50];

for each testcase[i]; treetraversal(a[i])

Tf (a[i] = safe) then verify=1;count++

Else
Verify =0
If (count >=40) then

Validate (51, s2, ..., sn)

Algorithm for Validation(reducing time for testing)
Automate(s],s2....sn)

Automate test sequence(s1,52...sn)

Generate code coverage

The above algorithm specifies the identification of components from
requiremnents and forming a network with compatible components. The
network is designed for petrinet with properties being checked for safe and
unsafe state. Automation is done for speeding up the process with test
sequence generation and subsequently testing for code coverage.

RESULTS AND DISCUSSION

Generation of test sequence: Test sequence generation
represents the dynamic behavior of objects with message
passing as illustrated in Fig. 4.

2848

Asian J. Inform. Technol., 15 (16): 2846-2850, 2016

Train/station GPS satellite Controller
Sat ———
I=1ton
Q\\ Waits for signal Location sent
Device ready \
>
<
Sends data
Fig. 4: Test sequence for ACD
100
m Coverage %
80
60
40
20
o]
N N+1 | N-1 | S(N) S(N+1} (N+2)f N=1 | >N
T1 T2 T3 T4 T5 T6 T7 T3 ‘ T9
Fig. 5. Graph analysis of coverage
Table 1: Test cases with coverage RECOMMENDATIONS
Test case ID Data Coverage (%0)
T1 N 100 . .
T N1 =0 thure resgarch can be focused on reducing the size
T3 N-1 70 of petrinets so time and cost can be saved.
T4 SN 100
TS SONH1) 100
Té SONH2) 160 REFERENCES
T7 N=1 70
T8 >N 70 Anand, S, EK. Buke, T.Y. Chen, I Clark and
T9 <N 60

Coverage analysis: Coverage analysis with function
coverage as i1 Table 1 account for nearly 70-100% of code
reachable. The graph in Fig. 5 emphasizes the coverage
percentage.

CONCLUSION

Testing with composed components for safety
critical system provides better results and makes
automation task much easier for designing with
petrinets. The task is very difficult to achieve as
the design with pertrinets is very complex and
vast.

M.B. Cohen et al., 2013. An orchestrated survey of
methodologies for automated software test case
generation. J. Syst. Software, 86: 1978-2001.

Beizer, B., 1990. Software Testing Techniques. 2nd
Edn., Van Nostrand Remhold, New York,
ISBN: 0-442-20672-0, Pages: 550.

Bertolino, A., 2003. Software testing research and
practice. Proceedings of the 10th International
Workshop on Abstract State Machines, March 3-7,
Taormina, Italy, 244-262.

Braione, P., G. Denaro, A. Mattavell;, M. Vivanti and
A, Muhammad, 2014, Software testing with
code-based test generators: Data and lessons
leamed from a case study with an industrial software
component. Software Q. J., 22: 311-333.

2849

Asian J. Inform. Technol., 15 (16): 2846-2850, 2016

Drees, S, D. Gomm, H. Plunnecke, W. Reisig and
R. Walter, 1986. Bibliography of Petri Nets. In:
Applications and Theory in Petri Nets, Grzegorz,
R. (Ed.). Springer, Berlin, Germany, ISBN:978-3-540-
18086-9, pp: 309-451.

Faroog, U, CP. Lam and H. L1, 2008. Towards automated
test sequence generation. Proceedings of the 19th
Australian Conference on Software Engineering,
March 26-28, TEEE Computer Society, Washington,
USA., pp: 441-450.

Lmzhang, W., Y. liesong, Y. Xiaofeng, H. Jun,
L. Xuandong and 7. Guoliang, 2004. Generating test
cases from UM, activity diagram based on gray-box
method. Proceedings of the 11th Asia-Pacific
Software Engineering Conference, Nov. 30-Dec. 3,
IEEE Computer Society, pp: 284-291.

Mussa, M., 3. Ouchani, A.'W. Sammane and L.A. Hamou,
2009. A survey of model-driven testing techniques.
Proceedings of the 2009 9th International Conference
on Quality Software, August 24-25, 2009, TEEE,
Montreal, Quebec, Canada, ISBN:978-1-4244-5912-4,
pp: 167-172.

Ravi, G. and K.P.C. Kailash, 2008. Model-based automated
test case generation. SETLabs Briefings, 6: 39-46.

Rozenburg, G. and J. Engelfriet, 1998
Models-Advances in Petrinets. In: Lecture Notes in

Basic

Computer Science, Reisig, W. and G. Rozenberg,
(Eds.). Springer, Berlin, Germany, pp: 12-121.

Smitha, P. and N. Sankarram, 2014. A framework for safe
composable testing model for multiple applications
testing environment. J. Theoretical Appl. Inf.
Technol., 63: 292-297.

Utting, M. and B. Legeard, 2006. Practical Model-Based
Testing, a Tools Approach. 1st Edn., Morgan
Kaufmarm Publishers, USA., INBS: 9780123725011,
Pages: 433.

Wilkison, T., M. Butler and I. Colley, 2014. A Systematic
Approach to Requirements Driven Test Generation
for Safety Critical Systems. In: Model-Based Safety
and Assessment, Frank, O. and A. Rauzy (Eds.).
Springer, Berlin, Germany, ISBN:978-3-319-12213-7,
pp: 43-56.

2850

	2846-2850_Page_1
	2846-2850_Page_2
	2846-2850_Page_3
	2846-2850_Page_4
	2846-2850_Page_5

