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Abstract: This study discusses and compares various co-ordinated controller design techniques for oscillation
damping in nonlinear, complex power systems during transient disturbances. Multi-machine power systems are
equipped with Thyrnistor Controlled Series Capacitor (TCSC) and Static Var Compensators (SVC) to enhance
the stability of the systems. The damping controller co-ordinates measurement signals and control signals to
control the TCSC and SVC devices. The Adaptive Recurrent based Neuro Fuzzy (ARNF) controller is employed
to provide co-ordinated control signals to TCSC, SVC at each step depends upon the deviation in generator
rotor speeds to enhance the stability of the Power System. To train NeuroFuzzy controller parameters, this
study proposes the pheromone information updating in Ant Colony Optimization algorithms (ACO). The ACO
algorithms based on Novel Pheromone Updating (ACO-NPU) scheme is employed to minimize the cost function
and make the adaptive networks performance similar to a targeted traiming data. ARNF systems enable an
extraction of rule-based knowledge from data and the mtroduction of a priori knowledge in the process of data
analysis and system identification. The performance of proposed control strategy is evaluated in a three
machine test system development in MATLAB for different scenarios. The nonlinear simulation results were
compared with several modified PSO and continuous ACO algorithms. The results show that ACO with
Pheromone Updating mechamsm (ACO-NPU) handles contimuous problems very well within a reasonable
solution time without being trapped in local minimum.
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INTRODUCTION

In fact of power system oscillations caused by large
and complex mntercommections power system stability 15 a
major problem. Efforts have been done to enhance
stability of the power system and damping the power
system oscillations. Power System Stabilizers (PSS) 1s
very effective controllers n enhancing the damping of low
frequency oscillations by introducing additional control
signals into the excitation controllers of the generators
(Abido, 2000) Although, PSS suffers by a major
drawbacks of serious variation in the voltage profiles and
it may cause reduction of system stability under heavy
disturbances. However, power electronic device known
as Flexible Altemating Current Transmission System
(FACTS) devices are effective in damping the inter-area
oscillations and capable of handling the variations in
voltage profile (Bian et al, 2011). The co-ordination
between various controllers are necessary to enhance the
overall damping performance of power system (Chu and
Tsai, 2008). Power systems are complex and nonlinear, so
design of the controllers by linear methods cannot be able
to maintam its stability in the event of large disturbances

(Juang and Chang, 2010). The advantages of fuzzy logic
and neural network combined together constitute
adaptive Neuro Fuzzy algorithm. The parameters of fuzzy
logic controller are adjusted by learning ability of neural
network mn different scenarios to achieve a better
performance over the conventional methods (Juang,
2004). The main objective of intelligent controller design
1s to avoid the dependence on experts and to get a control
structure that does not need priori learning, i.e., the
controller itself is able to learn about the controlled
system and to adapt it on-line. Also, for dealing with
dynamic systems, ARNF structure 13 a dynamic
mapping network based on supervised learning which
is more appropriate than the Neuro Fuzzy system
(Kazemi ef al., 2007). This study examines the design of an
auxiliary Adaptive Recurrent based Neuro Fuzzy (ARNF)
co-ardinated SVC and TCSC controller to damp the power
oscillations. Since, ARNF is an efficient and robust
method for tuming the membership functions to reduce
the measured output errors. An auxiliary ARNF based
controller is developed to adapt the equivalent
susceptance of the SVC and TCSC during the transient’s
conditions to improve the stability of the power system.
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To improve the global searching ability of Neuro Fuzzy
traditional learning structure (BP algorithm) ACO-NPU
algorithim can be applied. The proposed ACO-NPU
algonthm can efficiently tune the parameters of the Neuro
Fuzzy network to meet the global solution.

MATERIALS AND METHODS

System model: The study system consists of three
machines, three static loads and an inter-connecting
network including transformers and transmission lines
(LEE, 2001). The excitation system for the synchronous
generator is the IEEE TYPE] excitation system and the
dynamic equations are based on nonlinear one axis model
with a rotor reference. The small signal stability analysis
is  simulated to examine the location of the
electromechanical modes. Tt is close to the imaginary axis
of the complex plane necessities auxiliary devices to damp
the oscillations. To improve voltage profile of generator
bus 3, power flow in the transmission line between bus 2
and 3 SVC and TCSC devices mserted to the power
system, respectively.

Static Var Compensator (SVC): Static var compensator
is “a shunt-connected variable impedance type static var
generator or absorber” whose output is adjusted to
exchange capacitive or mductive current, so as to
maintain or control desired voltages at the connected
point of the electrical power system. The configuration of
SVC 1s shown if Fig. 1. The Power system oscillations
damping is implemented by super imposing the
supplementary ARNF controller with automatic voltage
control loop of SVC.

A block diagram of SVC control model for typical
transient and oscillatory stability studies shown in Fig. 2.
The model receives a voltage control signal (V_, )
generated from auxiliary ARNF based controller and a
susceptance reference signal B,; generated from voltage
regulator. The signals summed to produce an error signal
e fed into a first-order lag associated with the firing
control and natural time constant (Tg,.) of the SVC. Based
on the SVC susceptance capability, the output of
the regulator Bgw has windup limits. A detailed
description of the SVC control model is given by
Lin et al. (2006).

Thyristor Controlled Series Capacitors (TCSC): The
configuration of TCSC connected between nodes k and m
in series with a line reactance ¥, and its equivalent circuit
is shown in Fig. 3. In this study, the TCSC is treated as a
variable capacitance.

Figure 4 shows a block diagram of a TCSC control
model for typical transient and oscillatory stability
studies. The model mcludes an mput signal X and a
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Fig. 4: TCSC control model

reference signal X_,; summed to produce an error signal &,
fed mto a first-order lag associated with the firing control
and natural response of the TCSC and is represented by
a single time constant Ty associated with it.

The study of the simple lower dimension three
machine power system analysis easier the understanding
of the design procedure and results. The multi-machine
power system with SVC and TCSC is shown in Fig. 5
(Ratnaweera ef al., 2004) and bus data are given in
Table 1.

Adaptive recurrent neurofuzzy control: The ARNF 15 a
recurrent multi-layered
determimng the fuzzy inference system and it 1s efficient
and robust method to reduce the measured output
errors. The interesting features of the ARNF are that it has
dynamic mapping ability, temporary memory, universal
estimation and the fuzzy inference system. This study
explains a fuzzy inference system implemented by using

comectioned network for
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Table 1: Multi-machine power system parameters and data

Generators Load

Transformers Transrmission lines

=60 Hz, Rs. = 2.8544e-1, Xd = 1.305,

X'd=0.296X"d=10.252,

Xq=0474, X'q=0.243, X"q =0.18,

Td =0.101 sec, Tqo= 0.1 sec,
'=0.053sec, P=0.9748, d el

Pe2 =0.6094, Pe3 = 0419

Load 3=Loadd =25 W

Load 2= 7500 MW+1500 MVAR,

ST1 =4200 MVA,

ST2 =8T3=2100 MVA,
13.8/500kV, 60 Hz,
R1=R2=0.002,L1=0,
L2=0.12, Rm= 500,
Lm = 500

3-phase, L1 =350km, L2 = 50 km,

L3 =100 km, R1=10.0254 O km™*
Ro=0.3864 km™,

L1=0.9337e-3H km™!,
Lo=4.126e-3Hkm™, 0
C1=1274e-9Fkm !, Co=7.751e-9F k!

<

svC

Recurrent part
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Fig. 6: Structure of the ARNF system

a multilayer recurrent neural network called an ARNF
shown in Fig. 6. The overall control algorithm is shown in
Fig. 7. The ARNF structure has 3 input variables, 5 nodes
for each mput variable, 8 output nodes, 5x3 rule nodes.
These six layers in ARNF system represents following
functions. Layer I accepts input variables Aw,, Aw,, Aw,.
Its nodes represent mput linguistic variables. Layer II 1s
used to estimate the terms of the linguwistic variable in
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Fig. 7: The structure of the ARNF coordmmated controller

Gaussian membership function. Nodes at Layer 11T denote
fuzzy rules. Links before the Layer IIT represent the
antecedent part of the rules and the consequent part of
the rule nodes characterized by the links after Layer IIL
Layer IV represents the weights of neural systems and
Layer V and VI represent the defuzzification of the Neuro
Fuzzy system.

ARNF layered structure: A fuzzy logic system normally
accesses 1ts mput and output of the network data in the
shape of a fuzzy algorithm, which consists of a fuzzy
linguistic and the ‘min’ rule has the form of: R: If Aw, 18
Ay and Aw, 18 A, and Aw, 18 A, Then, K, is B, T,,, is
By, T, 1885, Ty is By, Ky 18 By, Ty 18 By, Ty 18 By, Ty
is By, where, 1= 1,..R (no of rules). The structure for the
ARNF network has six layers and each layer performs the
function to the mcoming signals.

Layer I: This layer 1s the input layer, accepts the nput
values and transmits it to the next layer.

Layer II: In tlhus layer the fuzafication process 1s
performed and neurons represent fuzzy sets used in the
antecedents” part of the linguistic fuzzy rules. The
outputs of the layer II are the values of the membership
functions, p;. The membership of ith input variable to jth
fuzzy set 13 defined by Gaussian membership function and
be represented as membershup function: Degrees of
membership function of layer II:

(11 (k) By )2

T]lj (k) e SlzJ
Where:
T; = The input variable, k is the number of input
variable
Zii- 8 The mean and variance of the Gaussian

membership function
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Tnput variable, I(k) = €'(k) +€%k); k=1, 2, 3 no of
input variable where, €'(k), €%(k) is the input to first layer
and second layer. Input to second layer:

€7 (k) =m (k-1)= (k)

Where:
N;(k-1) = The previous value of membership function
Q; = The hinkage weight in the feedback umt

The difference between the Newo Fuzzy and
recurrent Newro Fuzzy system is, the later one has the
memory terms to store the previous mformation of the
network.

Layer ITI: This layer is called as fuzzy inference layer and
each node represents a fuzzy rule. The firing strength of
each rule (u;) is the output value of the layer and
calculated by mm operator.

Layer IV: This layer represents the hidden weights of the
ARNF system.

Layer V and VI: These layers operate the defuzzification

process, 1.e.,

m

i=1” 9P
m
M
i=1' ¥

where, u 1s the output for the entire network. After
estimating the output value of the ARNF system, the
training of the network starts and w,, are the weights
between the neurons of 11T and TV layers and p=1,2...n;
‘n’ is the number of classes.

Learning of update parameters: The ARNF learning
process is performed to minimize the error input and
output values by adjusting network parameters. The
gradient descent method is used to adjust the values of
weights w,, and mean g, and variance s; of the
membership function ARNF. Gradient descent method is
used to mimmize the error E(K) between the actual output
value of the system (Y(K)) and the desired value Y (k).
The back propagation learming algorithm 15 used for
updating parameters of the ARNF system. The error
expression for each layer 1s first calculated by recursive
functions of the chain rule and then the parameters in the
corresponding layers are adjusted. The updated of the
parameter can be expressed as:

JE
Wip(k+1):Wip(k)*0’u—

ip
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where, ¢ shows the learning rate. The chain rule for the
w,, can be expressed as:
0E ¢E . oy B du

dw, Oy du ow,

Sunilarly, the remaming parameters g;, S,, €, updated.
The above equations given the required change in
updated of the parameters in ARNF network. In
ACO-NPT, an online-rule-generation method is proposed
to generate both rules and determines their proper initial
locations 1n the mput space (1.e., proper imtial-antecedent-
part parameters).

Ant colony optimization based on a novel pheromone
updating scheme: One of the population-based
metaheuristic technique, Ant Colony Optimization (ACO)
finds gooed path through graphs that can be used to find
global mimimum. In ACO, a set artificial ants mcrementally
build solutions by moving on the graph for a given
optimization problem. These artificial ants communicate
only by laying pheromone and the more pheromone in a
particular part is the more desirable part to the ants. This
1s the way how the ants find the solutions. The purpose
of the novel pheromone update rule 1s to encourage ants
to search for paths i the vicinity of the best tour found
so far so as to converge to a common path.

Firstly, the solution archive is initialized. Then, at
iterations, number of solutions is constructed by the ants
according to pheromone values. At the last step, the
solution archive and pheromone values are updated. In
ACO, artificial ants build a solution to a combinatorial
optimization problem, the steps explained in detail as
follows. First, each instantiated decision variable is called
a solution component and denoted by solution archive
(Kypniwas & = 1,2, ... arcluve size) and f{x,,,,) 1s computed. A
pheromone trail value 1s associated with the set of all
possible solution components. Pheromone values allow
the probability distribution of different components of the
solution to be modeled. Pheromone values are used and
updated by the ACO algorithm during the search.

Then, new pheromone values are computed for the
last selected solutions (remaming selutions). Up to this
step, actually a local search 1s performed among the
candidate solutions. Then, in order to approximate the
best solution at the end of the each iteration, Euclidean
distances of candidate solutions to the best known
solution are computed in Eq. 1. In other words, differences
between mimimum objective function value of f{f ;) and
the other candidate function (f) values are computed with
Eq. 1. Euclidean distances:
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In order to define continuous variables, Gaussian
functions were selected. Gaussian function 1s used to
compute probabilities by using F;:

(2)

The parameter t in Gaussian function denotes
standard deviation. Numerous experiments were
performed to determine parameter t and in this problem t
1s set to 0.005. In order to determine with percentiles of
how many ants which would go into the best candidate
solution, normalization is made with Eq. 3. Normalized
values are obtained from Gaussian function:

3)

where, T, is pheromone trail value of the solution. To
generate new solutions, each ant chooses a reference
point according to pheromone values of solutions. For
example, consider five artificial ants were searching the
solution and the phermone values of second artificial ant
15 computed as 0.3781 at the end of the iteration, then
38% of ants (i.e., 2 ants) approximately will use 2nd
solution as a reference pomt to produce new solutions.
Therefore, the 5 paths are converged to four path, that is
the way to converge to a better solution to generate new
solutions:

m = xin_l +dx )
where, x_' is solution vector of the lth ant at iteration m,
%, 13 the selected best solution i solution archive
(reference pomt) according to pheromone value at
iteration m-1 for lth ant and dx is a vector generated
randomly from (-p, B) range to determine the length of
jump. Generated new solutions by Eq. 4 is added to
existing archive and the size of archive 13 increased to l+m
(archive sizetant size). Because archive size must be kept
as |, archive size 1s updated. This process 1s iterated until
number of maximum iteration reached (m). At the end of
the each iteration, quantity of pheromone 1s updated.
To simulate the evaporation process quantity of

pheromone 1s reduced with the following Eq. 5:

Bo = 0.9%B,, (%)

By experiments, the co-efficient of evaporation 1s set
as 0.9 and if the co-efficient of evaporation is kept smaller
or >0.9, there 1s a possibility of being trapped in local
optimum.
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RESULTS AND DISCUSSION

To justify the performance of proposed
supplementary control strategy for SVC, the nonlinear
simulations were carried out in a multi-machine power
system. To guarantee the efficiency and robustness of the
proposed ARNF control approach, large and small
perturbances are added to the power system during
simulations. They are categorized mto two cases as
discussed under the following section.

Case 1: To examine the effectiveness of the proposed
ARNF control strategy, the controller training 1s
performed by applying small incremental torque 0.1 P to
G2, G3, G4 at 0.1 sec and disappeared at 0.3 sec. To
compare the results, the cost function (Lu ez al., 2013) is
considered. The dynamic response of speed deviation
and angles for G2, G3, G4 shown in Fig. 8a-c. The speed
deviation for G2, G3, G4 shown in Fig. 8a-c and the rotor
angle deviation for G2, G3, G4 shown in Fig. 8d-f reveals
that m the first swing, the overshoot of the system 1s
decreased very much with ARNF which shows its
improved performance during the transient state. The
average cost and standard deviation 1s smaller when
ACO-NPU technique is employed. Also t- test is used for
statistical analysis to evaluate the difference between
ACO-NPU and other algorithms. To prove the efficacy of
the proposed ACO-NPU approach, several modified PSO
and continuous ACO algorithms were applied to the same
evolutionary fuzzy lead lag controller. To enhance
convergence to global optimum solution the modified PSO
algorithms such as Hierarchical PSO with Time varying
Acceleration Co-efficient HPSO-TVAC (Paserba ef al.,
1995) is used. A hybrid of GA-PSO (HGAPSO) finds a
better solution without trapping in local maximum and an
improved PSO algorithm (Socha and Dorigo, 2008) to
improve the capability of global searching. The
comparisons include the modified continuous ACO
algorithm with different coefficients g = 0.01 and g =10
(Lin et of., 2009; Yuan and Fang, 2009), RACACO,
ACACO (Lu et al, 2013). Table 2 shows learning
performance of ACO-NPU, various modified PSO and
evolutionary fuzzy lead lag controller technique. The
result indicates that the average cost value C 1s smaller for
the ACO-NPU algorithm than the other algorithms.

Case 2; (three line to ground fault): To examine the
effectiveness of the proposed ARNF control strategy, 3
cycle three line to ground fault 1s applied on transmission
line 1.3 at t = 0.2 sec between buses 1 and 2.

The fault is self-cleared at t = 0.3 sec. Figure %a-c
shows the inter-area speed deviation of G2, G3, G4 and
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Table 2: Leaming performance of ACO-NPU, various modified PRO

and evolutionary filzzy lead lag controller

ACOR;, ACOR;,

HPSO-TVAC IPSO (q=0.01) (q=0.01) RACACO ACACO

(Ratnaweera HGAPSO (Lin et ., (Socha and (Socha and (Juang and (Chun-Feng
Algorithyms et al., 2004) (Juang, 2004) 2009) Dorigo, 2008) Dorigo, 2008)  Chung, 2010) et al., 2013) ACO-NPU
Average cost 0.047487 0.048821 0.047504 0.04802 0.04743 0.04669 0.0465 0.0464
STD 0.00076 0.000968 0.000549 0.001445 0.00067 0.00044 0.00024 0.00018
t-value 6.357 9.587 9.07 5.636 7164 1.989 1.347 -
Table 3: SAD values of the generators for case (2)
Lead key [Aw]y |Aw| |Aw |y [A&], [Ad] [Adl,
Lead-lag 0.000192 0.000850 0.000872 0.46732 0.194235 0.464231
Fuzzy-lead lag (Lu et al., 2013) 0.000156 0.000450 0.000578 0.36689 0.121561 0304135
ACO-NPU based fuzzy lead lag 0.000130 0.000030 0.000540 0.33460 0.101234 0.293421
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e) Dynamic response of speed deviation and

angles m G3; ¢, f) Dynamic response of speed deviation and angles in G4 using ARNF control lead lag

controller for case 1

Fig. 9a-b shows the inter-area rotor angle deviation of the
perturbed system for G2, G3, G4. The post fault system
response in steady state region 1s oscillatory with lead lag
controller and in case of fuzzy lead lag controllers
oscillation can be observed with ACO-NPUJ algorithm as
shown in Fig. 9a-f reveals that in the first swing, the
overshoot of the system 1s decreased very much with
ACO-NPU which shows its improved performance during
the transient state. The settling time of proposed control
1s also reduced very much as compared to other control
strategies. The control effort provided by the respective
control schemes is shown in Fig. 9. Tt can be seen from
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result that when the fault occurs in the system, then the
ARNF increases its control effort to bring the system to
a stable equilibrium point and to damp the oscillations
quickly. For quantitative analysis Sum of Absolute
Deviation (SAD) values for G2, G3, G4 are tabulated in
Table 3.

The lead lag controller damps the oscillation but the
fuzzy lead lag controller based on ACO-NPUJ technique
damps the oscillations very efficiently. Table 3 shows the
SAD values of the generators are lesser when using
ACO-NPU fuzzy lead lag controller over the other
methods.
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Fig. 9: a, d) Dynamic respeonse of speed deviation and angles in G2; b, e) Dynamic response of speed deviation and
angles 1 G3; ¢, f) Dynamic response of speed deviation and angles in G4 using ARNF control lead lag controller

for case (2)
CONCLUSION

This study concludes the co-ordinate control
strategy of SVC, TCSC Facts devices for damping the
oscillations. The simulation results verify the oscillation
damping ability of the ACO-NPU based fuzzy lead lag
control approach. The ACO-NPU based fuzzy lead lag
control approach simplifies the design of lead lag
controller and effectively improves the system dynamics.
The comparisons with various modified PSO and ACO
algorithms verify the advantage of ACO-NPUJ technique.
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