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Abstract: This study emphasizes solution to the multi objective Optimal Power Flow (OPF) problem in power
system embraced with wind power. The OPT problem is formulated and analyzed for two different objectives
such as minimization of fuel cost, minimization of active power loss and voltage deviation. The objective
function for mimmization of fuel cost 1s mcorporated with wind speed variability in terms of over and
underestimation cost during the estimation of wind power generation cost. Firefly Algonthm (FA) based
optimization technique is used and results were compared with modified Cuckoo Search algorithm and modified
particle swarm optimization for solving OPF incorporated with wind power. Due to the penetration of variable
wind power generation mto the existing power system, voltage deviation 1ssues occur and it may lead to
voltage collapse. In order to maintain voltage stability of connected power system network, reactive power
management of grid connected windfarms using Static Var Compensator (SVC) is required. The concept of
minimizing active power losses while maintaining desirable voltage profile in all buses along with optimized SVC
rating under variable wind power penetration has been evaluated as multi objective function. Optimal values
for SVC setting are searched using Firefly algorithm n a modified IEEE 30 bus system and its capability 1s
demonstrated by comparison between power losses of the system before and after optimization. The results
depict the importance of wind scheduling on total system cost and the need of optimum reactive power

compensation to maintain voltage profiles of the grid connected power system.
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INTRODUCTION

The pressure created due to the decrease of fossil
fuels and mcrease in energy demand has created the need
to study the steady state effect of wind energy
mterconnection with conventional power networks. Most
of the studies on wind energy so far were focused on
either a standalone operation or transient analysis of the
electromechanical system. The OPF is an important tool
for power system planming and operation i order to
achieve economic and secure operation of the power
system while satisfying equality and inequality
constraints. The problem of optimal reactive power
allocation with penetration of wind power 15 a lighly
nonlmear and multimodal. Nonlinear programming
approaches used to solve constraint optimizations have
many disadvantages such as insecure convergence
properties and complex computations. These gradient
based methods many converge to local minimal point.
Perhaps, there is no criterion to decide whether the local
best solution is also the global best.

In the last two decades, many new algorithms such as
Swarm optimization, Neural Networks, Ant-colony
optimization, Differential Evolution, Bat algorithm,
Evolutionary Programming, Genetic Algorithm, Sumulated
Amnealing, Tabu Search, Firefly algorithm and cuckoo
search have emerged with great potential for engineering
optimization problems (Fister et al., 2013; Kennedy ef al.,
2001; Yang et al, 2010) among these multi-agent
meta-heuristic  algorithms such as Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) have
gamed huge popularity. Heunstics algorithms like GA and
evolutionary programming were introduced for solving
the OPF problem. The results from these methods
encouraged the researchers to work on these methods.
However, the modern researchers recogmzed some
drawbacks in GA performance which cause deprivation in
the efficiency of the system, i.e., the parameters are being
optimized with high correlation while the performance and
the search capability also get decreased by the premature
convergence of GA (Ywryevich and Wong, 1999; Fogel,
2006; Yang et al., 2013).
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Firefly algorithm is a meta-heuristic optimization
algorithm introduced by Yang (2014) 15 used mn this
research. Many researchers solved OPF problem for
standard IEEE 30 bus system using various bio mspired
evolutionary computation techniques. Prior researchers
have used reactive power control strategies in thermal
power systems for voltage and power factor control
(Kayiker and Milanovic, 2007), flicker mitigation
(Meegahapola et al, 2010), enhancement of voltage
stability (Devaraj and Roselyn, 2010) and system
loss/cost minimization (Rao et al., 2013). Tt is obvious that
wind penetration levels are not constant and the
production level of wind power plant is based on its
operating curve.

Minor community of research people contributed to
OPF model mcorporated with wind power. The OPF
problem has not been solved for multi objective problems
such as minimization of active power loss and voltage
deviation, fuel cost for the power system in the presence
of wind power. This study formulates above mentioned
problem and presents a solution to it through a novel
optimization technique of Firefly algorithm which 1s then
compared with the results obtained by modified particle
swarm optimization and modified cuckoo search to
demonstrate its effectiveness.

The Newton-Raphson based approach is used to
solve the OPF problem. The problem is formulated as an
optimization problem with mild constraints. The existing
methods of power quality improvement measures are
based on applications of power electromic converter.
Various reactive power compensators are available like
Static Synclronous Compensator (STATCOM), Static
VAR Compensator (SVC), Thyristor Controlled Series
Compensator (TCSC), Static Synchronous Series
Compensator (S3SC), etc. (Hingoram and Gyugyi, 2000)
are used to supply reactive power.

In this research, OPF has been solved for the
objective of fuel cost mimimization of power system
incorporated with wound rotor induction generator based
wind energy system. Estimation of wind power generation
cost is carried out by incorporating wind speed variability
in terms of over and underestimation cost.

Solution of OPF problem for minimization of fuel cost
or active power loss as major objective function leads to
the setting of control variables which may result in
undesirable voltage profile at different bus bars.
Penetration of variable wind power generation into the
existing power system also causes voltage deviation
issues and it may lead to voltage collapse. In order to
maintain voltage stability of connected power system
network, reactive power management of grid connected
windfarms using Static Var Compensator (SVC) 1s
required. The concept of minimizing active power losses
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while maintaining desirable voltage profile in all buses
along with optimized SVC rating under variable wind
power penetration has been evaluated as multi objective
function.

The results depict the importance of wind scheduling
on total system cost and the need of optimum reactive
power compensation to mamtain voltage profiles of the
grid connected power systern.

MATERIALS AND METHODS

Modelling of wind speed and induction generator: A wind
turbine consists of a rotor mounted to a nacelle and a
tower with two or more blades mechanically connected to
an electric generator. The output power or torque of a
wind turbine 18 determined by several factors. Among
them important factors are turbine speed, rotor blade tilt,
rotor blade pitch angle, size and shape of turbine, area of
turbine, rotor geometry whether it is a HAWT ora VAWT
and wind speed. A relationship between the output power
and the various variables constitute the mathematical
model of the wind turbine. A mathematical model of wind
turbine primarily depends upon modelling of wind speed.
The actual mechanical power P, extracted by the rotor
blades in watts is the difference between the upstream
and the downstream wind powers:

(1

PW

%DAVW(VE *Vi)

Where:

v The upstream wind velocity at the entrance of the
1

u

rotor blades inms ~

vy = The downstream wind velocity at the exit of the
rotor blades

v, = The velocity at rotor blade in ms

A = The area through which the wind in this case is
flowing

p = The density of air

which may be simplified as follows:

1
B, = pAVC, 2

Where:

The expression for C, in Eq. 2 is the fraction of
upstreamn wind power captured by the rotor blades.
Modelling of wind speed 1s carried out by considering
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Fig. 1: Wind turbine output power vs wind speed

Reyleigh wind speed distribution and on correlation matrix
which 1s obtamed from previously known wind speed
series (Feljoo et al., 1999) (Fig. 1).

Modelling requirements of wind turbine generators for
power flow analysis is elucidated by Vittal and Ayyanar
(2013). Practically, type 1 wind turbine generators can be
characterized as P-Q bus. While evaluating the influence
of wind farm on the steady state performance of the power
system 1t 1s not necessary to model each turbine in a wind
farm. Output of the wind farm can be equivalenced.

Development of SVC models and their execution in
load flow and optimal power flow algorithms are
considered in (Ambriz-Perez et al., 2000). The SVC can be
modelled as a continuous, variable shunt susceptance. In
order to obtain specified voltage magnitude while
satisfying constraint conditions SVC wvalue should be
adjusted.

Mathematical problem formulation

Cost associated with wind power: Wind 1s mtermittent in
nature and the output power of wind energy conversion
system may not be equal to the estimated output power
which 1s scheduled to transfer with cormected grid. If the
windfarm 1s owned by the system operator, then there will
not be penalty for deficiency of predicted wind power
supply. Now, there can be two cases either the cost
associated with wind power shortage due to
overestimation or cost associated with wind power
surplus  because of underestimation. The cost of
overestimation depends on probability of occurrence of
wind power deficiency for a given scheduled power. In
order to maintain power balance, power 15 bought from
alternate energy sources or load shedding is employed.
Therefore, a penalty term is introduced for shortage of
wind power by considering reliability and economic
concerns. The cost of underestimation depends on the
amount of surplus wind power available and the
probability of surplus occurrence. Underestimation leads
to obligatory reduction of output power which
corresponds to wastage of available wind energy capacity
and negative environmental impact. Actually, the cost
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associated with surplus wind power is not a real cost, it is
a penalty term for the non-utilization of available
resources. Let:

P = Scheduled windfarm cutput power

P, = Rated electrical output of wind generator

C,, = Costof overestimation of available wind power
C, = Cost of underestimation of available wind power

Now, the cost associated with electricity generated
by wind energy is expressed as:

3)

Cost of wind generated electricity =Cov + Cun

Mathematically, C,, and C,, can be expressed as follows:

Pshwp

Cov =PCov x \

(Pshwp—w)xfw(w)xdw )

Cun = PCun><J‘:rh (w — Py )>< £, (w)x dw 5
shwy

Where:

Pc,, = Penalty cost of buying power from reserve per
$/KWh due to overestimation of wind power

Pc,, = Penlty cost for environmental benefit loss per
$/KWh due to underestimation of wind power

w = wind power output

f.(w) = Probability density function of wind power
output

Minimization of fuel cost: The objective function for
OPF problem 1s to mimmize the overall cost of rurming
conventional generations and cost of wind generation for
optimal scheduling. Combined cost of thermal as well as
wind generation is determined by considering the fuel
cost curve of thermal generators as quadratic equation
added with cost of wind generation by considering the
effect of overestimation and underestimation. Fuel cost
curve of thermal generators without valve pomnt effect 1s
given by:

=aP? &

it gl

c(p,) +bP, + v,
where, a, b, v, are known as cost coefficients which
depends on fuel used and input output curve of the ith
conventional generator. The P = real power generated at
ith bus objective function of OPF problem is given as:
min H(P,.P

s Shw) :EC(PQ)+C0V +Cun, i€ N, (7
Minimization of active power loss and voltage
deviation: To improve the voltage profile and to minimize
the active power loss of a benchmark system with wind
penetration in the network, the overall objective function
is given by:
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b
min F, = Y AP, +BY |V, -V, (8)
ke i=1
Where:
A, B = The adjustable weighting parameters of the

objective function; A and B are adjusted to
obtained reduced total system loss and improve
voltage profile

V, = The voltage at bus ‘1’

V.. = The reference voltage of the buses which 1s taken
as 1pu

N, = No. of lines

Puos = The power loss in the kth transmission line

System constraints

Equality constraints: The transmission network 1s
modeled by a power balance equation at each node. The
algebraic sum of the active and reactive powers injected
into each node i must be equal to zero:

P —VIEV] (Gu cos®; + B; smeij):cne N, (9
JEM,
Q -V, Y V,(G,sin6, —BjcosB ) =0ic N, (10)
j€ Ny
Where:
P, = The active power injected at bus ‘1’

Q11

= The reactive power injection at ‘i’

N, = No. of conventional generator buses

N, = No. of buses in the system

G, = The mutual conductance between bus 1 and bus |

B, = The phase angle between bus i and bus j

B; = The mutual susceptance between bus i and bus j
Hwr
3 Py = Pysr i€ Nw (1D
i=l

Where:

Pwe = The active power output of wind farm i

Py = The total wind power generation

N, = The total number of wind farms m the system

Tnequality constraints: The conventional generation units
have maximum and minimum generating limits, both inreal
and reactive power, beyond which is not feasible to
generate for techmcal or economic reasons, similar
restriction do apply for wind farms. Bus voltage
magmitude limits for this study are given by:

VOV < VEie N, (12)
where, N, represents the total number of Buses. Our
postulation here is that node voltages are maintained
between 0.95 and 1.05 pu Transformer Tap-position
limnits:
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T < T, <T™ € N, (13)
For load flow analysis the value of T/ = 0.7,
T =01and Ty = 3. Thereal and reactive power
generation limits:
prin < P < P (14
Qe <Q, Qe N, (15)
Where:
P,® = The minimum active power limits of generator
at bus ‘1’
P,® = The maximum active power limits of generator
at bus ‘1’
Q™ = The minimum reactive power limits of
generator at bus ‘17
Q,"™ = The maximum reactive power limits of

generator at bus ‘17

The SVC device is limited by the maximum reactive
power it can imject:

QU <Q, <QUie N, (16)
Where:
Q™ and Q™ = The maximum and reactive power
supplied by the SVC
N. = The number of weak buses with SVC

device

Transmission line power flow Limit:
L, <LM=ic N, (17)

Where:

L™ = The maximum power flow mn the bus 1’

N, = The number of buses

Firefly algorithm: Firefly Algorithm (FA) was first
developed by XIN-She Yang in late 2007 and 2008 at
Cambridge University which was based on the flashing
patterns and behavior of fireflies (Xin-She, 2014). The
working of FA 1s based on the following three idealized
rules; all flies are uisexual; implication 1s that any fly can
attract the other regardless of sex; the level of attraction
is directly proportional to the intensity of light. The less
bright fly is always attracted by the brighter one and it
moves toward it. The brightness is based on the objective
functions evaluated value. The basic elements of firefly
technique are listed and defined as follows:

Attractiveness: In the Firefly algorithm, the form of
attractiveness functions of a firefly is given by the
following monotomcally decreasing function:
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B(r):BUxexp(—yrm),mZI (18)

Where:

T The distance between any two flies
vy = The absorption coefficient

By, = The initial attractiveness

Distance between fireflies: The distance between any
two fireflies 1 and j at positions X, and X, respectively, can

be defined as:
d
=[x - = ’(zxi,j—xj_k] (19)
P
Where:
X = The kth component of the spatial coordinate

X, = The ith firefly
d The number of dimensions

Movement: The movement of a firefly *i” which is attracted
by a more attractive i.e., brighter firefly *j° is given by:

2
v\/ri(new) = \[1(0101) + Bﬂ X GXP(*'YI;J )

(20)
(Xj —Xi)+ o= {rand%]

Where, the first term refers to current position of a
firefly, the second term 1s due to firefly’s attractiveness to
light mtensity seen by adjacent fireflies and the third term
is used to create random movement of a firefly. The
coefficient ¢ is a randomization parameter determined by
the problem of interest, rand is a random number
distributed in [0, 1]. The various steps mvolved and flow
chart for solving the optimal facts allocation using FA 1s
listed below.

Stepl: Read the system data such as line data, load data,
generator buses, sack bus and imtial settings.

Step 2: Imitialize the parameters and constants for Firefly
algorithm. They are N, =™ «™" B, ™, y™= and iter™™
(maximum mumnber of iterations). Tolerance is set to 1E-6
and maximum number of iterations for load flow is
taken as 1000.

Step 3: Using Eq. 18 and 19 find attraction and distance
of the flies. Attractiveness 15 based the strength of the
better solution the files with higher level of attraction
observe other files with less level attraction.

Step 4: Move the flies to the new position using Eq. 20.
Fitness values are calculated for the new positions of the
fireflies. If the new fitness value 1s better than previous
P,... value then P, value for that firefly is modified to the
new value. Similarly, G, value identified from the latest
P,.. values is memorized.
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Step 5: The process is stopped when terminating criteria
is reached. The termination criteria used in this work is the
specified maximum number of cycles. Otherwise go to
step 3.

Step 6: The value of G, gives the optimal SVC sizes inn
candidate locations, the transformer tap position and
generator bus voltages.

Step 7: Print bus voltages, line flows and total system
losses.

RESULTS AND DISCUSSION

Minimization of fuel cost: The results were obtained for
modified TEEE 30 bus test system which includes
windfarm at bus No. 22. The windfarm consists of 20x2
identical wind generators and parameters are taken from
(Tabr and Pal, 2009; Chen et «l., 2005). Load data and
thermal generator cost details are available in Alsac and
Scott (1974). The loads remain constant for the scheduling
period and the generations do not depend on previous
schedules. So, this is known as static OPF. Depends upon
the values of penalty costs Pc,, and Pc,,, the contribution
of windfarm and thermal generators to meet the
load demand varies. For demonstration the values of
Pc,, and Pc, are chosen as Pc, = 23 Mwh™ and
PC,, = 5% Mwh™'. The results obtained by means of
FA approach were compared with those obtained by
means of Modified Cuckoo Search (MCS) and Modified
Particle Swarm Optimization (MPSO). The results obtained
by proposed FA method and MCS,MPS0O methods have
been tabulated in Table 1-6. Analysis of this case study
proved the fact that Firefly algorithm provided much
better results compared to MCS, MPSO methods in terms
of loss reduction, cost and computational time. Firefly
algorithm produced optimal solution in lesser iterations.

Modified PSO: There are some modified PSO discussed
here:

C=C=2

Population size =30

Maximum number of iterations (iter™) = 500
Mutation probability

P,=01

Firefly algorithm: The firefly parameters selected after
several test runs is as follows:

No. of flies = 30

=02

p=1.0

vy = 1.0 Maximum number of iterations (iter™) = 500
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Fig. 2: Modified IEEE 30 bus power system

Table 1: Comparison of solution with Firefty algorithm for IEEE 30 bus system (PC, =2$ MWh™!, PC,, = 5$ MWh™") generator data

Voltage (pu) P, (MW) Q; (MVAR)

Bus No. FA MCS MPSO FA MCS MPSO FA MCS MPSO
1 1.1000 1.1000 1.1000 154.8031 155.7057 159.8840 -15.2031 -15.2067 -15.3655
2 1.0889 1.0886 1.0882 43.4986 43.5298 44,5701 20.3634 20.5133 23.2082
5 1.0632 1.0629 1.0606 19.7532 19.6225 15.0000 27.1432 27.2278 29.2380
8 1.0743 1.0731 1.0686 10.0000 10.0000 10.0000 39.0634 39.1538 39.9999
11 1.1000 1.1000 1.1000 10.0000 10.0000 10.0000 6.6413 6.7508 4.6956
13 1.1000 1.1000 1.0828 12.0000 12.0000 12.0000 19.8632 19.7784 24.0000
22 (wind) 1.0675 1.0632 1.0571 40.0000 40.0000 40.0000 -20.4326 -20.4110 -20.3607
Table 2: Shunt capacitor value (Optimized values in FF only) Table 4: Optirnisation results
Bus No. FA MCS MPSO Costs FA MCS MPSO
10 19 19 19 Total cost ($h™") 732.9631 733.2596 735.3632
24 2 5 1 Thermal cost($ h™) 660.7342 660.7858 662.8894

Wind cost ($h™!) 724738 724738 72.4738
Table 3: Transformer tap setting No. of iterations 285.0000 290.0000 288.0000

Transformer tap setting For convergence

Computational time 335 34.58 343.20
Line connecting FA MCS MPSO to convergence
6-9 0.96 0.9750 0.95 Losses (MW) 743 7.46 8.05
6-10 0.95 0.9500 0.95 Cost of SVC R R R
4-12 1.00 1.0000 1.05
28-27 0.96 0.9750 0.95

Minimization of active power loss and voltage deviation:
To find the effectiveness and efficiency of the proposed
Firefly algorithm based reactive power optimization
approach, the modified IEEE 30 bus power system 1s used
as the test system. The Firefly algorithm has been
mnplemented m MATLAB programming language. The
standard TEEE 30 bus system consists of 6 conventional
thermal generators at buses 1, 2, 5,8,11 and 13. Tt has 41
branches and 21 load buses. All branch datas are taken
from references (Alsac and Scott, 1974; Yang et al., 2008).

For an actual transmission grid with windfarms
connection, Niu and Xu (2012) provided a framework for
quantitative analysis of optimal reactive power planning
(Niu and Xu, 2012). According to that wind farms are
connected to the grid at busl4 and busl9 and it is
denoted as modified IEEE 30 bus system which is shown
in Fig. 2.

Each wind farm consists of fifteen 800 KW wind
turbines {nominal wind speed 12 m sec™") with the total
installed capacity of 12MW. There are two assumptions
used here which are stated as that there 1s a similar wind
condition in the two areas and for all fifteen wind turbines
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Fig. 3: Voltage profile for TEEE 30 bus system without wind

Table 5: The bus parameters recognize

Bus No. 3 4 6 7 9 10 12 14 15 16 17
FA 1.0806 1.0752 1.0754 1.0642 1.0932 1.0749 1.0756 1.0635 1.0597 1.0691 1.0682
MCS 1.0806 1.0753 1.0713 1.0606 1.0874 1.0749 1.0749 1.0616 1.0595 1.0682 1.0678
MPSO 1.0806 1.0753 1.0668 1.0571 1.0913 1.0702 1.0519 1.0405 1.0405 1.0527 1.0597
Table 6: Parameters are chosen
Bus No. 18 19 20 21 23 24 25 26 27 28 20 30
FA 1.0621 1.0578 1.0601 1.0645 1.0603 1.0532 1.0587 1.0365 1.0649 1.0732 1.0502 1.0d61
MCS 1.0531 1.0524 1.0573 1.0626 1.0526 1.0516 1.0544 1.0373 1.0649 1.0703 1.0459 1.0349
MPSO 1.0390 1.0412 1.0477 1.0568 1.0375 1.0417 1.0566 1.0396 1.0748 1.0640 1.0560 1.0451
Table 7: Different levels of wind penetration in IEEE 30 bus system Therefore, dynamic reactive power compensation
Wind Percentage of using FACTS controller 1s required to mimmize the real
speed wind power . )
Case No. (msec™)  penetration (%) Pu/MW  Q/MVAR power losses and to mmprove the voltage profile of the
Scenario 1 651 25.0 3.0 0.0 power system connected with wind power. The addition
Scenario 2 7.56 375 4.5 -0.9 of SVC helps to improve the voltage profile of Weak
Scenario 3 821 50.0 6.0 -1.4 b I der t intai 1t £l ¢ all b
Scenario 4 012 625 75 1o uses. In order to mantam voltage profile at all buses
Scenario 5 9.96 75.0 9.0 2.2 within prescribed limits SVC can be commected to specific
Scenario 6 11.13 87.5 10.5 -3.0

in a windfarm, same wind speeds are considered for a
particular scenario. Output power produced by each wind
turbine depends on the wind speed. Real power and
reactive power produced by each windfarm for the mean
value of wind speed 1n a particular scenario was obtained
by monte-carlo simulation method and is tabulated.
Sunulation studies have been carried for different levels of
wind penetration as shown in Table 7. Each scenario is
characterized by wind penetration levels. In Table, P_;and
Q. represent the real and reactive power produced by
each wind farm.

In this modified IEEE 30 bus system, the generator
voltages, transformer tap settings and reactive power
source installation are optimizable variables. System
voltage profile for the base case of IEEE 30 bus system
which is shown in Fig. 3 was obtained by conducting load
flow for the 1mtial operating pomt which 1s given in bus
data table (Yang et al., 2008). From the analysis, it was
found that there are violations in the lower limit of
voltage atload buses 18.19, 20, 21,22, 23, 24, 25, 26, 27, 29
and 30.
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locations by susceptance based voltage sensitivity
analysis method which is (Niu and Dong, 2012). For the
modified TEEE 30 bus system, bus numbers 23, 26 and 29
have been identified as best SVC compensation buses for
placement (Fig. 4).

Table 8 shows the optimized SVC ratings calculated
by using Firefly algorithm m the modified IEEE 30 bus
system for different scenarios. Optimal values for SVC
seting are searched using Firefly algorithm and its
capability 13 demonstrated by comparison between power
losses of the system before and after compensation
Fig. 5.

The firefly parameters selected after several test runs
15 as follows: Number of flies: 40; Maximum number of
Tterations = 500, ¢ = 0.2; p=1.0,y =1.0.

After providing reactive power compensation by
SVC, the voltages of all the buses in modified TEEE 30
bus power system are close to 1 pu. At the same time,
there 1s significant reduction i real power loss which
corresponds  to annual savings of energy cost. The SVC
compensation impact on the mmprovement of bus
voltages are compared in Fig. 3 and 4 It was
observed that lgh capacity of wind penetration has
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Table 8: Optimal VAR injection and objective fiinction results based on Firefly algorithm

Scenarios
SVC rating 1 2 3 4 5 6
Q1 (MVAD 9.8605 13.0798 12,2273 11.5663 11.5067 11.8900
Q2 (MVAD 29.7100 32.5477 47143 20.0958 13,0295 24.4896
Q3 (MVAD 11.9362 10.5295 10.2649 10.5339 10.5245 10.2819
Power loss without compensation (pu) 01719 0.1679 0.1644 0.1611 0.1574 0.1544
Power loss with SVC compensation (pu) 0.1538 0.1502 0.1461 0.143%9 0.1406 0.1377
Reduction in power losses (pu) 0.0181 0.0177 0.0183 0.0172 0.0168 0.0167
5 p]@ —— Without SVC (b)
2 1104 ithou ~ L.157 — W
R L5 S With SVC 2 1.10 Without SVC
i .. ~
D100 T O, g 105
S 095+ g MO0
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0.80 T T T T T T 1 a 0.80 T T T T T T 1
~ L1570 o L15T
& 1104
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& 1.054
S 1.004
>
g 0.954
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E 1% & 1101
Q o,
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Bus number Bus number

Fig. 4: TEEE 30 bus voltage profile with and without SVC (Scenarios 1-6)
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Fig. 5: Real power loss before and after SVC compensation

a severe effect on the voltage profile of the power system.
However, this 1s based on the P, Q and slip of the DFIG
(Doubly Fed Induction Generator). Operating the wind
turbine with 70% penetration levels are optimal and
reactive power consumption is also found to be less.

The results obtained by means of firefly approach
were compared with those obtained by means of typical
differential evolution algorithm m reference (Niu and Xu,

2012). Firely algorithm 1s superior to differential evolution
method in terms of convergence results and reduced
elapsed time.

The FA 15 based on attraction and attractiveness
decreases with distance. Therefore, FA has two major
advantages over other optimization algorithms:
automatical subdivision and ability of dealng with
multimodality. This results in the fact that the whole
population can automatically subdivide mto subgroups
and each group can swarm around each mode or local
optimum. Among all these modes, the best global solution
can be found. Second, this subdivision allows the fireflies
to be able to find all optima sunultaneously if the
population size is sufficiently higher than the number of
modes. All these advantages make FA very umque and
efficient for solving multi objective reactive power
optiumization problem.

CONCLUSION

The multi objective Optimal Power Flow (OPF)
problem in power system comprised of wind farms has
been analyzed and Firefly algorithm based solution
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methodology has been proposed in this study. The
OPF problem has been formulated as a constrained
optimization problem to minimize active power losses to
improve the voltage profile and minimisation of fuel cost.
The proposed approach has been tested in the modified
TEEE 30 bus system with wind power penetration. The
simulation result shows the efficacy of the Firefly
algorithm to solve OPF problem. Results indicate that the
real power loss has been greatly reduced and all bus
voltages are within stability limit. Tt was found that the
varying levels of wind penetration create severe voltage
variations which may result in blackout. Electrical power
system performs better when optimum reactive power
compensation is carried out by SVC under varying wind
power penetration scenarios. It can be concluded that
Firefly algorithm is a promising technique for solving
complex optimization problems in power systems.
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