Asian Journal of Tnformation Technology 16 (6): 503-510, 2017
ISSN: 1682-3915
© Medwell Journals, 2017

An Interface Maintainability Measure for Component-Based Software Systems

'N. Baskar, 'A. V. Ramani and >C.Chandrasekar
Department of Computer Science, SRMV College of Arts and Science, 641020 Coimbatore, India
*Department of Computer Science, Government Arts College, 642 126 Udumalpet, India

Abstract: Now a days, component-based systems are being used increasingly which have made changes to
build and maintain the systems. In the present techmcal researcher, each day several numbers of software are
built up and offered in the market but software maintenance measuring is still a big challenge. Maintenance
becomes very difficult if the components are integrated into the system due to source code may be partial or
invisible completely. Several models and metrics are implemented for the software but they did not meet the
need of the component-based software. Among those set of metrics, Response for a Class (RFC) is one of the
metrics which is nothing but the number of methods that can be potentially executed in response to a message
received by an object of a class. In RFC, each function call statement value 1s considered to be 1. The cogmtive
feature is not included in RFC metric which is felt as a major negative aspect of this metric. So, this researcher
proposed a metric for measuring the interface maintenance for the component based software system. The
proposed metric for the maintainability 18 Cognitive Weighted Response for a Class (CWRFC) metric. The
proposed metric is applied to the computer classification and acquired better results which will help not only
for low maintenance of the component based system but also to reduce the complexity efforts.

Key words: Component-based software systems, maintainability measure, cognitive weighted response for a

class, interface, class, component

INTRODUCTION

Maintaming the software 15 the very expensive and
resource requiring phase in the process of software
development. The maintamnability concept 1s the very
inportant in the component based system and 1t 1s the
ability of the software which can be modified. But the
maintainability of the component system is a difficult task
because the personnel of the maintenance will not have
the access for the component source code which 1s to be
modified. So, software maintamability research mcludes
validating the mamtainability predictors which 1s based on
the measurable factors, it would have the behaviour on
the activity of software maintenance.

Component Based Software Development (CBSD)
(Marco et al., 2015) is a very important aspect in the
current model which is expected to be the head for the
recent researchers for constructing complex and large
software systems. The main aim of this research is to
reduce the effort; cost and time for development of using
the reusable component and improving the productivity,
quality and software maintainability. Already incorporated
components of the software using reusable components
will provide these advantages mainly. The component of
the software is a self-contained software piece which will
provide the fumctionality clearly besides that it also has

open interfaces and provides the services of plug and
play according to Thomas. It will represent an element of
reusable software which are file, function, class, medule
or subsystem. Number of software metrics related to
software mamtamability, quality assurance and complexity
which has been implemented i the past and are still being
proposed.

Interfaces are the main tool for information hiding in
software systems that have service contracts between
users and providers of behavior. Because of this contract
role, mterfaces are different from classes. It should be
more stable across the evolution of a software system to
reduce the effort in order to understand and maintain a
software system. Designing an mterface 1s a sensitive task
with a large influence on the rest of the system. Likewise,
during the evolution of a software system, the design of
interfaces must be assessed precisely to control the
impact of any required change. However, as software
remaing changes in runtime with the modification, adding
and deleting of new classes and services, the software
gradually drifts and loses quality by Sreekumar and
Sivabalan (2015).

To mnprove the quality of the software there has been
recently an important progress in the area of automatic
software refactoring and optimization of code quality.
Most of the existing approaches in that field are mainly

Corresponding Author: N. Baskar, Department of Computer Science, SRMV College of Arts and Science, 641020 Coimbatore,

India

Asian J. Inform. Technol., 16 (6): 503-510, 2017

related with code metrics such as metrics defined and
predefined bad smells in source code. Due to this none of
those approaches 1s taken into consideration, interfaces
do not contain any logic such as method invocations,
implementations or attributes. In literature, few recent
works focused to address the particularities of interfaces.
The well-known interface design principles such as
dependency mversion “program to an interface not an
implementation” or interface segregation “do not design
fat interfaces” which are designed by Sreekumar and
Sivabalan (2015). However, n existing design patterns,
code smells and metrics revolve around classes without
concentrating on the specifics of interfaces. This concept
reveals that there are only few publications focused on
the interface design quality. There are no tools that help
estimate the mterface design quality and detect design
anomalies in software interfaces.

Measurement and metrics: Now a days, software
engineering plays a major role in the world. As computer
software has grown, the software developers want to
attempt continually to develop new technologies. In
these developed technologies some of them focused on
object-oriented technologies. In this researcher, class
inheritances are differentiated with interface class
diagrams, through maintainability measures. Without
measurement it 1s impossible to measure the quality and
the maintainability of software to detect problems before
it is released. In this case, measurement is very important
in managing the software projects. Metrics are used as a
powerful tool m software research, maintenance and
estimating cost, effort, maintenance, complexity, quality
and to control, etc. Metrics serves as an early warning
tool for potential problems happeming in the software
development. Each metric must be defined as a complete
and well-designed quality mmprovement paradigm.
Maintainability metrics of UMIL design:

Association between a class and an interface
Implementation of an interface by a class
Dependency between a class and an interface
Aggregation of an interface in a class (containers)

Figure 1 shows the layered approach of
maintainability model for the object-oriented software
systems. This approach includes three levels. The first
layer is corresponding to the criterion the second layer 1s
corresponding to sub-criteria and the third layer is
corresponding to metrics impacting subcriteria. The
layered approach deals with program information from
bottom to top which starts from simple and measurable
data and analyzes the quality of software maintainability.

504

First layer Maintainsbility
SMW\
Analyzahility || Changeabitity | | Stability | | Tesabitiey | | Rensabitiry
WN

Deaign complexity metrica
|WMC| |D[T| |NOC| |c30| |RFC| |cw1u?c|

Fig. 1: Proposed maintainability hierarchy

In this research, interface maintenance metric 1s
designed for computing the important feature of the
maintainability of component-based system. The
designed metric is Cognitive Weighted Response for a
Class metric in CWRFC, the work proposed by
Aloysius and Arockiam (2012). The cogmitive weights are
assigned to function call statements which are based on
the effort required for understanding their function call
type due to the message passed by the class object. The
proposed metric has been proved to be a better measure
of cognitive of class with function call statement through
the case studies and experiments.

Literature review: By Sundararajan is implementing the
method of model, driven for generating the specific code
for platform of a user interface. Ulluniemi et al. (2015)
examined about the marketing practices of the component
based system that is how a single buying company
makes an attempt for shaping the market. Based on this,
five types are identified for market shaping actions.
Pham et al. (2015) provides a modeling scheme for
reliability which are automatically transformed using the
prediction tool of reliability inte Markov modes for
predicting the reliability and analysis of sensitivity.
Wet and Guo (2015) implemented a method for predicting
the QoS of the software system which will be affected
due to the dynamic reconfiguration and showed the
performance of the existing method using three aspects.
Marco ef al. (2015) developed a method by improving the
architectural approach for detecting and recovering the
incompatible interactions by manufacturing the exact
coordinator.

Karambir and Suri (2015) aim at finding the existing
component selection, characteristics, repository of
components, testing and challenges in the science of
CBSE. The systematic literature survey was based on
51 mternational journals collected from multiple-stage
selection process. Fabian ef al. (2015) offers a comparison

Asian J. Inform. Technol., 16 (6): 503-510, 2017

of an in-depth and quantitative evaluation for the
representative model transformations. The goal by
Ganesh and Raj (2015) is to inventing new software metric
for SQA for analyzing the brilhiance of the software.
Certifying the proposed metric as valid should also be
considered as equal to the invention, since it describes
how good the proposed metric is how it could be
practically mmplemented and how useful it 15 for the
technical fraternity and so on. The main aim by Tiwari and
Chakraborty (2015) 1s to identify the different aspects of
the quality of the software components. They also
established the relationshuip among the components
quality characteristics and sub-characteristics.

By using the reusable software product effectively
there will be increase in the reliability, maintainability and
productivity. But, there are some important challenges in
reusing and determining the exact components in the
software development process. To rectify these
challenges, engineers should apply the efficient methods
for identifying a high potential and quality reusable
software component which is given by Sridhar (2015).
Ana et al (2015) review and critically analyze the
developments in this domain by considering 26 of the
most research papers addressing object-oriented
coupling. Metrics are defined by Chhillar et al. (2015) to
depict member access control mechamsm and then
employed in the class hierarchy. The proposed metrics
provide a way to understand and implement these
concepts in research and development of the software
using object-oriented approach. Arbi (2015) proposed a
new information theoretic measure of software complexity
that, unlike previous measures, captures the volume of
design information in software modules. Noor (2015) gives
a brief review of cognitive computing and some of the
cognitive engineering systems activities. A model clone
1s a set of similar or identical fragments in a model of the
system. Aastha et al. (2015) provides about detecting
clones utilizing the model architectures using CK metric
suite.

There are several approaches and metrics proposed
for analyzing the maintainability of component based
software system. But, there 13 no effective method for
measuring the maintainability among the interfaces in the
component based system. So, there 1s need for new metric
for measuring the maintainability effectively which will
reduce the effort, cost and time during the development
process.

MATERIALS AND METHODS

Proposed metric for interface maintenabilty:
Component-based software development 13 used in the

industries as new efficient model of development. Tt

505

highlights the software system construction and design
using reusable components. It will mmimize the cost of
development and also will improve the entire system
reliability using components. The main benefits are high
quality solutions and simultaneously it can also be used
for mterfaces measurmng. The cogmtive weighted
response for a class metric is used for maintainability.
This metric 18 used to check the maintainability very
efficiently and it is very simple. If the number of method
1s larger that can be mvoked from class/interface through
message. Then the maintainability of the class/interface is
increased. Additionally, inherited methods are counted
but overridden methods are not because only one method
of a particular signature will always be available to an
object of a given class. For possible response, a bad
value will help in the allocating the appropriate testing
time.

Two UML class mheritance diagrams are taken and
all the above said metric is applied to measure complexity.
The two diagrams are introduced with maximum
possibility of interfaces and metrics which are used to
measure the mamtamability. Both mhertance and
interface diagrams maintainability measures are compared.
First UML class diagram has been taken as computer
classification.

Response for a Class (RFC): The RFC is used to count all
the methods which can be called in by the response to a
message to class object or by other methods in that class.
Member method m the class and member methods of
other classes are equally counted. This metric will glance
at the combination of the class complexity through the
number of methods and communication amount with other
classes. If the number of methods invoked is larger, then
the class complexity will be high. Then the debugging and
the testing of the class will also complicate because it
requires a greater understanding level of the tester
part.

The response set of a class is defined as set of
methods that can be potentially executed in response to
a message received by an object of that class:

RFC = Number of elements in RS (1)

Where RS is the response set for the class. It can be
expressed as, RS = Union of methods in the class and the
inherited methods from in the class:

RS=MUIM (2)
Where:
IM = The set of inherited methods
M = The set of methods in the class

Asian J. Inform. Technol., 16 (6): 503-510, 2017

Tn order to calculate response for a class, one must do
the following:

Classes are consulted at the first

The first message is taken and the number of method
is counted which can be executed in message
response

This number 1s recorded and the process 1s repeated
for all methods

After finishing, the largest number is entered

Cognitive weighted response for class and interface: A
metric called Cognitive Weighted Response for a Class
(CWRFC) is firstly implemented by Aloysius and
Arockiam (2012). In CWREFC, the cognitive weights will be
assigned for the function call statement which 1s based on
the effort required for understanding their type of
function calls due to message passed by an object of that
class. CWRFC 1s used to calculate the maintamnability of
the class using the Response Set Complexity (RSC). If
there are m numbers of response sets in a class, then the
CWRFC of that class can be calculated by using the
Eq 3

CWRFC =Y RSC, 3

j=1

where, RSC is the Response Set Complexity which can be
calculated by adding the set of all Methods (M) in a class
and set of methods (R) called by any of those methods as
given in Eq. 4:

RSC=M_ +¥.R, 4)

The applications of cognitive informatics in cognitive
science will cover a wide range of cognitive phenomena
at the sensation, subconscious, Meta cognitive and
higher cogmitive function levels.

RESULTS AND DISCUSSION

In order to compute the mamtamability of
component-based systems through proposed measure,
firstly class inheritance diagram are developed for
computer classifications and then proposed metric is
applied. The metric discussed above are applied for
mterface UML diagrams. The first study, considered 1s a
computer classification using class inheritance diagram
which is represented in Fig. 2.

The applicability of the proposed metric has been
checked by applying it to an Object-oriented programming
that its class hierarchy is given in Fig. 2. This example

processes a computer database hierarchy. It has one main

506

Computer
Name, producer

getName()
getProducer()

Hardware Software
CPU,RAM, HD, OS Version,
2tCPUQ supported OS
£eRAMO software()
0% SeVersion)
check supported sw() isAppropriate()
Desktop Notebook
pcCase weight
desktop() noteb?oko
getCase() getWeight()

Fig. 2: Computer classification using class inheritance

<m> <<Interface>> <<Interface>>
ZetCPUO) software computer
N I | —
25t0SQ) isAppropriate() | | 8°Producer)
check supported_sw()
Desktop Notebook
deslctop() notebook()
getCase() getWeight()y

Fig. 3: Computer classification using interfaces

Table 1: Response for a class value

Metric Computer Hardware Software Desktop Notebook
RFC for class 2 7 5 12 12
REC for interface 2 5 3 12 12

class computer and two subclasses, hardware and
software. The class hardware has again two subclasses,
desktop and notebook. We demonstrate how we
can calculate the class and interface CWRFC for an
object-oriented system. The CWRFC values
corresponding to each class of Fig. 2 and 3 1s summarized
in Table 1.

The class mbheritance Fig. 2 1s introduced with
possible number of interfaces and is represented in Fig. 3.

Response for a class: RFC is calculated for the class
classification using class inheritance and interfaces
as.

Asian J. Inform. Technol., 16 (6): 503-510, 2017

Class inheritance
Case 1; computer: The computer has 2 methods so, RFC
is calculated as:

RFC = Z[getName(), getProducer()]

Case 2; hardware: The hardware has 7 method so RFC 1s
calculated as:

getName(), getProducer(), getCPU(),
getRAMC), getHD(), getOS(),
check supported sw()

RFC=7

Case 3; software: The software has 5 method so RFC 1s
calculated as:

getName(), getProducer(), software(),
getVersion() isAppropriate()

RFC=5

Case 4; desktop: The desktop has 12 methods, so, RFC is
calculated as:

desktop(), getCasef(), getName(),
getProducer(), getCPU(), getRAMY),
getHDX), getOS(), check supported swi),
software(), getVersion() isAppropriate()

RFC=12

Case 5; notebook: The notebook has 12 metheds so RFC
is calculated as:

notebook(), getWeight(), getName(),

getProducer(), getCPU(), getRAM(),
getHDX(), getOS(), check _supported sw(),
software(), getVersion() isAppropriate()

RFC =

Interfaces
Case 1; computer: The computer has 2 methods, so, RFC
is calculated as:

RFC =12 [getName(), getProducer()]

Case 2; hardware: The hardware has 5 methods, so, RFC
1s calculated as:

getCPU(), getRAM(), getHD(),
getOS(), check supported sw()

RFC=

Case 3; software: The software has 3 methods, so, RFC 1s
calculated as:

RFC =3 [Soﬂware(3, getVersion() isAppropriate()]

507

Case 4; desktop: The desktop has 12 methods so RFC is
calculated as:

desktop(), getCase(), gefNarne(),
REC | etProducer(), gACPUC), geRAM(),
getHD(), getOS(), check supported sw(),
software(), getVersion() isAppropriate()

Case 5; notebook: The notebook has 12 methods so RFC
is calculated as:

notebook(), getWeight(), getName(),
getProducer(), getCPU(), getRAM(),
getHD(), getOS(), check supported swi),
software(), getVersion() is appropriate()

REC =

Based on the values obtained, RFC 1s shown mn
Table 1. Figure 2 and 3 showed the metrics are measured
and tabulated in Table 1. Response for class correlates
with the defect densities. However, the research of CK 1s
not without criticisms. Object-oriented designs are
relatively richer in information. Therefore, metrics if
properly defined can take advantage of that information
available at any early stage in the life cycle.
Unfortunately, most of the prior researchers do not exploit
this additional information. In order to overcome the
above-said drawbacks of object-oriented design metrics,
it is proposed to opt for cognitive complexity metric suite.

Cognitive weighted response for a class: Tn this research,
CWRFC is calculated for the computer classification using
class and interfaces as.

Class inheritance
Case 1; computer: The computer interface has 2 methods,
so CWRFC can be calculated as:

2
CWRFC = Y RSC, =RSC+RSC,

=1

=(M,+R)+(M +R))

Case 2; hardware: The hardware mterface has 7 methods,
so, CWRFC is calculated as:

CWRFC = i RSC, = RSC, +RSC, TRSC+RSC,+
j=1
RSC+ RSC,+RSC,
=(M,*R)+{M +R)+{M,+R)+
M_+RJ+H(M_+R)+ (M +R}+(M +R))
T+6)+(7+6)+ (7+6) (7+6)+(7+6)+
7+6)+(7+6) =

(M, *+R,
= (
((

Asian J. Inform. Technol., 16 (6): 503-510, 2017

Case 3; software: The software interface has 5 methods,
s0, CWRFC 1s calculated as:

5
CWRFC = Y RSC, = RSC+RSC,+RIC+RSC,+RSC,

= E;\;IH+R1)+(MB+R1)+(MH+R1)+
(M,*R,)+(M_+R)
= (5+4)+(5+4) +(5+4)+(5+4) +(5+4) = 45

Case 4; desktop: The desktop has 12 methods, so
CWREFC 15 calculated as:

CWRFC = iRsc] = RSC+RSC,+RSC; RSC,+RSC,+RSC, +
i=1
RSC,+RSC,+RSC,+RSC,+RSC, +RSC,,
= (M R)HMFR JHM R JHM +R,)+
(M RHM 4R)HM R J+HM, +R)+
(MAR)M AR (MR)+HM+R,)
=(12+11)+{12+11)+H{12+1 1) +(12+11)+
(12411 +(12+11)+{12+11) +{12+1 1)+
{ 12+11)+(12+11) =276

12+11)+
12+11)+

(
(

Case 5; notebook: The notebook has 12 methods so
CWRFC 1s calculated as:

12
CWRFC =y RSC, = RSC,+RSC,+RSC+RSC;+ RSCARSC,+

=1

JRsc7 +RSC, TRSC,+RSC,, 1RSC, 1RSC,,
={M#R (M AR)M, R,) H{M,+R, }+

(MR)M +R,) HM+R)+M +R)+

(MAR)+(M+R)HM+R) +(M,+R)
=(12+11)+(12+11)+(12+11)+{12+11)+

(12411 +H12H1 1) +(12H1 1) +H{12+H1 1) H12+11)+
(12+111)+H{12+11)+(12+11) = 276

1

A detailed description provides useful information
about the metric. If the example in Fig. 2 is considered, we
can find that desktop and notebook classes are on the
same level and mherit the property from hardware and
Software. Hardware and software will inherit the property
from computer. So, the desktop and notebook will inherit
the methods from computer, hardware and software. The
CWRFC value will be calculated based on the
inheritance and obtained as 276 for both desktop and
notebook.

Hardware and software are subclasses of computer
and inherits the properties from computer therefore,
CWREFC values can be calculated based on the computer
and obtains 91 and 45. It is because of the hardware and
software classes are on the same level and both inherit
from the class computer. This example shows the usage of
inheritance property of the classes in calculations.

Interfaces
Case 1; computer: The computer interface has 2 methods
so CWRFC can be calculated as:

2
CWRFC = Y RSC, =RSCFRSC, =(2+1)+{2+}=6

=1

Case 2; hardware: The hardware interface has 5 methods
so CWRFC is calculated as:

5
CWRFC = ¥ RSC; = RSC,+RSC,+RSC;+RSC,+RSC,

1=1

=(5+4)+(5+4)+(5+4)+{5+4)+(5+4) = 45

Case 3; software: The software mterface has 3 methods,
so, CWRFC is calculated as:

3
CWRFC = ' RSC, = RSC,+RSC,+RSC,

1=1

=(3+2)+(3+2)+(3+2) =15

Case 4; desktop: The desktop has 12 methods so CWRFC
1s calculated as:

12
CWREC = Y RSC; = RSC,+RSC;+ RSC+RSC+RSC,+RSC,+

j=1
RSCARSC,ARSC,HRSC, +RSC, +RSC,,

=(12+6)+(12+6)+(12+6)+(12+6) +{12+6) +
(12+4)+(12+4)+(12+4)+(1243)+(12+43) +
(12411)+(12+11) =214

Case 5; notebook: The notebook has 12 methods so
CWRFC 1s calculated as:

12
CWRFC = ¥ RSC; = RSC,+RSC,+RSC+RSC,+RSCHRSC,+

j=1
RSC,+RSC,+RSC,+RSC, +RSC, +RSC,,

=(12+6)+(12+6)+(12+6) +(12+6) +{12+6)+
(12+4)+(12+4)+ (12+4)+(1243)+(1243) +
(12411} +(12+11) =214

508

Asian J. Inform. Technol., 16 (6): 503-510, 2017

Table 2: Cognitive weighted response for a class value

Metric Cormputer Hardware Software Desktop Notebook
CWRFC for class 6 a1 45 276 276
CWRFC for interface 6 45 15 214 214

Based on the values obtained before, CWRFC 1is
tabulated as Table 2 as follows. Figure 2 and 3 shows the,
metrics are measured and tabulated in Table 2. CWRFC
value for interface program obtained value for class
attributes 1s shown And it 1s more efficient and accurate
one. The results show that the effect of this parameter on
maintainability of a component-based system 1s quite
significant. The computer hardware software desktop
notebook class is partitioned into two sub classes and
their corresponding CWRFC values are 6, 45, 15, 214 and
214 as show in Table 2. Introduction of interfaces in
object-oriented programming in possible places is better
for good quality and high reliable software.

CONCLUSION

A cogmtive maintenance metric for the
component-based software systems has been introduced
in this research. The mam motive belind introducing a
new metric 1s to caleulate the cognitive mamtainability for
the internal architecture by considering the unique feature
of the program. This method can also be used to evaluate
the design efficiency and therefore it can be applied at the
initial phase of software development process. A better
design will decrease the efforts of maintainability in the
final stage. So, our proposed metric will provide the
information about the system
maintainability. This metric 1s evaluated for class and
interface program for simple computer classification in this
work. It is clear that the proposed metric works

efficiently for the interfaces in the component-based

effective software

software. The total values are reduced for both examples
of object-oriented mterfaces compared to object-oriented
class inheritance concepts. Interface concept has shown
better performance compared to inheritance concept in
object-oriented programming. Software reliability will
increase with lower software maintainability.

REFERENCES

Aastha, S, V. Sharma and JMIT. Radaur, 2015.
Detecting model clones using CK metrics suite. Intl.
J. Eng. Res. Gen. Sci., 3: 1605-1612.

Aloysius, A, and L. Arockiam, 2012. Cognitive weighted
response for a class: A new metric for measuring
cognitive complexity of OO systems. Intl. J. Adv.
Res. Comput. Sci., Vol. 3.

509

Ana, N., H. Lichter and Y. Xu, 2015. Evolution of object
onented coupling metrics: A sampling of 25 years of
research. Proceedings of the 2nd International
Workshop on Software Architecture and Metrics,
May 16-24, 2015, IEEE, Florence, Italy, pp: 48-54.

Arbi, G, 2015. A theory of software complexity.
Proceedings of the 4th SEMAT Workshop on
General Theory of Software Engineering, May
18-18, 2015, TEEE Press, Florence, Ttaly,
ISBN:978-1-4673-7053-0, pp: 29-32.

Chhillar, R.S., P. Kajla, U. Chhillar and N. Kumar, 2015. An
access control metric suite for class hierarchy of
object-oriented software systems. Intl. J. Comput.
Commun. Eng., 4: 61-65.

Fabian, B., P. Meier, S. Becker, A. Koziolek and
H. Koziolek et al., 2015. Quantitative evaluation of
model-driven performence analysis and simulation of
component-based architectures. IEEE.
Software Eng., 41: 157-175.

Ganesh, S H. and H.V. Raj, 2015. Performance based
analysis on MALCOM: A
Proceedings of the International Conference on
Circuit, Power and Computing Technologies
(ICCPCT), March 19-20, 2015, TEEE, Nagercoil, India,
ISBN:978-1-4799-7075-9, pp: 1-5.

Karambir, S. and P.K. Suri, 2015. Techmcal review:

Trans.

software metric.

Inheritance of component based software
engmeering. Intl I Adv. Res. Comput. Sci,
Vol. 6.

Marco, A., P. Inverardi and M. Tivoly, 2015. Synthesis of
correct adaptors
component-based systems. Master Thesis, Cornell
University, Ithaca, New York.

Noor, A.K., 2015. Potential of cognitive computing and
cognitive systems. Open Eng., 5: 75-88.

Pham, T.T., X. Defago and Q.T. Huynh, 2015.
Reliability prediction component based
software systems: Dealing with concurrent and
propagating errors. Sci. Comput. Program., 97:
426-457.

Sreekumar, R.A. and RYV. Sivabalan 2015 A
survival study of object oriented principles
on software project development. Proceedings
of the Global Conference on Communication
Technologies (GCCT), April 23-24, 2015, TEEE,

for protocol enhancement in

for

Thuckalay, India, TSBN:978-1-4799-8554-8, pp:
307-310.

Sridhar, S., 2015. A review on reuse of software
components for sustainable solutions in

development process. Intl. J. Innov. Technol. Res., 3:
1998-2001.

Asian J. Inform. Technol.,

Tiwari, A. and P.S. Chakraborty, 2015. Software
component quality characteristics model for
compoenent based software engineering. Proceedings
of the IEEE International Conference on the
Computational Intelligence & Communication
Technology (CICT), Feburary 13-14, 2015, IEEE,
Ghaziabad, India, ISBN:978-1 4799-6024-8, pp: 47-51.

510

16 (6): 503-510, 2017

Ulleuniemi, P., I.. Araujo and J. Tahtinen, 2015. Purchasing
as market-shaping: The case of component-based
software engineering. Ind. Marketing Manage., 44:
54-62.

Wei, L. and W. Guo, 2015. QoS prediction for dynamic
reconfiguraton of component based software
systems. J. Syst. Software, 102: 12-34.

	503-510 - Copy_Page_1
	503-510 - Copy_Page_2
	503-510 - Copy_Page_3
	503-510 - Copy_Page_4
	503-510 - Copy_Page_5
	503-510 - Copy_Page_6
	503-510 - Copy_Page_7
	503-510 - Copy_Page_8

