
Reducing the Search Space in Real-Road Shortest Path Finding using Elliptical Pruning With
Geographical Databases

1P. Ganesh Kumar, 1S. Karthik, 2R. Nidhya and 3R.M. Bhavadharini
1Department of CSE, SNS College of Technology, Coimbatore, 641035 Tamil Nadu, India
2Department of CSE, Madanapalle Institute of Technology and Science, Madanapalle, 517325 Andhra
Pradesh, India
3Department of CSE, Easwari Engineering College, Chennai, 600089 Tamil Nadu, India

Key words: Map pruning, shortest path, map queries,
Elliptical pruning and geographical databases

Corresponding Author:
P. Ganesh Kumar
Department of CSE, SNS College of Technology,
Coimbatore, 641035 Tamil Nadu, India

Page No.: 163-170
Volume: 19, Issue 9, 2020
ISSN: 1682-3915
Asian Journal of Information Technology
Copy Right: Medwell Publications

Abstract: Real-road shortest-path finding algorithms
involve  large  set  of  geographical  data which include
geo-tagged nodes and edges of the road network. Practical
shortest  path  finding  algorithms  need minimized
search-space for performing these computations by
keeping these data in the computer’s conventional
memory. The hierarchical pruning methods for
minimizing the search-space to support real-road shortest
algorithms are more suitable for connecting multiple cities
and towns via highways. This study is to present a new
suitable pruning method for intra-city shortest path
finding, called elliptical pruning to bring the geo-tagged
nodes and edges in to the memory for the subsequent
shortest  path  finding  process  for  the  complex  city
road-transport networks.

INTRODUCTION

The road-transport network consists of set of directly
and indirectly connected nodes and edges. Among many
transportation networks, road transportation network play
a major and inevitable role in day to day life. People
travel to office and children travel to school from their
residence every day in the morning and back to home in
the evening, materials transported between warehouses,
factories, project sites, retail shops etc. Vegetables, fruits
and groceries transported from villages to various market
places located in cities. It is inevitable to avoid road
networks for the above said rapid transportation
requirements. Most of the cities already grown in
population are unplanned and because of the increased
traffic  conditions  in those cities, finding shortest and
fuel-efficient path is so important to reduce the travel time

and transportation cost. It impacts up to the level of
economic status of a country[1 ,2]. Choosing the right path
among all the available paths to traverse from source node
to destination node is the process of finding best path.
Mostly shortest distance path will be chosen. However,
considering different real-road transport scenarios like,
traffic conditions on various time including high traffic
time (peak hours), medium traffic time (off-peak hours)
and normal hours in a day or a specific weak-day and
road-conditions, different paths can also be chosen to
travel. Geographical database will serve to find the
shortest path from source to destination in a complex road
network. The complexity lies in Map digitization, the
process of converting geographic data either from a
hardcopy or a scanned image into vector data by tracing
the features. During the digitizing process, features from
the  traced  map  or  image  are  captured  as  coordinates

163



Asian J. Inform. Technol., 19 (9): 163-170, 2020

in point, line or polygon format. With the help of
digitization process all the city junctions, connecting
points (nodes) and road-ways are captured in geographical
databases to help calculating the route from any given
source to a destination. The geographic co-ordinates are
formed with latitude, longitude and altitude uniquely
refers to any location on the earth three dimensionally.
Also, the physical roads (edges) connecting those points
in the form of a line will be recorded to produce road-
network. These edges recorded will always refer two
nodes recorded, namely source and destination physically
connected by it. These recorded data altogether form a
real-road network and stored in a database. For finding
shortest-paths between different nodes, these nodes and
connecting-edges with the distances should be present
altogether in program memory. As a case study, we could
get approximately 1400 nodes per square kilometre within
Bengaluru city from a digitized road map in the form of
a relational database[3, 4]. Map databases are the sources
for the geographical information required for road
transport planning, routing, vehicle despatching and other
fleet management applications. Road transport networks
in the countries like India are very complex networks
necessitate travellers to switch back and forth between
major roads, arterial roads and sub-arterial roads to get a
shortest and comfortable connectivity between source and
destinations they are travelling. So, number of connecting
nodes in such a networks will be a huge. Computation of
shortest path by keeping these entire set of nodes and
edges in memory is a little cumbersome process. When
we need to find shortest path between locations across the
city an effective pruning methodology is required to
minimize the search space and serve people travelling
often for their daily needs.

Literature review: The studies have been done on the
shortest path finding methods like Map Partitioning[1],
Pruned Highway Labelling, Flat Encoded Path View
(FEPV), Hierarchical Encoded Path View (HEPV) and
Transit Node Routing. The approach called pruned
highway labelling is to find a nearest highway node to
connect the destination via. these highways. The
hierarchical algorithm for approximating shortest paths[4]

extracts a high-level sub network of relatively long links
(and their associated nodes) where routing decisions are
most crucial. This high-level network partitions the
shorter  links  and  their  nodes  into  a  set  of  lower-level
sub-networks. It fixes gateways within the high-level
network for entering and exiting these sub networks for
improving performance. A  space consuming FEPV
approach for pre-computing shortest path was replaced by
an approach HEPV which divides larger map into smaller
fragments and organizes them in a hierarchical manner.
Transit node routing considers including important nodes
near the starting and destination nodes called junctions
and  uses  a  very  similar  approach  like  pruned
highway-labelling to selectively fetch the route[5].

The map partitioning method is to partition the map
area into several parts of geographical portions based on
the road-connectivity, road classifications, speed rules,
driving   patterns   and   traffic   intensity   at   various 
time-period   in   a   day   and   filters   the   records   with
pre-conditions given. These techniques require additional
traffic data and pre-processed road-transport related
information. Because this information are primary inputs
for the pruning map records required for the shortest path
finding algorithms but also required get updated/
calculated time-to-time to yield better and error free
results[6].

The pruned highway labelling and other hierarchical
methods are well suitable for finding shortest paths
connecting cities and states. Intra-city shortest paths are
much different from intercity and interstate shortest paths. 
Intercity and interstate paths are connected via. highways.
So, the hierarchical methods produce good results in
pruning nodes for finding shortest paths between cities
and towns. Finding shortest path within the city
destinations mostly involve even small streets in the city. 
In this case, the Naive pruning methods sometime
outperform the semantic and analytical approaches of
pruning for intra-city shortest path finding problems,
especially for the cities in countries like India[7, 8].
Improving such naïve pruning may further help us to
compute shortest paths quickly and efficiently with the
minimum memory and other computing resources. The
problem we concerned is limited to the requirement of
one-to-one shortest-path finding.

Moreover the approaches discussed above involve the
pre-computation of road-network data for increasing
performance and most of them are hierarchical ones. And
moreover these approaches filter the road connectivity
based on the road or node related data. Pre-computed
values will become void in case of topological changes
happen and they need to get re-computed or refreshed.
Road networks of cities with high volume of traffic are
prone to get such topological changes like switching
between one-way and two-way and other road
construction works happens during a period. Very
particularly the cities in countries like India. Also adding
a promising geographical or area filtering will further
improve these above said hierarchical shortest  path
queries[6].

Naive pre-fetching: A naive and simple method to
implement this query is collecting all the nodes which lies
in the geographical area of a rectangle falls between the
latitude and longitudes of source and destination
locations. For example, to find shortest path between a
location A and B we shall pre-fetch all the nodes which
have latitude between latitude of A and latitude of B as
well  as  longitude  between  longitude  of  A  and
longitude of B.

164



Asian J. Inform. Technol., 19 (9): 163-170, 2020

D

S

S DMajor axis

M
in

or
 a

xi
s

Fig. 1: Pruning with a rectangle

This is clearly a rectangular clipping with the
rectangle  formed  by  keeping  the  source  and
destination locations at diagonal corners. The rectangular
co-ordinates can be found with the permuted values of the
latitudes and longitudes of the Source (S) and Destination
(D) is shown in Fig. 1. For example, if the (LatS, LonS)
and (LatD, LonD) are the latitude and longitudes of Source
(S) and destination (D), respectively, then the rectangle
co-ordinates can be formed with them as (LatS, LonS),
(LatS, LonD) (LatD, LonS) and (LatD, LonD). To avoid
missing the roads go towards opposite direction of the
destination for some distance from the source location as
well as road connectivity that goes beyond the destination
for some distance to come back and get connected with
the destination location, we may need to expand the
rectangle proportionately. The expansion is proportionate
scaling to cover little more areas outside the exact source
and destination points as found in Fig. 1  Pruning with a
rectangle. This expansion can be repeated again in the
next attempt if there is a miss in finding shortest path by
the algorithm. But the miss can be only known and next
attempt will be made with area expansion, after the entire
shortest-path finding algorithm run once and fails to
identify the shortest path/connectivity between the given
source and destination. So, the expansion parameter at the
first attempt should be carefully chosen in-order to get a
hit.

But the nodes near diagonal points of the rectangle
other than the source and destination nodes (the opposite
corners) are not favourably going to take part in the
resulting shortest-path (in Fig. 2 excessive selection and
missing areas using rectangular area pruning), areas
marked as E1 and E2) for sure unless otherwise the centre
geographical area of the rectangle, we are considering
contain water reservoirs or plateaus where roadways are
not possible. By including these unwanted nodes in our
search space for the shortest-path finding algorithm 8, we
demand more memory to keep these nodes and the
connecting edges for the computation. It affects the
performance  of  the  shortest-path  finding  algorithm
(Fig. 3 and 4).

Another problem is the areas marked as M1 and M2
in the figure are outside the rectangle area but those are
near to the source and  destination  nodes  (S  and  D)  and

Fig. 2: Excessive selection and missing areas using
rectangular area pruning

Fig. 3: Rectangle formed with longer sides parallel to the
line connecting source and destination

Fig. 4: Ellipse used for pruning

possibly can include nodes to form a shortest path. We are
actually missing in this Naive rectangular pruning 7
method.

Sometimes, if the source and destination nodes lies
almost in a same axis (Fig. 3 rectangle formed with longer
sides parallel to the line connecting source and
destination) having either latitude or longitude with small
or no differences to each other, the rectangle will be so
thin and will miss to get the nodes and edges in the
broadened road connectivity. In this special case the
pruning method should form a rectangle parallel to the
connecting line between the Source (S) and Destination
(D) nodes. Forming a rectangle by keeping the sides of it
parallel to the connecting line between Source (S) and
Destination (D) used to clip like the one in the picture,
may not be a feasible solution if the two nodes are far
away from each other. The longer path, needs much wider
rectangular area to include the curvy deviations of the
connecting shortest road-path. So, in this case, the

165

 

D 

S 

E1 

E2 

M2 

M1 

 

E1 E2 

D S 



Asian J. Inform. Technol., 19 (9): 163-170, 2020

unnecessarily covered area will be much more. Not only
the areas marked as E1 and E2 but it is all the way
between the parallel upper and lower boundaries.

MATERIALS AND METHODS

Elliptical pruning method: Here, we are coining a new
highly result oriented pruning method for pre-fetching the
nodes from map database to find the shortest path
between any two nodes given. The method should be as
simple as we can include them in a database query.
Because, the pre-fetching is going to be done at the
geographical database. We are making use of the
geographical information to filter-out the unwanted nodes
and edges connecting these nodes. The method we hereby
call as elliptical pruning since it involves an ellipse which
has shortest radius at wide to minimize the number of
nodes and can be long enough to go all the way to cover
source and destination. The important benefit of using
Elliptical pruning is the pre-fetch filtering can be done at
database-level to minimize the data transported to the
application server.

The Elliptical pruning just checks for the condition to
fetch only the nodes present inside the formed ellipse
thereby avoids most unwanted nodes and edges to get
included in the input of shortest path finding algorithm.
The ellipse can be formed with mid-point between source
node and the destination node as center and major axis on
the line connecting to between Source (S) and Destination
(D) nodes (Fig. 5 Ellipse used for pruning). The minor
axis can be small enough to promisingly include nodes
that form shortest connecting path between source and
destination nodes.

Role of minor radius of the ellipse: When a miss occurs
that is when the shortest path algorithm fails to find a
connecting path from the source to destination, we may
need to expand the size of Ellipse to include missed-out
road connectivity in that widen area during the previous

attempt of the pre-fetching process. So, the pre-fetching
process needs careful selection of minor radius to
minimize the number of attempts we are going to make as
well as to minimize the total area potentially have the
road-connectivity. One of the practical solutions we
identify for this concern is to have a longer minor radius
of the ellipse used for pruning, when there are
geographical areas within the ellipse which doesn’t have
good  road  connectivity,  otherwise  shorter  minor 
radius. For decision making we selectively identify the
areas  where  there  are  no  roads  possible  city-wide  and
geo-tagging them along with the radius of these road-less
areas just to inform the pre-fetching process to increase
the minor radius because of the road connectivity going
around these areas and not as straight to connect them.

Figure 6 Ellipse with widen minor axis to include
areas without road connectivity, shows that there are some
road-less areas, here in this example, a lake, inside the
ellipse formed for the pre-fetching process. So, the road
connectivity goes all around these lake area, resulting in
the possible connectivity is wide outside the line
connecting Source (S) and the Destination (D). These geo-
tagged areas are kept in the database as a separate set of
records and may be used to determine the minor axis of
the ellipse during the pre-fetching process. This is a one-
time process which needs to be done across the city map.
These geo-tagged records can be used to determine the
length of the minor axis of the pruning Ellipse. If no such
area falls near the centre of the Ellipse the minor axis can
be minimum otherwise it can be longer than the diameter
of the one or more geo-tagged areas between the source
and the destination where there are roads not possible.
Because of this increment in minor axis, the number of
resulting  nodes  and  edges  of  the  pre-fetching  process
also  not  increases  proportionately.  The  reason  is  the
geo-tagged road less areas will not have much nodes and
edges in it. Just because of that only we are increasing the
minor-radius of the pruning ellipse. So, performance of
the pre-fetching process will not be getting affected.

Fig. 5: Elllipse for pruning in a normal city area

166



Asian J. Inform. Technol., 19 (9): 163-170, 2020

Fig. 6: Ellipse with widen minor axis to include areas without road connectively

The practical calculations: Elliptical pruning involves
three steps:

C Finding the angle of a line connecting Source (S) and
destination nodes directly

C Determining the major and minor axis lengths of the
ellipse to be formed

C Apply the filter query in the node table to fetch the
nodes lies only in the formed Ellipse

Angle of the line connecting Source (S) and
Destination (D) can be found with Eq. 4:

(1)D SLon Lon -Lon 

(2)   Dsin Lon ×Cos Lat 

(3)       S D S Dcos Lat ×sin Lay -sin Lat ×cos Lat 

(4) atan 2 ,   

Before applying to the equations, all the latitude and
longitude values must be converted to radians and finally
the angle θ must be converted to degrees. The θ can be the
angle of the Ellipse which is centred with the mid-point
between the source and destination and major radius will
be distance from the mid-point to the source (or
destination) node plus the initial  expansion  value  to 
sufficiently  cover the nodes near  the  Source  (S)  and 
Destination (D). So, the  mid-point  of  the  Ellipse  can 
be  calculated with Eq. 5:

(5)     S D S D
C C

Lat +Lat Lat +Lat
Lat ,Lon ,

2 2

 
  
 

The major radius of the Ellipse can be calculated
using Eq. 6:

(6)   2 2

major C S C S EXPR Lat -Lat + Lon -Lon + R

According   to   the   observations   from   our 
sample   set   of   pruning   attempts,   initially   minor
radius   of   the   Ellipse   can   be   one   fourth   of the
major   radius.   Considering   a   point   (LatP,    LonP) and
the  co-ordinate   distance   (LatD,   LonD)   of   it   from
the   centre   of   the   Ellipse  (LatC,   LonC)   can  be
calculated as:

(7) 
 
 

C P

D D

C P

abs Lat -Lat
Lat ,Lon

abs Lon -Lon

 
  
  

To check for a condition that whether the point (LatP,
LonP) lies inside of the ellipse or not, we need to calculate
the following:

(8)
    
 

2

D D
1 2

major

Lon ×cos +Lat ×sin
P

R

 


(9)
    
 

2

D D
2 2

major

Lot ×cos +Lat ×cos
P

R

 


(10)1 2P +P 1

We select all the nodes that satisfy the condition
specified in Eq. 10. The resulting set will be used to find
the shortest path between the Source (S) and Destination
(D) nodes given.

167



Asian J. Inform. Technol., 19 (9): 163-170, 2020

Fig. 7: Pinned resulting nodes found using Naive rectangular pruning

Fig. 8: Pined resulting nodes found using found Elliptical pruning

RESULTS AND DISCUSSION

The analysis of output and performance of Naive
pruning and the elliptical pruning methods were done with
a sample geographical database with 1,63,584 nodes and
4,41,800 road segments (edges). The other methods like
map partitioning and pruned highway labelling are well
suitable for intercity shortest paths. They give priority to
the other parameters than the distance first. Shortest paths
produced from the Naive methods will include all types of

road classifications like arterial, sub-arterial, major, minor
and even connecting streets to find a minimum distance
path connecting two locations. So, the test conducted with
6 sample sets of source and destination nodes for pre-
fetching the nodes and edges for computing shortest paths
only with Naive and our elliptical pruning. The results
were found to be very impressive (Fig. 7-12).

Table  1  shows  number  of  nodes,  edges along with
the time taken for the queries with the above results the
trends are clearly saying that though the elliptical pruning 

168



Asian J. Inform. Technol., 19 (9): 163-170, 2020

70000

60000

50000

40000

30000

20000

10000

0

V
al

ue
s

1               2               3              4              5               6
Tests

Naive pruning
Elliptical pruning

20000
18000
16000
14000
12000
10000

8000
6000
4000
2000

0

V
al

ue
s

1               2               3              4                5              6

Naive pruning
Elliptical pruning

Tests

2500

2000

1500

1000

500

0

V
al

ue
s

1               2                3               4                5               6
Tests

Naive pruning
Elliptical pruning

2500

2000

1500

1000

500

0

V
al

ue
s

1              2               3               4               5              6
Tests

Naive pruning
Elliptical pruning

Table 1: Number of nodes, edges along with the time taken for the queries
No. of nodes No. of edges Time taken for nodes Time taken for edges
---------------------------------- ---------------------------------- ----------------------------- ----------------------------

Tests Naive Elliptical Naive Elliptical Naive Elliptical Naive Elliptical
1 1104 819 3226 2123 1587 2023 1686 2039
2 4500 3620 14521 9684 1608 2046 1702 2152
3 9839 6320 34551 20028 1634 2092 1794 2275
4 13693 8505 41643 23643 1664 2153 1817 2280
5 15352 10240 49539 26768 1688 2160 1858 2343
6 17923 11860 58084 33603 1703 2215 1904 2371

Fig. 9: Number of nodes found during test runs

Fig. 10: Number of edges found during test runs

Fig. 11: Time taken for fetching nodes; Querying time for
nodes (Milliseconds)

Fig. 12: Time taken for fetching edges;  Querying time
for edges (Milliseconds)

method takes time to compute and filter-out the unwanted
nodes, the numbers of nodes produced to the shortest path
algorithm are considerably reduced. The latency time of
1 sec (average) is negligible when compared to the time
latency in shortest path computation time with these extra
set of nodes and edges. Also, memory requirement for 
the  computation  of  shortest  path  will  be  very less
with the pruned set of nodes and edges using elliptical
pruning.

CONCLUSION

The Elliptical pruning technique has reduced the
generation of redundant nodes and removed the unwanted
nodes. The pruning technique has considerably reduced
the memory requirement during the computation of the
shortest path. The algorithm is useful to find out the
shortest path and comfortable path to the destination in
complex geographical areas. It serves well for the
complex Indian roadways where busy transit is often
occurring. Since the elliptical pruning of geographical
data for shortest path computation is practically producing
minimum set of input for the shortest path computation,
this method can be combined with other shortest path
querying approaches like pruned highway labelling and
map partitioning and Hierarchical Encoded Path View.
The hybrid approaches are expected to be a method to
further reduce the input data required for shortest path
computation.

REFERENCES

01. Gonzalez, H., J. Han, X. Li, M. Myslinska and J.P.
Sondag, 2007. Adaptive fastest path computation on
a road network: A traffic mining approach.
Proceedings of the 33rd International Conference on
Very Large Data Bases, September 23-28, 2007,
Vienna, Austria, pp: 794-805.

02. Akiba, T., Y. Iwata, K.I. Kawarabayashi and Y.
Kawata, 2014. Fast shortest-path distance queries on
road networks by pruned highway labeling.
Proceedings of the 16th Workshop on Algorithm
Engineering and Experiments, January 5, 2014,
Society for Industrial and Applied Mathematics
Philadelphia, PA, USA., pp: 147-154.

169



Asian J. Inform. Technol., 19 (9): 163-170, 2020

03. Jing, N., Y.W. Huang and E.A. Rundensteiner, 1996.
Hierarchical optimization of optimal path finding for
transportation applications. Proceedings of the 5th
International Conference on Information and
Knowledge Management, Nov. 12-16, Rockville,
MD, USA., pp: 261-268.

04. Chou, Y.L., H.E. Romeijn and R.L. Smith, 1998.
Approximating shortest paths in large-scale networks
with an application to intelligent transportation
systems. INFORMS J. Comput., 10: 163-179.

05. Bast,  H.,  S.  Funke,  D.  Matijevic,  P. Sanders and 
D.  Schultes,  2007.  In  transit  to constant time
shortest-path queries in road networks. Proceedings
of the Meeting on Algorithm Engineering and
Expermiments, January 2007, Society for Industrial
and Applied Mathematics, pp: 46-59.

06. Wu, L.,  X.   Xiao,   D.   Deng,   G.   Cong,   A.D. 
Zhu and  S. Zhou, 2012. Shortest path and distance
queries on road networks: An experimental
evaluation. Proceedings of the VLDB Endowment,
Vol. 5, August 27-31, 2012, Istanbul, Turkey, pp:
406-417.

07. Akiba,  T.,  Y.  Iwata  and  Y.  Yoshida,  2014.
Dynamic  and  historical  shortest-path  distance
queries on large evolving networks by pruned
landmark labeling. Proceedings of the 23rd
International  Conference on  World  Wide Web,
April 7-11, 2014, ACM, New York, USA., pp:
237-248.

08. Shehzad, F. and M.A.A. Shah, 2009. Evaluation of
shortest paths in road network. Pak. J. Commerce
Soc. Sci., 3: 67-79.

170




