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Abstract: In graph the two main components are Vertices
and Edges. The vertices are connected using edges. There
are two types of graphs, directed and undirected. The
major application of graph is representing network on
paper. The cost involved in converting paper based
network to actual cable based network is majorly
controlled by cables required for connection. The cost can
be reduced if the length of cable can be reduced. The
paper describes, methodology to compute steiner point.
Using steiner point it is possible to modify the position of
vertices, so as to reduce the cable length, keeping the
vertex connectivity intact. The study describes
implementation of steiner point on graph with number of
vertices-3,4,5,6, etc. The presented work can be applied
for graph with any number of vertices. It is optimization
approach to reduce the cable size and cost of
implementation of network.

INTRODUCTION

What is graph? A Graph G = (V, E) is a structure
consisting of set of vertices V = {v1, v2, v3, v5} and set of
edges E = {e1, e2, e3, e4, e5, e6, e7} where each edge
connect a pair of vertices (Fig. 1).

In Fig. 1, we have V = {v1, v2, v3, v5} and E = {e1, e2,
e3, e4, e5, e6, e7}. Edge e1 connects vertices v1 and v2.
Vertices v1 and v2 are adjacent to each other as they are
connected by a same edge.  There are 2 types of graph:

Undirected: An undirected graph is a graph in which
edges have no orientation. The edge (x, y) is identical to
the edge (y, x), i.e., they are not ordered pairs but sets {x,
y} (or 2-multisets) of vertices.

Directed: A directed graph or digraph is a graph in which
edges have orientations. An arrow (x, y) is considered to 

Fig. 1: Vertices of connected

be directed from x-y; y is called the head and x is called
the tail of the arrow; y is said to be a direct successor of x
and x is said to be a direct predecessor of y.

Graph as a data structure: In computer science, a graph
is an abstract data type that is meant to implement the
undirected graph and directed graph concepts from
mathematics. A graph data structure consists of a finite
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(and possibly mutable) set of vertices or nodes or points,
together with a set of unordered pairs of these vertices for
an undirected graph or a set of ordered pairs for a directed
graph. These pairs are known as edges, arcs or lines for an
undirected graph and as arrows, directed edges, directed
arcs or directed lines for a directed graph. The vertices
may be part of the graph structure or may be external
entities represented by integer indices or references. A
graph data structure may also associate to each edge some
edge value such as a symbolic label or a numeric attribute
(cost, capacity, length, etc.). Many operations can be
performed on graphs like adding an edge, removing a
vertex, checking if 2 vertices are adjacent, etc.

Graph memory representation: There are 2 popular
ways to represent graphs.

Adjacency matrix: For a simple graph with vertex set V,
the adjacency matrix is a square |V|×|V| matrix A such
that its element Aij is one when there is an edge from
vertex i to vertex j and zero when there is no edge. The
diagonal elements of the matrix are all zero, since edges
from a vertex to itself (loops) are not allowed in simple
graphs.

Some graphs can be weighted i.e., they have cost
associated with each edge. The cost can be anything
depending on the problem and approach user is applying.
These graphs are represented by a cost matrix which is
similar to adjacency matrix but instead of 0’s and 1’s, it
stores the respective cost of that connection.

Adjacency list: An adjacency list representation for a
graph associates each vertex in the graph with the
collection of its neighbouring vertices or edges. Cormen
et al. suggest an implementation in which the vertices are
represented by index numbers. Their representation uses
an array indexed by vertex number, in which the array cell
for each vertex points to a singly linked list of the
neighbouring vertices of that vertex. In this
representation, the nodes of the singly linked list may be
interpreted as edge objects; however, they do not store the
full information about each edge (they only store one of
the two endpoints of the edge) and in undirected graphs
there will be two different linked list nodes for each edge
(one within the lists for each of the two endpoints of the
edge).

Graph applications[1-3]: Graphs are used to model many
situations of reality and tasks on graphs model multiple
real problems that often need to be resolved. We will give
just a few examples:

Map of a city can be modelled by a weighted oriented
graph. On each street, edge is compared with a length,
corresponding to the length of the street and direction the

direction of movement. If the street is a two-way, it can be
compared to two edges in both directions. At each
intersection there is a node. In such a model there are
natural tasks such as searching for the shortest path
between two intersections, checking whether there is a
road between two intersections, checking for a loop (if we
can turn and go back to the starting position) searching 
for  a  path  with  a  minimum  number  of turns, etc.

Computer network can be modelled by an undirected
graph, whose vertices correspond to the computers in the
network and the edges correspond to the communication
channels between the computers. To the edges different
numbers can be compared such as channel capacity or
speed of the exchange, etc. Typical tasks for such models
of a network are checking for connectivity between two
computers, checking for double-connectivity between two
points (existence of double-secured channel which
remains active after the failure of any computer), finding
a Minimal Spanning Tree (MST), etc. In particular, the
Internet can be modelled as a graph, in which are solved
problems for routing packets which are modelled as
classical graph problems.

NETWORK REPRESENTATION
USING GRAPHS

A network is an arrangement of intersecting lines or
a group or system of interconnected people or things[1, 2].

C A system of computers connected by communications
lines(cables)

C A group of connected radio or television stations
C A network of roads, etc.

Representing a problem as a graph can make a
problem much simpler. More accurately, converting a
network into graph can provide the appropriate tools for
solving the problem. There are two components to a graph
(G = (V, E)): Nodes and edges.

In graph-like problems, these components have
natural correspondences to problem elements.  Entities are
nodes and interactions between entities are edges and the
property for which the problem is considered, is taken as
the cost of the edges (e.g., distance, traffic, etc.) (Fig. 2).

It is common to identify vertices not by name (such
as “Audrey,” “Boston” or “sweater”) but instead by a
number. That is we typically number the |V| |V| |V|
vertical bar, V, vertical bar vertices from 0-|V|-1 |V|-1
|V|-1vertical bar, V, vertical bar, minus, 1. Here’s the
social network graph with its 10 vertices identified by
numbers rather than names (Fig. 3 and 4):

Cost benefit analysis of network[3, 4]: The aim of a cost
benefit  analysis  is  to  come  up  with  a  solution with an
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Fig. 2(a, b): Natural correspondences 

Fig. 3: Social network

optimum cost. A network may consist of various
parameters. The parameter to be optimised, can be
considered as the cost for the edges of the graph (for that
network).

Considering a network of five locations with the
referenced parameter as the distance of travel from one
node to another. The graphical structure for it will be like 

Fig. 4(a, b): Example of social network

Fig. 5(a-c): Network of five locations

(Fig. 5):  For this network, if we want to find the optimum
distance of travel from node 1-2, we need to perform a
cost benefit analysis for this network. Considering
different possible paths:

C 1->2: total cost = 15
C 1->0->2: total cost = 2+3 = 5
C 1->3-> 4->2: total cost = 2+9+13 = 24

Clearly, the optimum path would be (b). If we can by
some means, find another path with a lesser cost than that
of (b), that path would then be the optimum path.

Cable length estimation method: One of the important
networks is the Cable Network and reducing the length of
the cables for the network is a matter of concern when
they span across large areas. Consider that 4 buildings are
to be connected together through cables. Taking distance
(in kms) between buildings as cost for the edges, it can be
represented as (Fig. 6): total cable length will simply be
the sum of all the edges. For e.g., Cost in this graph =
8+8+6+6+10+10 = 48 km. Similarly, there can be other
possible combinations of the edges and the cable length
can be computed accordingly (Fig. 7).
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Fig. 7(a-c): Combinations of edges

Fig. 8(a, b): Example of graph minimization

Fig. 9: Steiner points

Need for graph minimization: Suppose there are 4 cities
A, B, C and D as in Fig. 8. The total cost of this graph is
250 km. Now the minimum distance between these cities
can be found if we remove the edge with maximum cost
(Fig. 9). The total cost is now 150 km which is still high.
For 4 cities, these numbers seem very less but when we
take a bigger real life problem of 50 cities over few
hundred kilometres, then it is very important to minimise
the distances to save resources.

STEINER POINT DEFINITION

An additional point that reduces the length of the
spanning tree is called a steiner point. The resulting tree
is called a steiner tree. A minimal steiner tree minimizes
total edge length. The minimum steiner tree is the best
possible steiner tree. A steiner point cannot be an
endpoint, else we could simply delete it and its associated
edge, reducing the length of the spanning tree. By the
triangular inequality, a steiner point cannot have degree
two. For Fig. 6, there will be 2 steiner points S1 and S2
and joining them with edges will generate a steiner tree
(Fig. 8). Any steiner point has 3 properties:

C Each steiner point has 3 edges and each angle is 120° 
C The no. of steiner point in tree is 2 less than the total

no. of vertices
C The total no. of edges in a steiner tree is 1 less than

total no. of vertices summed with total no. of steiner
points

Method to compute steiner point: Different figures have
different properties and methods to calculate steiner point.
We will check each one independently. There are 3
methods to compute a steiner point of triangle.

Torricelli method: For a triangle with vertices V1,V2 and
V3, construct an equilateral triangle from each edge of
triangle V1-V3. Then construct 3 circles circumscribing
each equilateral triangle. The point of intersection of these
circles is the steiner point of that triangle.

Simpson method: For a triangle with vertices V1,V2 and
V3, construct an equilateral triangle from each edge of
triangle V1V2V3. Then join the vertex of equilateral
triangle not in V1V2V3 to opposite vertex. The point of
intersection of these lines is the steiner point of that
triangle.

Point algorithm: This is combination of Torricelli and
Simpson methods. In this method, we select any one edge
of that triangle and draw equilateral triangle from
connecting vertices. Then draw circle circumscribing the
equilateral triangle. Also connect the vertex of equilateral
triangle not in original triangle to opposite vertex. The
point of intersection of this line and circle is steiner point.

For calculating the steiner point of rectangle, we need
to take a point on mid-point on the smaller edge. Connect
it to the mid-point of opposite edge. Then by using
property of steiner point that it needs to have angle 120,
we can calculate exactly at what angle will the vertices
intersect that; line. These intersection points will be
steiner points for that rectangle. Pentagon and hexagon
can be resolved by visualising it as a combination of
triangle (s) and rectangle.
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Algorithm 1:
algo steiner() {

// Input the shape(triangle, rectangle, pentagon, hexagon) for which
steiner points are to be computed

if (shape = = triangle)
   call triangle_func(); //for finding steiner point of a triangle
else I f(shape = = rectangle)
   call rectangle_func(); //for finding steiner point of a rectangle
else if (shape = = pentagon)
   call pentagon_func(); //for finding steiner point of a pentagon
else if (shape = = hexagon)
   call hexagon_func(); //for finding steiner point of a hexagon
else
    print “wrong input”
 }

function triangle_func() {

          // Input the three vertices of the triangle from the user .Let them
be P1, P2 & P3
            ST1 = create_triangle_point(P1, P2, P3)
      // To calculate the steiner point
             // ST1 is the steiner point of the triangle,
      returned by the function
                   print ST1
            // Draw appropriate GUI to illustrate all the vertices (including
the steiner point) and their edges
}

function rectangle_func() {

       // Input the four vertices of the rectangle from the user. Let them be
P1, P2, P3 & P4
             ST1, ST2 =
create_rectangle_steiner(P1, P2, P3, P4)
      // To calculate the steiner points
      // ST1 and ST2 are the steiner points of the rectangle, returned by the
function
                print ST1, ST2
       // Draw appropriate GUI to illustrate all the vertices (including the
steiner points) and their edges
}
function pentagon_func() {

        // Input all the five vertices of the pentagon from the user. Let them
be P1, P2, P3, P4 & P5
       // The vertices of the pentagon is divided into two parts: a rectangle
and a triangle
           ST1 = create_triangle_point(P2,P4,P3)
       // For calculating steiner point of the triangle part
           ST2,ST3 = create_rectangle_steiner(P1, P5, P4, P2)
      // For calculating steiner point of the rectangle part.
    // ST1 is the steiner point of the triangle part (P2, P4, P3) of the
pentagon
  // ST2 and ST3 are the steiner points of the rectangle part (P1, P5, P4,
P2) of the pentagon
         print ST1, ST2, ST3
     // Draw appropriate GUI to illustrate all the vertices (including the
steiner points) and their edges
}

function hexagon_func() {

      // Input all the six vertices of the hexagon from the user. Let them be
P1, P2, P3, P4, P5 & P6

      // The vertices of the hexagon is divided into three parts: a rectangle,
a lower triangle and an //upper triangle
        ST1 = create_triangle_point(P1,P3,P2); //upper triangle
        ST2, ST3 = create_rectangle_steiner(P6,P4,P3,P1)
    //middle rectangle
        ST4 = create_triangle_point(P6,P4,P5)
    //lower triangle
    // ST1 is the steiner point of the upper triangle part(P1, P3, P2) of the
hexagon
  // ST2 and ST3 are the steiner points of the rectangle part (P6, P4, P3,
P1) of the hexagon
    // ST4 is the steiner point of the lower triangle part(P6,P4,P5) of the
hexagon
          print ST1, ST2, ST3, ST4
   // draw appropriate GUI to illustrate all the vertices (including the
steiner points) and their edges
}

function create_triangle_point(P2,P4,P3){

     //Consider T1 to be the triangle created using P2, P4 & P3 
   //Property of a Steiner Point-None of the interior angles of the triangle
should be greater than //120° or else it will the minimum distance
condition itself and no steiner point will be needed
    //Calculate all the angles of the triangle. If any angle is greater than
120°, print “error” and exit ! 
   // Let P2[0] be the x-coordinate and P2[1] be the y-coordinate of the
Point P2. Similarly for other points
  //Applying formula to compute the third point of the equilateral triangle
its two vertices as P2 and P4 (on the opposite side to that of P3)
          x = cos60*(P4[0]-P2[0])-sin60*(P4[1]-P2[1]))+P2[0] 
       if (P3[1] > P2[1] )
         y = -sin60*(P4[0]-P2[0])-cos60*(P4[1]-P2[1]))+P2[1]
       else
        y = sin60*(P4[0]-P2[0])-cos60*(P4[1]-P2[1]))+P2[1]

   // Let P7 be the point with x and y as co-ordinates and T2 be the
equilateral triangle formed by //points(P2, P4, P7)
   // Calculate Centroid of the triangle T2. Then do the fllowing:
      S1 = Segment formed by (Centroid and P7)
    r = Length (S1)
   // Form a Circle C1 with center as (Centroid)  and radius as r . Then do
the following:
     S2 = Segment formed by (P3 and P7)
   a1= Intersection of C1 and S1
 // a1 will be a 2×2 float array as their will be two points of
intersection(Out of the two, one will //be the vertex P7 which we have
to ignore. Choose the other point .This point is the steiner //point of the
triangle (P2, P4, P3)

          x = a1[0,0]; // x-coordinate of the intersection
         y = a1[0,1]; // y-coordinate of the intersection
     P8 = Point(x, y)
   // P8 is the steiner point and is returned
  return p8
}

function create_rectangle_steiner (P1, P2, P3, P4) {

   // consider lengths of all segments  and choose the larger one as length
‘l’ 
  k = (P3[1]+P1[1])/2; // to find mid-point of the breadth of the rectangle
    // using a property of steiner points to compute them. The property is
that a steiner point can //be maximum connected to three vertices and it
subtends an angle of 120 degrees from each //of them.
          x = (k-p1[1])/math. tan (60)
          SP1 = Point(p1[0]+x, k); //steiner point-1
          SP2 = Point(p2[0]-x, k); //steiner point-2
    // return the steiner points of the rectangle
       return SP1, SP2
 }
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Fig. 10(a-c): Steiner points of triangular

Fig. 11(a-c): Steiner points of rectangular geometry

Examples;  Ex1: Suppose there are 3 towers arranged in
triangular geometry. All 3 towers need to be connected to
each other for proper communication. Figure 10a shows
the connections, Fig. 10b shows its MST and Fig. 10c
shows its steiner tree representation. The total length of
wire used in minimum in case of steiner tree. 

Total  length  of  Fig.  10a  is  12,  Fig.  10b is 8 and
Fig. 10c is 6.928. As the figure as only 3 vertices
therefore no. of steiner points will be 1.

Ex2: Suppose there are 4 towers arranged in rectangular
geometry. All 4 towers need to be connected to each other
for proper communication. Figure 11a shows the
connections, Fig. 11b shows its MST and Fig. 11c shows
its steiner tree representation. The total length of wire
used in minimum in case of steiner tree. As this is a
rectangle, it will have 2 steiner points.

Total path length of 11a is 13, 10.2 is 10 and 10.3 is
11b. Similarly for pentagon and hexagon, the following
figures depicts steiner points (Fig. 12).

Fig. 12(a-d): Steiner points of pentagon and enagon

Fig. 13: A possible combination of estimation

Cable length estimation without steiner Point[5]:
Considering a network of 4 cities to be connected through
cables. Our aim will be to connect all cities such that the
total cable length is minimized. Distances are in kms. If
every node is connected to each other (Fig. 13).

Total cost (length) = 8+8+6+6+10+10 = 48 km.
Taking other possible combinations of the edges and the
cable length can be computed accordingly. For (Fig. 14a),
Total cost = 6+8+10 = 24 km. For (Fig. 14b), Total cost =
6+8+8+6 = 28 km. For (Fig. 14c), i.e., For Minimum Cost
Spanning Tree, Total cost = 6+8+6 = 20 km. Thus, we get
the shortest cable length = 20 km through connection like
Fig. 14c. Even if we consider a node in the center as
shown in Fig. 14: Total cost = 5+5+5+5 = 20 km. Thus,
the minimum cost (length of cable) got up till now is 20
km.

Cable length estimation with steiner point: Considering
the same above problem, we will now show the result of
solving the problem using steiner points (using our
algorithm). Calculating with our algorithm (here, taking
upto 4 decimal points) (Fig. 15).

C dist(s1-s2) = 4.5359 km.
C dist(s1-1) = dist (s1-3) = dist (s2-2) = dist (s2-4) =

3.4641 km

Now, total cost (cable length) = 3.4641*4+4.5359 =
18.3923  km (lesser  than  all  previous  results).  Thus, we 
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Fig. 15: Estimation with steiner points

see that by using steiner points, we got an optimum
solution to our problem. This difference (20-18.2923 =
1.6077 km) is significant. If cost of cable is taken as
Rs.3/m, then this would imply a cost reduction of
3*1.6077*1000 = Rs.4823.1. Also, it would imply
reduction in attenuation[6, 7].

CONCLUSION

Steiner points are useful to find out the optimum path
for any network. They can provide a significant benefit in
cost. Be it the cable length problem or any such network,
steiner points prove to be useful.

The significance of the result increases when the
range of distance (or cost) increases, i.e., it may not
significant for distances of a few kilometers but it will
offer a significant difference for larger distances or ranges.
Also, the significance increases with the number of nodes
of the network considered. Using our algorithm, steiner
points for networks of shape-triangle, rectangle, pentagon 
(a triangle  and  a  rectangle  part) and  hexagon (2 triangle
and a rectangle part) can be calculated effectively. The
logic may be extended further to provide solutions for a
larger number of nodes (with proper considerations).
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