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Abstract: A novel and global strategy involving fuzzy logic 1s presented and validated for an industrial wood
dryer. The approach suggested is based on fuzzy similarities. Initially, the system requires an offline preparation
where the fault origing and type are identified and using similarity conditions and TF-THEN diagnosis rules are

designed. Finally, on-line the malfunction 15 detected and diagnosis.

efficiency of 98%.

The fault detection scheme has an
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INTRODUCTION

The terms fault, failure and malfunction have many
connotations in the literature as well as in general usage!'l.
We will use the words fault and malfunction in relation to
equipment as synonyms to designate the departure from
an acceptable rage of an observed variables or calculated
parameters associated with the equipment. Ulerich®®
reported the first attempt to perform fault diagnosis on the
basis of fault trees. Different approaches for fault
detection, diagnosis and isolation by mathematical
models were developed in the last 20 years™. Recently,
the application of the fuzzy logic to industrial level has
been incorporated; although no formal methods to
identify the fuzzy inference rules exist. Terptral” used an
mmplicit fuzzy model {(a fuzzy rule base) to analyse
quantitative statements of the differences between the
actual values and those predicted by quantitative
models of the behaviour of the system with and without
faults. Schneider (Schneider, 1994) and Sauter!” describe
similar observer based fault detection schemes in which
fuzzy rtules adapt the threshold for evaluating the
residuals according to the current operating conditions.
Ulieru™ identifies faults using a fuzzy inter-relational
diagnostic model which 1s comstructed from fuzzy
relations based on expert opimion that symptoms to faults.
Incorporated a systematic fault diagnosis process using
fuzzy diagnosis. The method consisted in studying the
occurrence order of observable symptoms caused
occurrence by fault origin is derived accordingly and
then encoded mto a set of IF-THEN diagnosis rules.
Isermann'™ explained as a fuzzy logic appreach can be
applied to fault diagnosis with approximate reasoning on

observed symptom. The possibility of each fault given the
detected symptoms 1s calculated and the diagnosis is
based on fuzzy pattern recogmition. Fault detection and
diagnosis essentially are tasks of pattern recognition'.
Sensor (and other) data, which contain no readily
discernable message, can be transformed via pattern
recognition mto clear-cut information useful for decision-
making. Since artificial ntelligent classify data effectively,
1t would seem that an artificial neural network or fuzzy
logic would be an appropriate tool to try for fault
diagnosis in process plants. On line fault detection and
diagnosis are particularly desirable. Incipient fault
detection, 1.e, detection at the earliest possible stage, 1s
the desired goal. In the face of mcreasing complexity and
automation plants, achieving this objective requires
effective, economical techmques. In this article the
following specific objectives will be covered:

»  Development a fault diagnosis strategy based on
fuzzy similarities

»  Test the new method using a wood dryer

¢ Tdentify the type of fault and establish the
association of fuzzy similarities

Similarity in fuzzy set theory: Similarity is perhaps the
most frequently used, most difficult to quantify and the
most universally employed type of compatibility measure.
The most common definitions “the similarity of two
simple qualities may consist in the slightness of the
difference that exists between them”. A fuzzy measure of
similarity 1s used to calculate the belief that the fault
condition associated with each of the reference models
has occurred m the real plant. Similarity indices measure
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the simil arity between two fuzzy sets and require a greater
degree of agreement. For crisp sets, sets X and ¥ are
deemed completely similar if and only if their symmetric
difference is the empty set. That is, if the sets are
identical. Complete dissimilarity occurs when the
symmetric difference is the union of ¥ and ¥,

The equality of two fuzzy seis A and B can be
asgessed by calculating the degree to which A = B and B
< APl One measure of the grade of equality or similarity
Sim gz of A and B is given by
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where p, iz the membership function for fuzzy set A,
Uy i the membership function for fuzzy set B, a is the
fuzzy inclusion operator:
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and & is the number of elements defined on the discrete
universe of discourse. The similarity measure can be
simplified when the fuzzy sets are generated from measure
data, since exact equality p,(i) = pg(i) is unlikely with
occur in practice. In this case,
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This disagreement is necessary for a similarity
measure to produce values throughout the range!'. We
start the discussion with the creation of cluster by
assuming that knowing from experimental measurements
whether a process is either operating satisfactory or not
and if not, what causes the faulty performance. The
classification of the state of the process according to
similarities requires quantitative definitions. Tversky®!
noted that “most theoretical and empirical analyses of
similarity assume that objects can be adequately
represented as points in some coordinate space and the
dissimilarity behaves like a distance function”. For fuzzy
gets, the distance is not between points but rather
between membership functions as depict the Eq. (3). The
points from states of the process in the same category, as
for example “normal operation™ will tend to cluster in the
game region of this space. For example if there are two
measurements x, and x, clusters az shown in the Fig. 1
might appear.
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Fig. 1: Wood dryer

A set of measurements of n variables from the
process can be though of as a point in n-dimensional
space®’ and™. While a clear-cut division into well-
defined crisp groups is called a partifion, groups with
uncertain boundaries in a fuzzy division are denoted
clusters. Fuzzy clustering is a technique used to group a
set of data into clusters such that elements within the
same cluster have a high degree of similarity, while
elements belonging to different clusters have a high
degree of dissimilarity. A variety of fuzzy clustering
methods have been proposed The application of any
fuzzy clustering method requires:

Training set of measured data samples
Choice of how many clusters to employ
Method to compute cluster centers
Criterion to evaluate the fuzzy model

In this article, we will describe a modification of Fuzzy
C-Means (FCM) method. This is an iterative method
introduced by Bezdek! . The algorithm is as follow:

Select the number of faults as an initial partition

matrix U®
My o
=0 _ oy U o
u'cl u'c2 u'cn

I; is a membership value of sample point k in cluster i

The similarity is measured using the equation (3)
D UMIN[p, ),z ()]
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In this case, the set A represents the fault used as
references based on the operator experience and B
represents the real fault in the equiptment in a particular
time
*  Compute the cluster centers per fault
(t)vft) :_[Vi(lt) Vf;) "'Vi(:n)] for 1=1, 2, ..., ¢, using the
expression:
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7 denotes the j-th coordinate of the m-dimensional points
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¢+  Compute the distances from each element in the set

to each cluster center, using
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for all clusters 1=1, 2, ..., ¢ and points k=1, 2, ... n.

Update the membership value of each data point. The
updated values y, of element & m cluster i are
computed by the formula:

sz(w—n

The special form of this formula ensures that the sum
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of membership values of an element over all clusters
equals unity. In case some distance 4 in the denominator
is zero (or extremely small in a computational sense), take
M](}t:l) (for j#1) and T (for j=1). Such a case corresponds
to element x, coinciding with the cluster center . The
partition matrix " is then re-computed with these
updated membership values as:
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¢+ The iterative process stops when it has converged

under some selected norm; otherwise, a new iteration
18 performed (set £=f+1 and return to step 2).
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The norm employed for checking convergence might be:

®
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where € is a predefined accuracy level, say 1.0

In practice, some of the fault conditions may have
common symptoms at some operating points then
reference models were created using the experience of
the operators. Thus each reference model is associated
The
measure of belief (bel) in the system being in one or

with a measure for avoid ambiguous situations.

more operating states is the sum of the basic assignments
for all subsets of that combmation of operating states.
The plausibility (Plau) of the system being in one or more
operating states 1s equal to one minus the sum of all the
belief committed to the system being in any of the other
operating states. The fuzzy fault model is made up from
IF THEN rules, which describe the symptoms of faulty
and fault-free operation in terms of predefined fuzzy
reference sets. A particular model is defined by specifying
the wvalues of the elements of its associated fuzzy
relational array. Each element of the array 1s a measure of
the credibility or confidence that the associated rule
correctly describes the behaviour of the system around a
particular operating point. The models can be based on
expert knowledge or learmmed offline from training data
produced by computer simulation of typical plant, with
and without the faults.

RESULTS

The strategy mentioned earlier was tested in the
wood dryer as illustrate the Fig. 2. The experimental
equipment works between 82.5°C and 93°C, depending on
the drying schedule and the species of wood. The
ventilating fans inside are installed between the trusses
and are aluminium buwlt. The heating system works with
hot water to 96°C and the tubes are made of stainless
steel. The flow of the heating system 1s controlled by
modulating valves with a signal 4-20 mA coming from
control system. A psychrometer with a thin PT100
(diameter 2.2 mm) was installed. The instrument was
calibrated before the test period both for temperature and
humidity measurements. The test consisted of continuous
temperature and relative humidity measurement in the
wood dryer for 2 months.

For to obtain a good system in a real-world
environment is important to consider the following

aspects!'™:
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Warning limit

Dangerous operation

x2

Fig. 2: Range of acceptable performance

Table 1: Fault modes in the dryer

Number of faults in

No. Failure mode two months
1 Control valve for air not fully open 25

2 One fan stopped 20

3 Control valve for gas not fully open 14

4 psy chrometer cannot read the information 3

5 Two fans stopped 9

6 Outlet air relative humidity 1ow 8

7 Outlet air relative humidity high 4

8 PT 100 element fault 15

9 Leakage in gas valve 11

Table 2: Membership of fault

Fault  Segments ug [\ Primary fuzzy sets
1 [-1.0, 0.2] -0.8 0.3 LOW
[0.2, 0.6] 0.05 0.3 ZERO
[0.4, 1.0] 0.5 0.2 HIGH
2 [-1.0, 0.2] -0.77 0.32 LOW
[0.2, 0.6] 0.1 0.28 ZERO
[0.4, 1.0] 0.55 0.21 HIGH
3 [-1.0, 0.2] -0.77 0.33 LOW
[0.2, 0.6] 0.05 0.33 ZERO
[0.4, 1.0] 0.43 0.31 HIGH
4 [-1.0, 0.0] -0.4 0.2 LOW
[-0.2, 0.7] 0.5 0.2 ZERO
[0.2, 1.0] 0.6 0.2 HIGH
5 [-1.0, 0.1] -0.8 0.3 LOW
[0.2, 0.7] 0.2 0.2 ZERO
[0.4, 1.0] 0.5 0.2 HIGH
6 [-1.0, 0.2] -0.8 0.3 LOW
[0.2, 0.6] 0.05 0.3 ZERO
[0.4, 1.0] 0.5 0.2 HIGH
7 [-1.0, 0.1] -0.3 0.3 LOW
[0.1, 0.5] 0.4 0.4 ZERO
[0.5, 1.0] 0.8 0.2 HIGH
8 [-1.0, 0.3] -0.8 0.3 LOW
[0.1, 0.6] 0.2 0.2 ZERO
[0.3, 1.0] 0.5 0.2 HIGH
9 [-1.0, 0.3] -0.8 0.3 LOW
[0.2, 0.6] 0.05 0.2 ZERO
[0.3,1.0] 0.5 0.2 HIGH

The user should define distinctive rule-bases for
different situations during workdays. These rule-
bases are processed independent of each other
corresponding to the current situation. The task of
the user 1s to inform the system about the current
situation. Besides, the user should be able to instruct
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the system not to adapt the current rule base. This

enables a single modification of the current
temperature without modifymng the rule-base
permeanently.

The rule-base must consist of a suitable number of
rules. It can be shown that if the number of rules isn’t
restricted, in the case that the rule base consists of to
few rules, the system has convergence problems.

Tt is clearly not possible here to catalog all type of
faults and their expect occurrences. Deviations from
process operating specifications can be categorized in
terms of the particular deviations. The Table 1 shows the
type of faults considered in this article. Unfortunately,
there 1s not an extensive data bank of information on the
types of faults; the Table 1 1s a product of our own
research and the collaboration of the wood dryer
operators.

In the dryer the mnput variables are: Airflow, internal
fan velocity, gas flow and the output variables are: air
temperature, absolute humidity, water temperature. The
range of input and output variables are covered by a fuzzy
set of 3 functions T.ow,Zero,High.

The Tf-THEN rules, which describe symptoms of
correct operations, are:

IF airflow 1s low THEN humadity 1s high (credibilaty 1.0)
IF airflow 1s high THEN humaidity 1s low (credibilaty 1.0)
IF airflow 1s zero THEN humidity 1s zero (credibility 1.0)
IF gas flow 1s low THEN water temperature 1s low
{credibility 1.0)

IF gas flow is high THEN water temperature is high
{credibility 1.0)

IF gas flow is zero THEN water temperature is zero
(credibility 1.0)

IF gas flow is low AND airflow is high THEN air
temperature is low (credibility 1.0)

IF gas flow 1s high AND auflow is low THEN air
temperature 13 high (credibility 1.0)

IF internal fan velocity 1s low THEN humidity 1s high
{credibility 1.0)

IF internal fan velocity is zero THEN humidity 1s zero
{credibility 1.0)

IF internal fan velocity is high THEN humidity is high
(credibility 1.0)

And the symptoms of faulty operation are described by:
IF airflow is low THEN air temperature is high (credibility

0.5)
IF airflow 1s high THEN humaidity 1s low (credibility 0.5)
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Table 3: Similarity of measured fault as for to the detected fault for the fault
monitor
Measured
/detected 1 2 3 4 5 6 7 8 9
0.997 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000
0.005 0.991 0.000 0.005 0.002 0.001 0.002 0.002 0.002
0.008 0.000 0.998 0.000 0.000 0.000 0.001 0.002 0.001
0.006 0.000 0.002 0.990 0.000 0.000 0.000 0.001 0.001
0.000 0.001 0.003 0.002 0.999 0.000 0.002 0.002 0.002
0.001 0.000 0.000 0.005 0.000 0.992 0.000 0.002 0.003
0.001 0.000 0.000 0.000 0.000 0.002 0.995 0.995 0.996
0.001 0.001 0.000 0.000 0.000 0.002 0.996 0.99 0.997
0.001 0.000 0.000 0.001 0.001 0.001 0.995 0.995 0.996

—
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Table 4: Results in operating conditions
Fault number

Cluster 1 2 3 4 ] 6 7 8 9
Acceptable performance

Mean 045 055 055 050 060 0.66 052 054 0.61
Standard 0.02 003 001 008 002 002 004 001 003

deviation

Abnormal performance

Mean -04 -03 -06 10 072 078 087 081 0.69
Standard 002 002 004 009 007 009 006 007 0.04
deviation

The 1mtial partition of matrix U is the Table 2. The
partition of the continuous universe requires a priori
knowledge of the mput/output space. In the Table 2 a
functional definition expresses the membership function
mn a triangle shaped function. The functional defimtion
can readily be adapted to a change in the universe. The
functional defimtion was expressed as

" = eXp{—(x-ufz} @)

In the design of fault detection system, the noise
uses to generate false alarms, for avoid it, anti-noise filter
was 1nstalled m the pilot plat, however the noise uses
to be very low. The Table 3 resumes the degree of
accuracy of the method. This table depicts as the detected
fault and measured fault are compared. The faults were
produced for the operator, thus that the type of fault
was known previously. The response of the system was
compared with the real-data and the result 1s depicted in
the Table 3. This table shows as the degree of accuracy of
the system, when the value 13 close to 1.0 (see equation
8), the fault was detected. In this work the data collected
to establish the faults 1s not shown for it 1s too
voluminous but Table 4 list the mean (membership
function value) and variance () for each fault (assuming
the distributions were uncorrelated and Gaussian). The
Tables 3 and 4 confirm that the symptoms of fault are
distinguishable from those of correct behaviour at many
operating pomts and over the restricted operating range
when the fault is present, only the fault type 2 could

there be any possible question about the classification.
As mentioned earlier, all faults were evaluated and
combinations of them were considered as well. The
detector worked well, all faults were detected and the
system does not confuse symptoms with faults, see
Table 4. Traditionally, the operator has to locate the fault
by lumself, thus the provision of the fault detector allows
detecting the malfunction and reduce the downtime
without incurring any additional costs except computer
costs.

CONCLUSION

The artificial intelligent exhibits a number of
features that make them attractive for control, fault
detection and diagnosis in complex systems. With fuzzy
logic, we can make the correct associations between
system faults and vectors of measurements. Moreover, it
can accommodate 1its diagnosis to the noise and
uncertainly that exist in all process measurements. The
methodology proposed in this work was applied to a
wood dryer. It 18 rapid and accurate. The scheme 1s
computationally efficient and the results have depicted
that the scheme can successfully diagnoses correct
operation in a dryer. The descriptions provided in this
article including enough details for possible used in other
type of equipments or other type of dryers.
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