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Abstract: As time progresses, more and more oil reservoirs reach maturity;, consequently, secondary and
tertiary methods of o1l recovery have become increasingly important m the petroleum mdustry. This reality has
mereased the mdustry’s interest in usmng simulation as a tool for reservoir evaluation and management to
minimize costs and increase efficiency. This study presents and compares several control methods in regards
to the well-known reservoir simulation task of history matching that is performed to calibrate simulators.
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INTRODUCTION

As we enter the new century, the petroleum industry
15 becoming increasingly dependent on secondary and
tertiary methods of cil recovery. This necessity has added
to the industry’s interest in using simulation as a tool for
reservoir evaluation and management to minimize costs
and mcrease efficiency. This study presents that
a combination of soft computing algorithms and cluster
computing techniques provides realistic hope for
obtaining accurate simulation results in a cost-effective
fashion. In particular, we show that parallelized genetic
algorithms can be used to perform reservoir production
history matching and obtam solutions efficiently.

An important step in calibrating a petroleumn reservoir
simulator (in our case MASTER, developed by the 11.S.
Department of Energy), is to perform history matching on
a particular reservoir, or field. History matching predicts
the production of a petroleum reservoir based on its past
history. Imtial calibration of the simulator 1s achieved by
matching smnulator predicted production curves
(consisting of the output of oil, gas, water in our
experiment) to the reservoir’s historical production (in our
problem a set of data spanning 1960-1991). This attempted
curve matching is named history matching. While
appearing simple, it 18 an extremely computationally
complex problem. For example dealing with only a small 8
production well section, which we wish to match, we must
deal with a search space of over 2'** different possible
solutions.

Part of the problem overhead is that fact that we must
mnclude 17 wells in the surrounding area for environmental
data and use a multi-layer grided cube consisting of
7 layers, 25 simplified grid regions, with each grid area
having over 32 parameters with real number ranges. This

is easily visible by using the single level map in Fig. 1 of
the well layout™.

This leads us to three problems. Firstly, we have an
enormous data space in which we must locate the best
solution, since by nature of the simulator and the data
tracked we may never reach an exact solution.

Secondly, we would never be able to solve the
problem using traditional methods (trail and error with
manual adjustment of parameters, usmg a smgle
computer) without exponentially increased computational
power. Therefore we must hunt for solutions smartly
through quick, parallelized searches-thus the ARIA
controller (described later) and usage of the cluster.

Thirdly there exists a need for the reduction or
elimmation of human intervention i the simulation
process. The need of a human simulation engineer to
manually perform history matching to calibrate a simulator
often becomes the most expensive part of the task
Minimizing the necessity for such intervention is thus of
high importance, in terms of both cost and efficiency.
This study address thuis by using a fuzzy/genetic
approach for a parameter control to obtamn a
history match

In dealing with these problems, we know that the size
of the problem will never be reduced. Tn fact it will only
increase with time, since more accurate simulation results
depend on finer grids. The other two obstacles, however,
can be overcome by implementing a controller for
automatic parameter adjustment to mimimize human
intervention and executing the integrated simulator-
controller on a cluster of computers.

This study describes our initial investigation pf
performing history matching for a reservoir m southern
New Mexico that was the site of a CO, injection project.
Promising preliminary results that show the potential of
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Fig. 1: Well map. The above image 1s a well map of the
area that was chosen to be used for simulation.
The interior 8 production wells [7, 8, 9,12, 14, 17,
18, 19] were the wells that were to be matched,
while the remaining wells were provided for
envirommental data

our approach are presented. In the following sections, we
describe the basics of the simulator and the lnstory match
model and several methods for parameter adjustment.

Reservoir and simulator background: To advance the
CO,-foam technology for improved o1l recovery, a pilot
area in EVGSATT (covering 7025 acres, in Lea County, New
Mexico) was selected in 1990 as a site for a foamn field trial
to comprehensively evaluate the use of foam for
mnproving the effectiveness of CO, imjection projects.
Specifically, the prime directive of the foam field trail was
to prove that a foam could be generated and that it could
ald in suppressing the rapid CO, breakthrough by
reducing the mobility of CO, in the reservoir. Operation
of the foam field trial began in 1991 and ended m 1993.
The response from the foam field trial was very positive,
it successfully demonstrated that a strong foam could be
formed 1n situ at reservor conditions and that the
diversion of CO, to previously bypassed zones/areas due
to foam resulted i increased o1l production and
dramatically decreased CO, production.

As part of the CO, project, the multi-component
pseudo-miscible simulator MASTER (Miscible Applied
Simulation Techniques for Energy Recovery), which was
developed by the U.S. Department of Energy, was
modified by incorporating a foam model and used to
conduct a history match study on the pilot area at
EVGSAU to understand the process mechamsms and
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sensitive parameters!'. The ultimate purpose was to

establish a foam predictive model for CO,-foam

processes™ .

Expert and fuzzy control: Our initial study of the problem
was done by a 200 case parameter value study so as to tell
the effects of differing parameters. This was extremely
complex in deciphering the results since increasing the
permeability in one location may have the opposite effect
as an increase in another location when both production
and injection wells (and their placement times) must be
taken mto account. To deal with the results and collate
the data an initial simple expert system proved to be ideal
in that the rapid prototyping and quick modification
ability allowed a controller to be built. This mitial expert
system also proved to be extremely beneficial as a basis
for the later fuzzy and genetic algorithm controllers.

Expert system: Our initial studies began with the creation
of a simple Expert System (ES) based controller, which
would later form the basis of several other controllers.
The rules of the ES controller were formulated empirically
from the initial parameter study. The ES was composed of
25 IF-THEN rule groups; one rule per well. These rules
used a combination of actual well error values (current
parameter set history vs. case) and predicted well error
values. Figure 2 For ease of use the error values were
divided into one of nine ranges that described the degree
of error within the match and type: below or above the
actual history. Each rule set was rune in sequence and the
resulting predicted set passed to the next rule to be used
as an actual set.

While the ES controller method proved mvaluable as
it allowed for rapid proto-typing and quick reduction of
error 1n the match, it was not without its faults. The
primary problem was the granularity induced by having
only 9 error ranges. Standardized parameter alteration
values, tended to cause oscillation as error ranges would
tend to bounce between two opposing sets (such as H to
L and T to H), in later runs Fig. 3. This was primarily due
to the fact that wells 8 and 12 tended to work inversely of
each other within the primary depletion period this led to
oscillation which tended to occur as the match on one
well would be mnproved, the other well’s match would
worsen. Despite this reductions in error by over 800% by
the fourth or fifth iteration of the ES were not uncommon.

If well error value for well 8 13 SH Slightly High and
well error value for well 12 18 SL Slightly Low then
decrease parameter 3 by 30. Change predicted set for well
8and 12 to K.

Fuzzy control: The granularity problem, along with the
fact that as we would need to later increase the number of



Intl J. Soft Comput., 1(3): 207-214, 2006

3000~
2500
2000
E 15001
Q
1000

5001

‘Well 12 oil history match

11

Ocilation

13
12
Real

¥ T L] T T T T 1 L] T T 1 1 T T T T T 1
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

Year

Fig. 2: The above is a partial IF-THEN rule for parameter 3, which is located at well 3 on the well map. The underlined

text denotes well error ranges
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Fig. 3: The above two graphs, are a the result, of a match on the primary depletion period, for wells 8 and 12 (left and
right, respectively). As can be seen, initial error of the match decreases rapidly, towards the case being matched

(actual historical data in this simulation)

parameters and mcreasing rule set size and complexity,
along with dealing with the secondary depletion period
required that we find a better control method than the ES.
As our next step we decided on a fuzzy logic based
control system. This system would allow us to go from a
twenty plus page rule sets, to a few simple tables, several
of which could be reduced to a few simple equations.

The Fuzzy Controller (FC) also proved beneficial in
that this system could be easily automated as it when
through the simulation cycle. It was this controller that
truly began dealing with the problem of reducing human
ntervention.
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The purpose of the fuzzy controller was to do the
parameter adjustment automatically and eliminate human
intervention. The benefits of fuzzy control n this
application are the ability to get around the problems of
complexity in formulating exact rules and to deal with
situations where there are multiple meta rules that may be
applicable under similar circumstances. For example,
expert opinion about permeability adjustment leads to the
development of three different meta-rules:

»  If both wells' outputs are too high, then choose those
blocks whose reduction in permeability leads to low
outputs.
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If wells' outputs are too low, then choose those
blocks whose increase in permeability leads to high
outputs.

If one well's output 1s too high and the other's 1s too
low, then choose those blocks whose alteration in
permeability leads to proportional, corrective shifts of
outputs.

Rules of the third type were the most difficult to
obtain, since many factors need to be considered before
a decision was made regarding which blocks' permeability
to merease and which blocks to decrease, thus the need
for developing the rules empirically. If it was not for the
ES that formed a basis for the fuzzy controller and the
mitial parameter study creating these rules would have
been impossible as some of the wells mnteractions where
highly complex.

The fuzzy controller consists of sections:

Fuzzification Module: Accepts condition/Input and

calculated membership grades to  express
measurement uncertainties.
* Fuzzy Inference Engine: Uses the fuzafied

measurements and the rules in the rule base to
evaluate the measurements.

Fuzzy Rule Base: contains the list of fuzzy rules.
Defuzzification Module: converts the conclusion
reached by the inference engine, mto a single real
number answer

The primary benefits of using fuzzy control 1s that it
1s easy to design and tune and it avoids the difficulty of
formulating exact rules for control actions. The fuzzy
controller's rules are empirically obtamed, based on a
parameter study in which a single well's permeability value
was altered while the rest of the 24 permeability values
were held constant. The fuzzy controller implemented for
permeability adjustment is of the simplest kind in that
percentage errors and control actions are fuzafied, but
only rarely will more than one rule fire®™". The control
action applied is thus usually only scaled by the
membership grade of the percentage error in the error
fuzzy set. The adaptive controller works as follows.
Fuzzification is accomplished by usage of
membership functions. After a simulation is run, an
error caleulation 1s made from the simulated and the
synthetic case or historical data based on a percent
error formula. This value is then used to determine
error values membership in each fuzzy set: {EL
Extremely Low, VL Very Low, L Low, SL Shghtly Low,
K within tolerance, SH Slightly High, H High, VH
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Very High, EH Extremely High}. The corresponding
fuzzy set values are -4, -3, -2, -1, 0, 1, 2, 3, 4,
respectively.

Inference begins once the membership grades are
calculated. Tt assigns the fuzzy set with the highest
membership value for each well. Tf an equilibrium
condition 1s reached between two sets, the set value
closest to K is chosen.

Rule Firing is our next step. Within the fuzzy rule
base there are 3 types of rules: I (increase production
rules), D (decrease production rules) and P (shift
production from one well to another). Based on the
fuzzy set assigned to each well, we can decide the
rule type that needs to be applied.. Based on the
fuzzy set value assigned to each well, we can
calculate the average set distance from K and decide
the change degree (firing strength) of a rule that
needs to be applied, that needs to be applied.

The final step 1s application of the control action. The
action taken depends on the chosen rule type and
the degree change needed. The parameters for the
next simulation run are now altered,

Many experiments have been conducted”. The fuzzy
controller's performance depends, naturally, on the
defimtion of fuzzy sets for error and the definition of the
fuzzy sets for control actions; therefore, the rule base
needs to be fine tuned for optimal performance. Since the
rules must be based on empirical observations, other
factors, such as scaling factors of the controller™, may
not be quite as critical. The basic idea of wing a fuzzy
controller for automatic parameter adjustment in listory
matching, however, has been validated by using a specific
controller with crisp control actions. In this case we were
able to obtain very good matches within 5 iterations for
the two wells over their primary production period of
18 years. Previously, with manual adjustment, such close
matches would easily take several weeks to a few months
to achieve.

Genetic algorithms: Imtial Genetic Algorithm (GA) trials
were run using differing crossover methods. These
studies proved mteresting in that hittle information was
needed in creating the GA system, but at the same time
proved to have a huge drawback. As simulation times
could range up to 45 min on even a 600MHz, creating
mitial populations and sinulating future generations,
became extremely costly providing a large negative to this
method. As a result n our study smaller populations for
initial testing were used, thus limiting the GA, as large
degrees of smmilarty occurred between population
members in succeeding generations.

This method also proved to be interesting as an mitial
study would not require large amounts of time to study
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Rule 1: Classifier 1:

Error Environment Error Calculations:
Match: Hiror for well
Error Well X=range N= Error

Actions: Parameter List:
Change Parameter N by X Parameter
Statistics: N=pN

Age, Uses, Accuracy
Fig. 4: ARIA example rule and classifier

the problem and adapt a GA to solve it. In contrast, while
results were promising, much fine-tuning based on
previously acquired knowledge was needed to take this
method to the next level.

In doing using multipoint crossover. Population
improvement tended toward only a 1-3% change in the
mitial few generations. In using standard crossover the
best results were found using a complete generational
replacement scheme with small random number of
crossover points for each new child.

Hybrid systems: a classifier system: In dealing with the
previous systems one obvious question is how could we
get a system to learn its own rules. The following hybrid
system 1s the result.

ARIA (Automatic Recombinant Input Approach)
uses a nonstandard Genetic Based Learning Machine
(GBML) to create a set of rules that may be used for atom
rule creation for control mn the history matching.

Examples of ARIA rules and classifier are given in
Fig. 4. Each rule consists of a set of atom like subsections.
For example n rule 1 below each line 1s an atom section
that we work with:

ARIA consists of rule populations that are tested
using actual application data and are tracked based on
their effectiveness, in altering a well parameter set. Tt uses
a standard genetic algorithm classifier messaging system.
The system consists of four parts:

Part one is the error reception part (environmental
mterface) in which a parameter set to be adjusted 1s
received.

Part two is the rule base of previously composed
rules.

Part three 1s a genetic algorithm with fuzzy control
section that creates new rules when a rule is not
available from the database.

The final part is the messaging system that tracks a
rule’s effectiveness, matches a rule to a parameter set
and takes relevant action.
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Fig. 6: The Figure demonstrates the bracketing curves for
the synthetic case (solid line)

The first part of the ARIA process just accepts
parameter simulation data and creates error estimates from
the actual historical production data creating the first part
of our environmental awareness. This error calculation is
done by using a Sum of Squared FErrors calculation
between the predicted output of each well and its
Once the SSE has been calculated for
each well, these 8 values become the environmental
pattern (classifier) which will be used in the messaging

historical values.

system for rule matching. Figure 6 1s an example of an
envirommnental classifier. It has two parts the Ermror
calculations and the list of parameters that belonged to
the simulation data.

These error values in the classifier are then matched
based on a set of fuzzy rules in the messaging system to
appropriate action rules. The fuzzy control in this section
is very basic and consists of simplistic rules that
determine 1f a rule exists within range, a tolerance factor
and rates each rule by its statistical information and then
determines which is the most appropriate rule. This is
done by attempting to find a rule whose Error
Environmental Match ranges for each well bracket the
classifiers error caleulations. Since there do exist 8 error
calculations the idea of a tolerance factor was introduced,
in which not all 8 error calculations must be inrange. This
calculation 1s done by using an averaging function to
calculate how out of range the error set 1s. If an adequate
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Fig. 7: Synthetic case match using the neural networlk

rule 1s found, it 1s then used and statistical success or
failure data of its use on the simulation parameters is
average together. On the other hand, if an appropriate
rule cannot be located the ARTA system involkes the
genetic fuzzy logic creation algonthm to create a new rule,
which 1s then used.

This method has shown some promise in application
and is merely an extension off of the previous worlk for the
MASTER WEB project in which fuzzy control was applied
resulting in convergence and error control within ten
generation and 200% error ranges, proving to be a very
quick and accurate system. Currently the system has
been runmng small munbers of iterations, as tests are
being run to determine the best imtial rule population.
Currently small numbers of changes, that rely on being
able to affect parameters within the lower third of their
value ranges, without causing parameters to go out side
of theiwr allowed values, have shown the most successful
ability to converge to a solution. They have been able to
come within a 30 to 70% error within approximately
15 iterations.

The size of the rule base has also been shown to
have a significant effect on the number of iterations, as
the larger the size the more likely an appropriate rule will
be found. Created rules have are extremely dependent on
the genetic algorithm used, as wells have complex
interactions.

This method had several benefits. For example, as we
started to deal with the secondary depletion period and
the ncreasingly complex well interactions, this system
could actually discover them. This provided surprising
knowledge and a system capable to adaptation, even if it
started with false premises.

Neural networks: Using a neural network for modeling
has produced interesting results. In this section we
present the results of two different networks. The first
section will display results obtaming permeability values
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using period T data with attempting to history match to a
synthetic case. In section 6.2 we present the results of a
second network that history matches using an increased
number of parameters (1.e. an addition 7 relative
permeability parameters in addition to the 25 permeability
parameters).

Synthetic case: The neural net method we chosen for the
problem takes a group of predicted oil production output
as training data. The data was acquired by running the
MASTER simulator with a set of ranged values so as to
cover the hypothetical case’s production output curve.
This resulted in a set of curves, which bracketed the
synthetic case in the first neural network and the actual
history in the second. It was necessary for the traming
data to cover the synthetic case history so to restrict the
range of the problems. The figure below shows a very
small set of cases that cover the history. The solid line in
1s the synthetic case history.

Once the network 1s well trained, we feed the network
with the historical data to get 25 permeability parameters
and 7 relative permeability parameters. We then feed these
parameters mto the MASTER simulator to check if these
parameters are acceptable and to create an estimate of the
errors for these parameters.

The network we built for this study is a three-layer
feed forward network, with 27 input units (historical data),
30 hidden units and 32 outputs (permeabilities). The
scaled conjugate gradient descent algorithm is used in
traimng. Figure 5 shows the comparisons between the
desired output and the output from a trained network. We
can see good matches between predicted value and
desired value except for one pair. This mismatch can
likely be attributed to the fact that certain permeability
values have little effect on the output lustory. (For
example during the first 20 years the 25th permeability
value causes less than a 1% change across its complete
value range.) Furthermore, Figure 7 above shows an
experimental result in using the neural networlk to match
the chosen hypothetical case, displaying a very close
match. Currently the training data and testing data are all
simulation results from MASTER sunulator. The next
section will demonstrate results obtained using real
historical data with an mereased number of parameters.

Extended synthetic case: The second network 1s a three-
layer feed forward network, with 40 input umts (hustorical
data), 20 hidden units and 32 outputs (7 relative
permeability parameters in addition to 25 permeability
parameters) which uses gradient decent with momentum
algorithm for faster training. In this network we use data
from periods I-TIT.
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Using the Mat lab Neural Network Toolbox, we
created a network and trained it on 624 pre-chosen cases
using the Gradient descent w/momentum and adaptive
linear back propagation method. We ran the training for
500 epochs, although the system tended to stabilize by
300 epochs.

The graph of the progress of the training can be seen
here below. After training, we plotted one data set used to
train the network against the output of the network. As
you can see in the graph in Fig. 8, the network seemed
unable to match the permeabilities accurately, but worked
rather well on the relative permeabilities. You will note that
all permeabilities are between 28 and 60. This is consistent
with Dr. Chang’s suggestion that 50 are a sort of expected
value. Finally, we passed these values to the simulator to
see how closely the mputs drive the simulator to the
actual production.

As expected, our results were not surprising, using
the extended data did not provide us with as perfect of a
match as the first networle. This can be partially attributed
to accumulative data corruption due to such things as
well workovers, stock tank o1l reserves, etc.

Neural network results: This method has a big
advantage to it. Training may be initially costly, but the
method has the benefit that once the neural net 1s trained,

213

the solution can be obtained rapidly-unlike the ES and FC
methods which usually take many simulation cycles to
minimize error and thus take longer time to find solution.

CONCLUSION

While simulation experts have traditionally done
history matching semi-manually, soft computing
algorithms offer a great deal of promise for reservoir
simulation m general and history matching n particular.
Whle these algorithms have produced great experimental
results in history matching, one must realize that there
may be high costs within their use and design. For
example the neural network may be costly (primarily in
simulation time to create the training set), though actual
run time after it has been trained 1s quick; while the expert
and fuzzy controllers run several simulation iterations
minimizing error each time.

Preliminary results of applying the soft computing
algorithms with the MASTER simulator on the EVGSAT
reservoir have shown good matches within hours. These
results would have taken weeks to achieve using
conventional methods. The algorithms’ applicability 1s
also sufficiently general, clearly demonstrating the
potential of this approach.
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