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Abstract: This article proposes a grammatical approach to hierarchical reinforcement learning.Tt is based on the
grammatical description of a problem,a complex task,or objective. The use of a grammar to control the learning
process,constraming the structure of the solutions generated with standard GP, permits the inclusion of
knowledge about the problem in a straightforward manner,if this knowledge exists. When the problem to be
solved involves the use of fuzzy concepts,the membership functions can be evolved simultaneously within the
learming process using the advantages of the GA-P paradigm. Additionally,the mclusion of penalty factors in
the evaluation function allows us to try to bias the search toward solutions that are optimal in safety or
economical terms,not only taking into account control matters. We tested this approach with a real
problem,obtaining three difierent control policies as a consequence of the different fitness functions
employed.So,we conclude that the mampulation of fitness function and the use of a grammar to mtroduce as
much knowledge as possible into the search process are useful tools when applying evolutionary techniques
inindustrial environments. The modified fitness functions and genetic operators are discussed in the paper,too.
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INTRODUCTION and allows the agent to maximize R by picking actions
in a greedy way with respect to Q.
Reinforcement learming comprises a large family

ofalgorithms dealing with the problem of maximiz- ing 7 (s) = argmax,_,Q(s,a) (3
the performance of an agent i unknown

environments. At any time during the learning The value function Q 1s learned on-line through
process,the agent can observe the state of the experimentation. Initially,all values Q (s,a )areset to
environment, denoted by s € S and apply an  zero.Suppose that during learning the agent executes
action, a acA. Actions change the state of the action a at state s ,whichleadsto anew state s and the
environment and also produce a scalar payo. immediate payoff is 1,, Q-Learning uses this state
value,denoted by r . . .Any reinforcement learning transition to update Q (s,a ):

algorithm will look for an action policy,n : S ~ A that

maximizes the expected discounted sum of future Q(s,a) «{1-a). Q(Saa)+0t-(1;,a +Y-V(S’)) (4)
payoff according to:

with V (s ") =max 4Q(s ", a)
R-E [E,Yt—tgrt:| (1) . T.he scalar ¢ (0 <gr<1)is the leaming rate which
is typically set to a small value that is decayed over
where v 1s a discount factor that favors payoff s time.

reaped sooner in time.In general payoff. uses to be
delayed,so the algorithm has to solve a temporal Hierarchical reinforcement learning: In order to

credit assignment problem scale reinforcement learning to complex real-world
The most widely used algorithm for learning tasks,one possible way is to discover the structure of
problems with delayed payoff is Q-Learning,that the problem during the learmng process,or to include
learns a value function denoted by: existing knowledge in the algorithm,to reduce the
dimension of the searching space.Research in

Q:S@A->9NR (2) classical planning has shown that hierarchical

methods can provide exponential reductions m the
When the trammg is fimished,Q represents a  computational cost of finding good plans.Many

mapping from {state,action }couples into rewards researchers’™®, have experimented with different

Corresponding Author: Santi Garcia Carbajal, Department of Computer Science, University of Oviedo,Gijon, Spain
52



Intl. J. Soft Comput, 1 (1): 32-60, 2006
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Fig. 1: Representation of a generic individual in GA-P
technmiques. GA-P individuals consist of two
parts: a tree and a set of numerical constants.
Genetic operators can take place in the tree
(GP part), or in the set of constants (GA part)

methods of lierarchical reinforcement learming
and hierarchical probabilistic planning. Recently, T.G.
Dietterich proposed the MAXQ method as a way to
specify the decomposition of a given reinforcement
learming problem mto a set of sub problems,
simultaneously with a decomposition of the value
function”™. In this study we formalize a different
approach for solving given reinforcement problem in
a hierarchical manmner.

Grammar Directed GA-P for Hierarchical
Reinforcement TLearning: In this section we
formalize the characteristics of the problems this
methodology is oriented to and set the terminology
employed Previously.a brief knowledge about
Genetic Algorithms (GA), GeneticProgramming, ( GP )
and hybrid techniques like GA-P is required in order
to understand the capabilities of our system. We will
focus 1n the description of GA-P as GP and GA are
well known techniques.

GAP-P techniques: GA-P technique” is an hybrid
between  genetic algomthms and  genetic
programming, which was first used in symbolic
regression problems.Individuals in GA-P have two
parts: a tree based representation and a set of
numerical parameters. Different from canomcal GP,
the terminal nodes of the tree store not numbers,but
lingwstic 1dentifiers that are pointers to the chain of
mumbers (Fig. 1). The behavior of the GA-P algorithm
1s mainly due to its crossover operator. Either or both
parts of the individual may be selected and
crossed. We have employed GA-P algorithms i the
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identification and control of complex dynamical
processes and in classification problems!'".

Problem description: The generic control situation is
defined by the following elements (Fig. 2):

* A set of continuous variables, E i showing the
actual state of any relevant state variable of the
system.

* A set of logical fiags, Fi Each fiag will be
automatically activated by safety
restriction,specific to each problem. Flags are
used to prevent the system from coming into
unstable or dangerous states.

one

» A set of actuators, A 1 Every mechamcal
component of the system that can be modified
by the control policy will be represented in the
grammar by an actuator symbol.

» A set of local controllers, C 1 As we want to
obtain hierarchical control policies,a set of
partial controllers will be distributed over the
system with no connection between them until
the GP system finds the optimal hierarchy.

+  The coordinates of the state variables and local
controllers:e 1x e 1y C x and C 1y Commection cost
will be a factor when calculating fitness
function,so we take into account the position of
each variable, actuator and local controller.

* A set of goals,expressed as predicates on the
state variables,which we shall detach in:

*  Goals that must be satisfied concurrently during
the operation of the system,R 1 This means that
there will be some safety restrictions that any
policy must satisfy in order to be evaluated by
the fitness function of the Genetic Programming

System.
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Fig. 2: Tnitial configuration of the system
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Fig. 3: Induced hierarchy of control

* Objectives that must as far as possible be
satisfied, O i1 Finally,a good policy will be one
that, satisfying safety restrictions,obtains an
optimal control of the plant,with low commection
costs. The way all these objectives are
introduced inte the fitness functions is
discussed in section ITI-C.

*  Three fuzzy sets,named LOW , MEDIUM and
HIGH for each state or control vanable of the
system. When the learning process has
finished,the system will produce an output
comsisting of (Fig. 3):

*  The control hierarchy,in terms of the set of local
controllers used.the connections between them
and the state variables and actuators connected
to each one.

*  The set of fuzzy rules for each controller.

¢ The optimal values for the parameters that define
the shapes of the fuzzy sets mvolved in the
process.Each fuzzy set associated with a state
variable will be defined by the position of three
points (Fig. 1).The value of these points is
represented n the GA part of the individuals

(Fig. 1).

The genetic evolution of the solutions for a
problem defined this way will be directed by afitness
function that takes into account the following
factors:

Safety Conditions: defined as logic predicates on the
state variables of the system.Depending on the
characteristic of the system to be controlled,a set of
safety restrictions will be defined by the expert.

For example: gValve Displacement Speed will never
be greater than 0.5m/s _h. Each rule will imply the

existence of an associated fiag. Control Error, E C:
defined as follows:

Bo= [ (e (1) s, () at ®

where ¢,(t)is the desired value of each variable,E
i attimet and s,(t) is the real value.T is the length of
the simulation peried.
Control Cost, C :an efiort measure for the actuators
during a simulation period Typically,the sum
of the displacements of all the valves of the system
during the whole simulation.

C= J‘:[BGT(t)Tdt ©

Implementation Costs, CI :an estimation of the
implantation costs of the controller,mainly,due to the
costs derived from the topology of the resulting
control hierarchy.

C = ilength(si) (7

i=0

where N 1s the total number of connection
segments (S i1 needed to compose thefinal controller
and length (S i is the length of each segment.

MATERIALS AND METHODS

The methodology we present comsists of the
steps shown in Fig. 4,which are described in detail in
the following sections.

» The process starts with a description of the
problem,made by the expert.

» Based on this description,we perform a deeper
analysis that ends up with a grammatical
description of the possible control solutions for
the system.The solutions may or not be
hierarchical,depending on the nature of the
problem,but this point has no effect on the
subsequent steps of the method.

*  We choose a fitness function that gives us an
estimation of the quality of solutions generated
by the grammar defined in step 2.

»  The genetic process obtains solutions according
to thus fitness function.

»  The solutions are studied in order to determine
their feasibility and if necessary, the grammar
and fitness function are modi fled.GA
optimization of the parameters that describe the
shapes of fuzzy



Intl. J. Soft Comput, 1 (1): 32-60, 2006

GA-P
Optimization

TP ———
Grammar
Defination i

Fitness
h 4 < Modification -
GP system < +
PP ——— =
I > Grammar
* Modification §

Knowledge .‘E
Extraction j

ﬂ Human directed process
I:I Automatic procees

Fig. 4 The method starts from the grammatical
definition of the problem and ends up with a
set of rules and a control lierarchy

sets involved in the control can be performed
concurrently within the genetic evolution of
solutions due to the GA-P coding if the
mndividuals,or off -line,as shown in Fig. 4.

Creating population: A simplistic manner to generate
N strings of a given language would be to construct
them randomly from the terminal symbols of the
grammar.Obviously,this kind of mechanism would
lead,in most cases,to a situation where an important
fraction of the population would be formed by wnvalid
strings. In some of the works of Andreas Geyer
Schultz a mechanism to generate an initial population
uni- formly distributed regarding derivation-depth
and form of the individuals is described!" A fter some
experimental runmings,we decided to implement a
simpler way of generating the initial population:

* Choose population size, N and maximium
derivation depth, P

*  Select the imtial symbol of the grammar

+  Choose production and expand its right side.

* Repeat steps 2 and 3 for each non-terminal
symbol appearing as a resultsof the substitution,
untill derivstion depth, P, 1s reached.

¢ If the string is formed only by terminal symbol,
put 1t into population.

¢«  Returnto 2 untill N is reached.
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Genetic operators: When implementing a grammar
directed Genetic Programming System,a new
the  genetic  operators
implementation rises up:the mdividuals generated by

these operators must be syntactically valid strings of

problem,related  to

the language.too!™'. Independently of the fact that
some acceptable solutions could exist without
complying with the restrictions imposed by the
grammar,the learning process must be centered in the
syntactically this
implemented the genetic operators defined in!'?.

correct  ones.In work we

Fitness function: In this section we define a generic
.tness function for a Hierarchical Fuzzy controller. We
call this Gradual Fitness Function since the value
returned for a controller that leads the system out of
the safety limits is as good as the length of the period
during which the plant is working between safe, or
acceptable conditions. The longer 1s this period,the
higher is the value of the .tness function. We also de
ne two additional measures of the quality of a
controller,naming their modularity and overlapping,in
order to study the possibility of directing the search
process through the introduction of these factors in
the .tness function. For any given Hierarchical Fuzzy
Controller T ,we compute the Gradual Fitness
Function, F(T)

as:

System between secure margin until t,

G+ CHEL (T —t,)¥{D+A))
Systemn between limits during the whole simulation
~C,+C+E.)

E()=

where C,;,C ,E, are the terms defined in section IT
and T is the total length of the simulation period.
ty 1s the nstant in which the system abandons the
safety lumits.
D is the maximum possible deviation regarding the
goal state of the system.
A 18 the maximum possible control action.

C.1 Modularity: Let T be a hierarchical fuzzy
controller. Let V Ci be the set of state variables that
appear 1n the antecedents of any local controller C 1
Let |V |be the carnality of any set of variables,V. We
de ne the modularity coe .cient of a hierarchical fuzzy
controller, C,(T), as
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‘uvci‘—max{

Cyl) (&)

‘uvci‘

Cu(T) reaches its maximum value (1)when the local
controllers that form J share no variable. The modi .ed
fitness function 1s:

Systern between secure meargin until t,
—{GFCHED™ (1-Cyp) + (T, 1 (DHA)
System between limits during the whole simmilation

~C+CHE)*1-Cy)

Ed)=

Overlapping: The different local controllers included
m a Hierarchical Fuzzy Controller J make their
contribution to the .nal control action as a function of
the membership degree of the state variables to the
fuzzy sets referenced in their rule bases.T.et V Ci be
the subset of working variables for C 1 andlet «Ci be
the value returned by the membership function of the
fuzzy region coupled with C i forthatsetof variables.
We define ne the overlapping factor of a hierarchical
fuzzy controller J,G4(I),as:

[mnffn o

)
R v T
that can be approximated by:
Emm{(“c ) (10)

1
J
Emax{ Mc }

The fitness function modified to minimize

overlapping,will be:

System between secure meargin until t,

— (G CHED™ (G + (T, HDHA)
System between limits during the whole simulation
~{(G+C+E)*(Gs)

E.()=

Starting from the de .nitions of Modularity and
Overlapping,we will study how the introduction of
these factors into the .tness function can help the
genetic programming system to .nd solutions whose
behavior when applied to a real problem could be
interesting in any way (linguistic readability of the
controller,quality of the controloptimization of
connection costs,etc). Alsoithe GA-P optimization
applied to the parameters that de ne the fuzzy sets
invelved in the control process'"! and the inclusion
of the (possibly inexistent) knowledge about the
problem using the grammatical description of the
solutions will be tested in a real world problem.
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An illustrative example: electric plant control policy
induction: The real problem that motivated the
development of tlus methodology and the
experimental results obtained using three di .erent
.tness functions to learn the best hierarchical control

policy.

Problem Description: The Abono energy central
(Fig. 5)has two groups of coal boilers with 360 and
540 Mw of nominal Power Station in service since
1974 and 1985.They use national and imported coal
and siderurgical residual gases from the CSI factory
n Gy Lon.CSI stands for Corporaci” on Sider” urgica
Integral, 1. e. Integral Siderurgical Corporation
Nominal consumption of gag in the boilers of the
energy central is 250000 m* how N hour

and 360000m’® _¥_N hour. Since 1974 both companies
work togetherhouﬁl order to guarantee the best
conditions of e .ciency in the production and
consumption of gas .ow.The CSI factory and the
Abono Plant are connected by a pipeline 3 meters in
diameter and 4 kilometers long.

Since 1995, the production in CSI is being
increased,so the production of gas is being raised in
the same proportionIn order to keep the best
conditions of e .ciency in the managing of the gas,the
capacity of the gas holders has been increased and
the control policy must be adapted to this new
situation In"?we developed a fuzzy controller to keep
the gas flow to the boilers stable Now we are working
ona hierarchical reinforcement learning approach to
minimize the implementation cost of the control
policy due to the connection costs and to develop a
predictive controller useful to tram the human
operators working in the plant Schematically,this
problem consists of the following elements(Fig. &):
Inputs:

» Incoming gas flow.

s Position angle of system main valve.

»  Position angles of the valves from gas holder 1
and 2.

»  Position angles of the valves from Burners 1 and
2.

¢+ Number of active burners in group 1 and 2.
Outputs:

¢ Gas flow derived to group 1.

»  Gas flow derived to group 2.

The block diagram for the controller we are trying to
induce 1s shown in Fig. 7
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Fig. 7: Abofio. Block diagram for the controlle

Table 1: Abofio system wanshle

Symbol Meaning Type

Vi Main valve Postion Contitmous
V1 Wigging gas holder valve Continuous
V2 Mann gas holder valve Continuous
V3 Group 1 Valve Position Continuous
V4 Group 2 Vave Position Continuous
Q1 Active Bumners of Group 1 Continuous
Q2 Active Bumers of Group 2 Continuous
C1 Goal Group 1 Continuous
C2 Goal Group 2 Continuous
M1 Wigging gas holder level Continuous
N2 Mann gas holder level Continuous
Flow 1 Actua Flow Group 1 Continuous
Flow 2 Actud Flow Group 2 Contitmous

Table 2: Abofio. Flags

Svymbol. M eaning Tyvpe Val.
Fi Wiggins out of range Crisp 0,1
Fy Mann out of range Crisp 0,1
Fz Pressure at Collector 1 Crisp 0,1
Fs Pressure at Collector 2 Crisp 01
Fs Piston 1 Speed Crisp 0,1
Fs Piston 2 Speed Crisp 0,1

Flags: Table 2 summarizes the identified flags of this
system.The special confrol policies started by the
activation of each flag are:

sF 1: Close valve V1.Stop simulation.

sF 2: Close valve V2.Stop simulation.

*F 3: Stop simulation.Unbreeded boilers at Group 1.
*F 4: Stop simulation.Unbreeded boilers at Group 2.
sF 5: Close valve V1.Excessive speed at piston 1.
sF 6: Close valve V2 Excessive speed at piston 2.

Actuators: In this system there is an actuator by
each valve of the plant,plus one by each group of
boilers, that sets the number of active burners.

Fitness function definition: The definition of the
fitness functions F_ F_ and F_,.

RESULTS

The results obtained by applying this
methodology to Abo .no Plant with three different
fitness functions are collected. The main parameters
of the genetfic programming system are summarized in
Table 3.

Gradual fitness: Figure 8 shows the structure of the
best confroller induced by F g This controller only
uses variables Goal Group 1 Goal Group 2 and Actual
Flow Group 2 Fig. 9 shows the system behavior
when thiz controller is applied to the plant in training
mode (Fig. 9) and test (Fig. 9). Figure 10 shows the
position of valves in Group 1 and 2 during a
simulation period in test mode.
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Paopsize 3000
Maximum Generations 50
Mutation Probability 0.05
Fitness
Fg Fgm Fgs
Termination G=50
Training cases 100
Test Cases 100

| Actual flow group 2

Goal group 1 Goal group 1

Goal group 2 Goal group 2

Global
comtroller |

Geal grony §
Goalgmup 3

Actalflow gonp

Fig. 8: Block diagram of Fuzzy Controller induced by

F
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Gradual fitness plus modularity: Figure 11 shows
the structure of the best controller obtained using F
gm The main controller of the hierarchy needs
variables Goal Group 1 Goal Group 2 and Actual Flow
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Table 4: Abofio. Average results 100 runs

Fitness function Training  Test Rules CM GS

F, 680.25 750.12 16.51 0.27 071

Fin 702.14  790.23 11.4 0.83 08

F 649.11  739.41 14.2 0.61 0.65
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Joal group ']¢ Goal group 2
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Fig. 14: Block diagram. of Fuzzy Controller induced

by F,
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Fig. 15: Trainming and test behavior of the best
controller induced by F
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Group 1 Tt is important to note that the sets of
variables used by the two local controllers are
disjunct sets. This circumstance has great in .uence in
decreasing connection costs of the controller. Fig. 12
shows the behavior of the system in training (left)and
test  (right)mode,under  this controller. The
displacement of valves in Group 1 and 2 is shown in
Fig. 13.

Gradual fitness plus overlapping minimization:
Figure 14 shows the structure of the best controller
induced by the use of F gs This controller receives
no feedback about the actual .ow circulating throw
Groups 1 or 2 as a consequence of the action of its
own control action.This points explains the low
performance reached by this controller during the
test phase. Figure 15 (left)shows the behavior of the
system under the best controller obtained using F gs
after 100 generations.Same .gure (right)shows the
behavior of the system under the test conditions. The
displacement of valves in Group 1 and 2 is shown in
Fig. 16.

CONCLUSIONS

There have been many approaches to the
supervised learning of fuzzy controllers by means of
evolutive techniques. However, as far as we
know.distal learning of control policies has not been
deeply studied. The main conclusions of our work
after applying the approach to a real problem,can be
summarized as follows:

¢+ The inclusion of modularity and overlapping
factors directs the search process to solutions
that promote di .erent behaviors of the induced
hierarchical controllers.

* As can be seen in Table 4, modularity and
overlapping minimization are opposite goals. The
use of I, leads to fuzzy controllers where there
is low modularity and high overlapping. When
using F_, ,we obtained solutions that have high
modularity,but  with  high  overlapping.
Finally,when F,, was used, we obtained lower
overlapping,but loosing modularity.

+  For the real situation of control used to test the
methodology,the best medium results were
reached using F gm obtaining controllers with
high modularity, this is, sharing only a few
variables between the controllers implied in the
hierarchy.

This worl proposes a methodology to extract
semantic rule bases of control and knowledge from
mathematical models of complex systems. We have
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obtained three different control policies by means of
altering .tness function to bias the search process
towards solutions satisfying safety and economical
restrictions.As the internal structure of each local
controller is based on a set of fuzzy rules, these
policies can be used to extract additional knowledge
about the problem and to make predictive modeling
and control.
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