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Function Approximation Using Feedforward Networks with Sigmoidal Signals
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Abstract: T. Chen ef af. and Babri studied Function approximations using sigmoidal and generalized sigmoidal
functions. In this study we introduce left sigmoidal and right sigmoidal signals and use them to study

function approximations in ¢(g") .

Key words: Left Sigmoidal, right sigmoidal, function approximation, feedforward networks

INTRODUCTION

Kolmogorov et all'?

was pioneer in function
approximation theory by neural networks. Since then,
many researchers have concentrated on this topic.
Funahahsi™ established that any continuous mapping can
be approximately realized by Rumelhart- Hinton-William™s
multilayer neural networks with at least one lndden layer
whose output function is sigmoidal. Hormick et al!®
proved that the standard multi-layer feed forward
networks were capable of approximating any Borel
measurable function from one finite dimensional space to
another to any desired degree of accuracy. Verakurkov!™
derived the estimates of number of hidden units based on
the properties of the function being approximated and the
accuracy of its approximation. Chen et all
mvestigated the capability of approximating fimetions in

C(R")
by three layer feed forward networks with sigmoidal
function in the hidden layer. In this paper, we use the left

sigmoidal signals and the right sigmoidal signals for
function approximation in

C(R™)
PRELIMINARIES

We list certain defimtions and results that will be
useful in sequel.

Definition 2.1: 0: R - R 1s called a generalized sigmoidal
function,

if lim ¢(x)=0 and lim o(x)=1.
X—p—eo E—+ e

The following is an example of a generalized sigmoidal
function.

The following theorem holds for the generalized
sigmoidal fimctions.

4
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-ax 2

c

olx)=

Theorem 2.2: If 6(x) is a bounded generalized sigmoidal
function and f (x) is a continuous function on (-eo,0), for
which

lim f(x)=A
R

and
lim f(x)=DB,
oo

where A, B are constants, then for any £>0, there
exist N and scalars ¢, y,, 6, such that

f(x)—icp(y1 X+ el) <g

We now introduce the left sigmoidal function and
right sigmoidal function.

Definition 2.3: The function o: R-R is said to be left
sigmoidal
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if lim o (x)=0.

The following 13 an example of a left generalized
sigmoidal function.

o(x)

¥

X

e™, for x<Q, o> 0
o(x)=
B, forx=0, >0

Definition 2.4: The function o: R~ R 1s said to be right
sigmoidal

if lim o(x) =1

H—ptos

The following 1s an example of a right generalized
sigmoidal function.

1+e™, forx>0, x>0

G(X)_{B, forx<0, B>0

a(x)

L

I
0

Theorem 2.5: Every generalized sigmoidal signal can be
decomposed into a left sigmoidal signal and a nght
sigmoidal signal.

Proof: Let 0: R -~ R be a generalized sigmoidal signal.

o(0)=c. Let
o] ifx <0 o , ifx<0
o,xy = 0P XD and g o & XSO,
o , ifx>0 o(x), ifx=0

Then it can be proved that o, is a left sigmoidal signal
and o, is a right sigmoidal signal.

The following theorem shows that a left sigmoidal
signal and right sigmoidal signal can be pasted to form a
generalized sigmoidal signal.

77

Theorem 2.6: If 0, is a left sigmoidal signal and o ,is a
right sigmoidal signal.
such that 0,(0) = 0, (0) and

o/x), ifx <0

o) = 5.0, ifx=0

then o 1s a generalized sigmoidal signal.
Proof: Since 0, is a left sigmoidal signal.

Lim

Lim
G(x) = o, (x)=0
X —» —oo

X — —eo

Since 0, 18 a right sigmoidal signal

y
Mosx= T s =1
—+oo

X —> oo

This establishes that 0 is a generalized sigmoidal signal.

Theorem 2.7: If 0,(x) 15 a bounded left sigmoidal signal
and 0,(x) is a bounded right sigmoidal signal such that
0,(0) =0, (0) and f(x) is a continuous function on (e, o),

for which

Lim
f(x)=A and
X —» —co

Lim F(x)=B
X)=
—> o0
where A and B are constants, then for any €0, there
exist a positive integer N and the scalars ¢,y,0, such that

N
f(x)= Y coly,x+6) < & 7 X € (—o0,)

1=1

where

{O-l(x), ifx< 0
o(x) =
O,%) it x>0

Proof. Follows from Theorem 2.6 and Theorem 2.2.
FUNCTION APPROXIMATION
In this section we show that a continuous function

can be approximated by a bounded left sigmoidal signal
(resp. right sigmoidal signal).
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Theorem 3.1: Tf 0(x) is a bounded left sigmeoidal function
and f(x) is a continuous function in (-, «) with

lim fix)=A

E—p—oa

where A 1s a constant, then for any €0, there exist N and
scalars ¢y, 6, such that

ol
fx)- Y ooly,x+0) < &, Vx e (—=0)

i=1

Proof: Given that

lim f(x)=A.
R—p e
For any €0, we can find M, N0, such that
| f(x)—A\<§ifx<—M;and\ f(xl)—f(x2)|<§ ifx > M.
If x, <M and x,< M and

1
|X1 7x2|5§

>

then divide [-M, 0] into 2MN equal segments and
each has length of

1
N

and
M=k < Xoyw = 0.

1+X1+1

X
Lett, = > 1=0,12,....... MN -1

Letg (x)=f(-M) + zﬁq[f(xl)—f(xﬂ (K (x —t,_))

1=1

for some K to be determined later. By the definition of Teft
sigmoidal signals, there exists W>0 such that

ifuW then |y 1)<
MN

Tfu=<- W, then ‘G(u) ‘<L
MN

78

Choose K such that K. %> W,

To prove: |[f(x)-g(x)}|<e for all x&£(-o0,0).
Case 1: x<-M and

1
—(~M)<—
x—( )|<N,

Then
|f(x)—f(—M)|<§

Since g (x) = £ (-M) + ziN[f(xl)ff(xl_l Ne(Kix—t_))-

gGO-F-M|< 3 Fe ) —fix )| [otKix—t_)

2
<

i

=4

e 1
4

MN

[N

Now
F)—g(x)|=[f(x)— f-M)+ f(-M) - g(x) |

< |f(x) = £(-M)[+ |g(x) - f-M) |

=¢ forallx € (-e=, O).
Case 2: X[, %] Then

1
<o fori=k
> 1 forizk
2N

‘x -t

Further more, If i<k, then K(x-t, ,)>W. Hence

1

o(R(x—t_ -1 < N

if 12k, then K(x-t, )<~ W and hence

‘ o(K(x-t_» ‘ < ﬁ
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Consequently we have

g FO-M)-[F(x, )~ Fx, )]
k-1

o(K{x—t,_ »- Z[f(X1 )—Ix, )]

1=1

k-1
< 3| fex)-fix, )| |o(Rx -t 01
Y [P )] X o Kix-t ) |

1=k +

el

2MHM

e 1 R
i=1 4 MN 1=k +1 4 MN

=¢/2 for all x € (0, =).

o |

It 15 clear that
=M+ (x )—F(x,_Jlo(Kix —t,_ N+ Z[f(xl)—f(xi,l ]|
=0(x )+ [Ex )T, Do (K-t )

- f(x)—g(x)\<§+\f(xk>—f(xk_1)\ | o(K(x—t,_)) |
£ E
<—+— =¢.

2 2

Theorem 3.2. If ¢ (x) is a bounded right sigmoidal
function and f{x) is a continuous function on (-<2,%°) with

lim fx)=B

H—ptos

where B 1s a constant, then for any €0, there exista
positive integer N and scalars ¢, vy, 6,, such that

N
fx)- Y ¢ s(y,x+72,)|<e forall xe(0,%)-

1=1

Proof. Since fis continuous on (-=. «).for any €0, we can
find M>0 such that and

€
|fx,) - f(x,) |<§

whenever |x,|<M,|x;|<M. Choose N such that
[, | M. |x,| < M and

79

|5, Xa|< 1,

Divide (0, M) into 2MN equal segments, each has

length of and let 0 = x;=<x,< ...y = ML
Since

lim f(x) =1,

E—stee

we choose x,. X,..... Xy such that

ZMN

D10~ £ <

ri=0,1, 2

R

Lett = (% +%,,) fo
2

e N

Defme g(x) = fM) + Zf(f(xg ~ i Notk(x — )

i1
Choose W=0 such that if u>W then

‘G(u) -1 ‘ <ﬁ : ***)

Let K=0 such that

To prove:
F(x)—g(x)|<e-

If x>M then.
3
F(x) (M) \<5
Now it is easy to see that

gx)-fM)[< Z [ )—F (x| [otkix—t_)-1)|

AMHN

* Z\f(xl)—f(xi_l)l

by using (%), (**), and (***)
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|fx)-g ()] < [f)-HM)] HEM)-g(x)

b2 | m
b2 | m

= ¢ forall x € (0,%). This proves the Theorem..
LINEAR SUBSPACE
Let L = C( R ), be the linear subspace of C( ), where

L={£C0, lim fx)=0}.

Definition 4.1: g(w, b} g sr byg(w,b)(x) =g (wx+b)
and

F(g) = {g (w,b): (w,b)R* }.
Theorem 4.2: Forany g L, F(g) c L
Proof: Let m F (g) therefore m = g (w, b), (w, b) R?

lim m(x)=
E—p—oa

lim g(w,b) (x)
E—p—oa
= lim g(wx+b) =0 that proves the Theorem.

H:{feC(R),

lim f(x)=1}

= oo

is the linear subspace of C - .
P (R)

Theorem 4.3: F (g) c H, forall g H.

Proof: Analogous to Theorem 4.2.

FUNCTION APPROXTMATION IN
ARBITRARY FUNCTIONS

In this section, we use left and right sigmoidal to
approximate the arbitrary functions.

Theorem 5.1: Given a bounded non-negative function
g(x) in R such that

lim g(x)
R—p e

exists. Then for any arbitrary mappmg f(x) n C (R) , for
any €>0 there exist scalars w, b, and [, such that

I
ZBig(w1X+b1)—f(x) <& forallxeR -

i=1
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Proof. Since g(x) is a bounded non negative function,
there exists a A such that.

g(x) <AforallxeR.

This gives that 83 <1 for all xeR.
A

Let g,(x) = 23} and therefore g,(x)<1. This gives
A
that g,(x) 1s a sigmoidal fimetion.

Case 1:
lim g (x)=0.Therefore lim g,(x)=0andg(x)1sa left
R—p—oo E—p—eo

sigmoidal function
By Theorem 3.1, we get.

<€

k
Y B'g (wx+b)—f(x)

1=1

k

ya! %g(wix-k b, ) —f(x)

1=1

<e forall xeR

1

iﬁig (wx+b,)-f(x)

i=1

< e forall xeR. where B, = 9‘

Case 2:

lim g (x) =N, N = 0.
prpm———

It is easy to see that g, (x) = g (x)-N/A 15 a left
sigmoidal function. Then by Theorem 3.1, we get

k
Y Bi'g,(w,x +b)-fix)| <e forall xR,

i=1

where k—1e N,i=1,.....

Suppose x, R and g(x,) # 0, then we can choose w, = 0 and
by = %, such that

g(wx + by = g(xy)
Let

bost-- S,

X Bewactb)—F0| 7| D hatwax b +Rax,) ()
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k-1

D BAg (wx+b )+ Balx,)—f(x)

i=1

k-1
S (v x b))+ Bk )-F(x)

k-1 k-1
=Y AB g, (wxtb )+ D NB +Bglx,) - f(x)

1=1 1=1

=

—1

Blg,(wx+b)—fix)|<c forallx R,

where

Bl =L,
that completes the proof.

Theorem 5.2: Given a bounded non-negative function
g(x) in R such that

lim g (x)

E—p+tos

exists and not equal to zero, then for any arbitrary
mapping f (x) in

C(R)’

Proof: We assume g (x) to be a sigmoidal function
(otherwise replace g(x) by

)
g
Case 1:
lim g(x)=1.By Theorem 3.2, we get
X—p+eo
Case 2:
lim g(x)=4#1.
H—p oo
Let
g (x)= X
A

Then by Theorem 3.2, we get

I
Y B'g, (wx+b)—f(x)|<e ¥xeR.
i=1

81

k
1
Since g, = g DB elw x+b )-f(x) <8
7\, i=1 }\‘
that implies Zglg(wl X+b)-f(x)|<eVxeR
1=1
where.

The following Lemma is due to Cuang'?.

Lemma 53: If g(x) in R satisfies that all linear
combinations

I _
261 g(w, x+Db, Jaredensein C(R) »

1=1
then all linear combinations
)
D Be(wx+b,)
1=1
are dense in
C(RT-A) >
where w; and wx is the inner product of w;andx.

Theorem 5.4: Given any bounded non-negative function
g (x) in R such that

lim g(x)
R
exists, then all linear combinations

k — _
281 g{w,x+Db, )aredenseinC(R" )} where w,eR”"

i=1
and wx 18 the mner product of w and x.

Proof: Follows from Lemma 5.3 and Theorem 5.1.
Theorem 5.5: Given any bounded non-negative function

g (x) in R such that
lim g(x)

X—ptoe
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exists and is not equal to 1. Then all linear combinations

k _ _
2[31 g(w, x+b, Jaredensein C{R") wherew =R"

i=1
and w, x is the inner product of w; and x.
Proof: Follows from Lemima 5.3 and Theorem 5.2.
CONCLUSIONS

Thus we have proved that arbitary continuous real
functions with finite limits and (-., 0} and (0, ) can be
approximated by bounded left sigmoidal and right
sigmoidal signals respectively. We also approximated the
arbitary real function with left and right sigmoidal signals.
We further use the left and right sigmoidal signals to
prove the approximation theorem due to Chen.
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