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Abstract: This study proposes a learning Undirectional Linear Response (ULR) fuzzy controller using a golden
section search. This fuzzy controller can be realized with UULLR elements which can be implemented simply by
a diode or a drain gate connected MOS transistor. This understanding of ULR system is further extended by
mcorporating the Golden Section Search (G5S) technique of finding the mimmum point using the bracket
method. We define GSS by evaluating the function at a chosen pomt in the larger of the two mtervals. The
midpoint 1s then replaced and the previous 1s now chosen to be the new endpoint. This 1s repeated until the
width achieves the desired tolerance and the new mimmum point s found. The simulation is carried out on the
mverted pendulum problem based on the basic functions of a fuzzy controller that includes membership
function, minimum and defuzzification functions of the ULR elements.
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INTRODUCTION

As reported by the one of the founders of “Fuzzy Set
Theory” 1 1965, Prof. L. A. Zadeh of University of
Califormia, Berkeley, fuzzy theory is all about vagueness
and uncertainty. Based on this fundamental theory, we are
able to use nonprecise, ill-defined concepts and yet to
work with these in a mathematically strict sense. Various
researches carried out by Kickert™, Rutherford”, King™
and Li™ all suggest in the instance of when the strategy
applied by the human operator is vague and qualitatively
described then the use of fuzzy theory 1s rather preferred.

It was the development of Fuzzy Controllers(FC) by
Mamdani™ that boosted the utilization of FC in various
fields and encouraged many researchers to further
experiment it. Since then FC has evolved from non
learmng, adaptive or non adaptive to learning FC whereby
the weakness of non learning systems in response to
disturbances or inability to provide a feedback control has
since been improved with the learning FC. Some of these
learning algorithms which have been used include
Evolutionary Algoerithm!”, Reinforcement Learning' and
Supervised Learning™.

However some of these proposed learning algorithms
have proved to be not so efficient such as in the case of
evolutionary method where learming process 1s rather long
or heavy learming phase m reinforcement method since
gradient information 1s not provided explicitly. Other

problem often related to this also includes 1ll behavior
which circumnavigate around an obstacle closely and
slowly, premature convergence or trap situation''” which
continues to undermine the credibility of these algorithms
and also difficulty in hardware realization Although
supervised leaming as so far proven to have the
advantage of faster convergence but it has the problem of
insufficient training data which could result in incomplete
fuzzy rules.

Unidirectional linear response is another learning
algorithm and it trains many typical digital and analog as
well as continuous problems!”. ULR as previously been
reported has being a powerful computing properties in
close correspondence with earlier stochastic model based
on McCulloh-Pitts neuren and graded neuron model
based on sigmoid input-output relation™
further continued with reinforcement learmng to the
adaptive fuzzy controller but with a simpler hardware
implementation as we have proposed in ULR fuzzy
controller?. When tested on cart-pole balancing problem
it showed good control performance. On the contrary, the
disadvantage of this system was that learning algorithm
based on the back propagation need to have a derivative

I This work was

and the derivative has to be a zero.

We therefore tried to overcome the above mentioned
problem by introducing a new learning method of Golden
Section Search (GSS). This 1s a robust linear search
method of locating an interval where the mimimum pot
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occurs between two points. Tn this routine the size of the
mterval contaiming the mmimum reduces as the search
takes places. For subsequent new step, two new points
located in the mterval are found whereby one section of
the interval is discarded while a new interior point is
placed within the new interval. This procedure 1s repeated
until the width achieves a desired tolerance specified by
the user.

LEARNING ALGORITHM

Unidirectional Linear Response (ULR) fuzzy controller:
Unlike the typical nodes in neural network which are
primarily sigmoid or hard limiters, ULR works as well as
the traditional nodes with some extra features. The
advantage of ULR 1s that 1t 1s able to not only retam the
significant behaviors of the traditional models, but gives
powerful capability of the analog and contimious signal
processing”'!.
The above figure can be defined as:

u u>0
fu)= U
0 u<o
u= 2\)\!1}(1 -0 2
1=1
Figurel shows mputs tonode N when x,, x, ... x, 18
defined as the input with weight of w,, w, .... w, and

threshold is set at 8. This representation of unidirectional
can be achieved either in a single bipolar or a diode
commected MOS transistor. However when one or more
layers are present connecting hidden units or nodes, the
ULR multilayer network can be represented as in Fig. 2.
The figure below shows a ULR multilayer fuzzy controller
network with two mputs of x, and x,, four fuzzy if-then
rules, local mean-of-maximum(IL.MOM) and an output of
FU'9. Tt consists of four layers:

Layer 1: The nodes in this layer share the membership
function of p,(x) of V and V can be defined as linguistic
label for the node fumction. V also defines the degree to
which the given x satisfies it. The membership function
used here 1s the triangular finction Fig. 3 and 4.

1-|x =Cy|/8y  xe|Cy,Cy +8,;]
v (X1 = 1K= Cul/8y xe [0y —8,,,C, ] 3
0 otherwise

Where: C,: center of triangle Syp: right of the center S;:
left of the center

)
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Fig. 1: Unidirectional linear response model
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Fig. 3: Umdirectional linear response model
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Fig. 4: Membership function

Weights are in the center where else the threshold of
the network is spread about URL triangular. As both
values of this systems change, the membership function
too varles accordingly resulting in different forms of
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membership function. The triangular membership function
used in the two-layer ULR network can berepresented as
below:

w, = @
L

S+ 3

= VL VR (5

SVL ) SVR

R ©®
L

0 :CV-(SVL+SVR) (’0

Layer 2: Inputs for this layer originate from the previous
layer. Besides performing a minimum operation that has
been proposed to have a continuous differentiable
softmin operatiorn, it 18 also nvolved in the if part of the
rule. Figure 5a shows how the network achieves the
minimum operation in the case of uy = Uy, when the
threshold for the network is zero and the outputs from
layer 1 are:

f(u,, —u,,}=0 ®)
f,{uy ) =1y, ©
output Z =f{0+u,, )=u,, (10)
For the case of uy;, = Uy
£ (Uy — Uy, ) =Wy — Uy, (1)
f,{uy ) =1y, (12)
output 7, :f(—(u.Vl —uw)-%—uvl):uVz (13)

Layer 3: This layer uses a triangular membership
function. The specified LMOM method is as such:

Ul (14

Cy.SyL.Svr

(7.)=Co+ %(sm —8,)(1-7,)

The output is a limited value of 1, '(z - 0*) and the
membership function is monotic with p,”'(z) as the
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(b) Defuzzification
Fig. 5: ULR network
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Fig. 6: Defuzzification network response

mathematical inverse. When the membership function of
defuzafication used is the triangular function, the nput
output relationship can be represented as y = ax + b.
Therefore it can be implemented by the network as shown
m Fig. 5b.

Figure 6 shows the input-output relation of the
defuzzification is the inverse of the membership function
whereby the output can either be positive or negative.
The output will always remain positive as for the URL.
However the output of the defuzzification will be positive
if y,>»0andy, =0andnegativeif y, = Oandy, > 0by
multiplying v, with -1. The response of the defuzzification
network is expressed by pulsing y, with -y, while the
parameters of the system 1s determined with 7, = 0 and 1
Eq. 13.
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The following conditions apply when determining the
values of w, 0, for y;:

Zr:OUQUU:%uCV+SW)K%—SW)) (15)
Z.=1 U/ (1)=¢Cy (16)
w,, and 8 ,for y, are inverse of w_and B,
w,, =2 Su (a7
2
o, ( oot %} (8)

Tn order to obtain the value for w,, and 8, for v,

— SVL

2

— SVR

WCZ (1 9)

Sep — 9
Cy+ VR2 V1

(20)
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Layer 4: This is where all the signals coming from layers
3 and 4 are summed as following and rule 1s represented
asr.

o SZUHZ,)
2z,

(21)

Learning in ULR fuzzy controller using Golden Section
Search (GSS): As mentioned above, a fuzzy controller
can be realized mn a network as shown in Fig. 2 with
appropriate membership function paramaters such as
center parameters (C,) , right (Sy3) and left (S, spreads
parameters of each of the trangular’s membership
functions. Therefore, learning of the fuzzy controller can
be performed by adjusting the parameters. The learning in
ULR fuzzy controller is based on reinforcement learning
which is achieved when an optimal policy is found by
maximizing the payoffs (or rewards) received over tume. In
this reinforcement learning model, the system interacts
with its environment and as a result of this mteraction; it
then decides the output on which an evaluation is carried
out. Learning 18 implemented during for this real time
evaluation in order to maximize the expected result/output.
In this study, we tramed the fuzzy controller using the
golden section search which 1s a linear search that does
not require the calculation of the slope or derivative. The
search begms by locating an interval mn which the
minimum of the performance occurs.
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Golden section search is also known as golden ratio,
mean, extreme ratio, golden proportion, gelden mean,
golden number or divine proportion. GSS has long existed
for centuries. In fact many artists have used the
mathematical principle to enhance the visual impact of
their study. Example of such worl includes Pyramids at
Giza, The Parthenon, Michelangelo’s Holy Family and
many others. GSS 1s a linear approach used n finding
where the local minimum occurs in a given interval. Tt
starts with two initial guesses and proceeding two other
interior points are calculated based on the golden ratio.
Based on this understanding, for our proposed method,
GSS is to train the vertex values given as Cj, S, and Sy, of
each triangle in the system. During the training of the
triangle, the interval of the three vertexes are selected as
following: C of [C-Sy. GBSy, Co-Syp of [C-5,1.Cy] and
CV+Sy; of [Co.Cy-Svrl.

While keeping the other parameters constant, we
select one parameter from the parameter vector and the
function becomes as a one variable function. A function
f(x) is a unimodal on [a,b] if there exist a unique number ¢
in [a,b] that is able replace the interval with a subinterval
on which f(x) takes a mimmum value. This 1s accomplished
by evaluating the root of the function which has opposite
sign at both ends by a bracketed points of a and b. Two
interior pomts ¢ and d are selected with » as the golden
ratioy — [ V5-1

} and 1s constant cn each subinterval.
2

c=a+{1-rj(b-a) (22)

d=a+r{b-a) (23)

Thus resulting ma < ¢ <d <b. When f (¢) < £ (d), the
minimum local would occur in the subinterval [a,d] and b
1s replaced with d Fig. 7a. The value of r remains constant
on each of this subinterval search. The lengths of the two
possible bracketing interval are specified to be the same
such as (d-a)=(c-b). One of the old mnterior pomts will be
used reused for the new submnterval wiile the other
interior point will become an endpoint of the new
subinterval. Then the search continues for the new
interval.

But in the case of f{d) <{ (¢}, the minimum would
occur i [¢,b] and a 1s replaced with ¢ Fig. 7b. As
mentioned earlier, while one interior point is retained as a
endpoint, the other point will become the new subinterval.
On each iteration, only one new point will be found and
only one new function evaluation will be made. The
search continues and this process of bracketing is
repeated until the distance between the two outer ponts
1s relatively small as specified by user.
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Fig. 7a: When f{c) < f (d), mterval is squeezed from the
right and the new interval is now a and d
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Fig. 7b: When f(d) < f(c), interval is squeezed from the
left and the new interval i1s ¢ and b
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Fig. 8: Inverted pendulum
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SIMULATION RESULTS

The proposed leamning algorithm is applied to a
classical fuzzy controller problem of inverted pendulum
Fig. 8 m order to test the effectiveness of the proposed
method. An inverted pendulum is a non linear and
unstable system with one mput and several output
signals. The aim is to balance the pendulum vertically on
a cart which moves in an uncontrolled state when an
initial force is applied. The variables are set at zero when
the cart at rest imtially. The pendulum 1s set straight up
and has only one degree of freedom. The primary task is
to balance the pole and to keep the cart within boundaries
by supplying the appropriate force to the cart.
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The aim is to move the wagon along the x direction to
a desired point without the pendulum falling. At a
pendulum of x, from vertical, gravity produces an angular
acceleration equal to x; and cart acceleration.

) —F—mlf’ sind
gsinQ+cos————
m, +m

[l

_ F+ ml(92 sinf — écos@)
X =

6- (24)

4 meos’ 8
3

1’1’1:+1'1’1

(25)

m, +m

. angle of the pole with respect to the vertical line
. angular velocity of the pole 6

. force applied to the cart

. gravity acceleration

: mass of the cart, 1.0 kg

: mass of the pole, 0.1 kg

. length of the half-pole, 0.5 m

o

As mentioned previously, only the parameters of the
first and third layers are trained. The parameters include
all the weights and thresholds n these two layers which
are altered accordingly when the relevant membership
functions are changed. There are 13 triangles in the two
layers with three vertexes Cy, Cy-Syp, C 3+ for each
traingle. The to be set of parameters are defined as p, and
i*® time of learning as the completed time taken for the
training. The algorithm used for the simulation can be
outlined as such:

Step 1: Initialize the value of p,, i=1.

Step 2: For the first triangle, train the vertexes C,, C-Sy,,
CytSy by G3S method 1 turn. The intervals needed in the
algorithm are defined as following: C) is trained in the
interval of [Cy-SyL CytSyLl, C-Si in [C-8,,Cy] and
CytSy,  [C.Cy-54z]. The values of the vertexes changes
based on the direction of the mimimization of the function

fi(x).

Step 3: Repeat step 2 for the other 12 triangles to
complete the 1" time of learning and obtain p,,,. i=i+1.

Step 4: Repeat step 2 and step3 until f(x) is sufficiently
IMITImum.

This fuzzy controller is constructed with nine if-then
rules as shown in Table 1, modeling after a skilled human
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gTable 1: Tf-then rules

PO2 ZE2 NE2
PO1 PL PM ZE
) ZE1 PS ZE NS
NE1 ZE NM NL

Fig. 9. Fuzzy controller

operator’s knowledge of handling the system. The
horizontal axis represents the angle of the pole where else
the vertical is the pole velocity with representations such
as Positive Large (PL), Positive Medium (PM), Positive
Small (PS), Negative Large (NL), Negative Medium (NM),
Negative Small (NS) and Zero (ZE). Figure 9 15 the fuzzy
controller for the specified system of inverted pendulum.

Figure 9 illustrates the fuzzy controller network used
m this simulation. Ounly the second and fourth layer
parameters are used in the traiming process. The
simulation 1s carried out with and without the learmung for
a specified period of time with the angle set at 10 degrees.
Results obtained from the 2 methods are compared to find
the most optimal performance of the system. Fig.10 clearly
demonstrates how the membership functions have shifted
after learning was applied.

Based on the data obtained, the following graphs
were plotted. Fig. 11 shows the controlled performance of
the system with different initial angle of 10 degrees. When
compared to the one before learnning, it shows that with
the proposed algorithm, the fuzzy controller is capable of
attaining the balance much faster as compared to the
normal method without the learning.

As for the error, it clearly for angle of 10 degrees, the
error rate shows an improment with the proposed method
Fig. 12.

The simulation was repeated with various angles of
the pole and the stopping parameter was set at -0.1°< 8
< 0.1° for the time duration of 2000 ms. The ranges of the
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Fig. 10: Membership functions before and after learning
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Fig. 11: The shape of the pole before learning and after
learning when the angle 1s 10°,
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Table 2: Parameters of membership functions (before learning)

Label Center Left spread Right spread
PO1 30.0 30.0 5000.0
ZE1 0.0 30.0 30.0
NE1 -30.0 5000.0 30.0
PO2 5.0 5.0 5000.0
ZE2 0.0 5.0 5.0
NE2 -5.0 5000.0 5.0
PL 30.0 10.0 5000.0
PM 20.0 10.0 10.0
PS 10.0 10.0 10.0
ZE 0.0 10.0 10.0
NS -10.0 10.0 10.0
NM -20.0 10.0 10.0
NL -30.0 10.0 10.0

Table 3: Parameters of membership functions (after learning)

Label Center Left spread Right spread
PO1 30.0 30.0 5000.0
ZE1l -26.7 4.5 30.0
NE1 -30.0 4270.6 30.0
PO2 5.0 5.0 5000.0
ZE2 0.3 38 5.0
NE2 -5.0 1233.1 5.0
PL 30.0 10.0 5000.0
PM 20.0 10.0 10.0
PS 10.0 10.0 10.0
ZE 0.0 10.0 10.0
NS -10.0 10.0 10.0
NM -20.0 10.0 10.0
NL -30.0 5000.0 10.0
1200
1000
8001

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time step {0.01s)

Fig. 12: The shape of the error before learning and after
learming when the angle 1s 10°

tested angles were divided into group of small range
(-12, -8, -4, 4, 8 and 12°) and larger angles of 40, 60 and 7(P
Fig. 13.

When tested for the smaller ranges of angles, it
showed good control ability of returning to the initial
state of the pole. Again this was repeated for angles of 40,
60 and 70° Fig. 14.

For the angle of 40°, with the proposed method, it
managed to attain the balance state much earlier, though
at the initial state there was a slight drop in the before it
gained balance Fig. 15 and 16.

As for the angles of 60 and 707, again the proposed
method attained the balance state the faster where else
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Fig. 13: Smaller ranges of angle
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Fig. 14: Simulation angle of 40°

601
Normal

[ S Y ]
3

Angle (degree)

—
L

[}
U

=10 v r v r r v v r r "
0 200 400 600 300 1000 1200 1400 1600 1300 2000
Time step (0.01s)

Fig. 15: Simulation angle of 60°
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Fig. 16: Simulation angle of 70°
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Table 4: The result of the control for angles

Angle(degree) Before learning (NORMAL) Atfter leaming (GS)
10 SUCCESS SUCCESS

20 fault success

30 fault success

40 fault success

50 fault success

60 fault success

70 fault success

80 fault fault

with the normal method; it failed to attain a balance state.
The summary for the angle varation are captured in
Table 4. The pole shape improved for the successful angle
variations when plotted from the obtained results.

CONCLUSION

This study has described a ULR fuzzy controller
with a new learning algorithm of golden section
search. As previously reported in study, the hardware
implementation 1s simply and consisting of only a single
diode and a MOS transistor. By mtroducing this proposed
algorithm, we do not need to find a denvative of the
function since golden section search uses the linear
approach in finding the local mimimum. In this new
approach, performance at a sequence of points 1s
evaluated, starting at a distance of delta and as the
performances increases between two  successive
iterations, a mimmum will be bracketed. This process
continues until the bracketing interval 1s reasonably small.
We have applied this understanding on a common fuzzy
controller application of the inverted pendulum. Results
obtained from the varying mputs angles ranging from
small to big angles showed an improvement in terms of
the control performance of the system and also the error
rate when compared to the one without learning. Thus the
system has proved to be more efficient with the proposed
learning of URL fuzzy controller with golden sections
search.
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