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On Discussion of SOR Method for Solving Sylvester Equation

Seifedine Kadry and Zbigniew Woznicki
Beirut-Lebanon, Allenby Street, P.O.Box: 110-435, Lebanon

Abstract: The main subject of the study is to describe the Successive Over Relaxation (SOR) method for solving
the Sylvester equation AX-XB = C, derived by using two different separation models of boundary-value
problems. As 1s demonstrated i several test problems, the proposed method seems to be very efficient and

strongly competitive to Krylov-subspace techniques.
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INTRODUCTION

Sylvester equations have numerous applications in
control theory, signal processing, filtering,
reduction, image restoration, decoupling techmiques for
ordmary and partial differential equations, implementation
of implicit numerical methods for ordinary differential
equations and block-diagonalization of matrices
(Aliev and Larin, 1998; Enright, 1978; Epton, 1980;
Calvetti and Reichel, 1996; Dieci ef al., 1988; Golub and
Van Loan, 1996, Sima, 1996).

The aim of this paper is to discuss the iterative
method, introduced recently by the authors and called as
SOR-like method (Wozmcki and Kadry, 2003) for solving
the matrix equation

model

AX-XB=C D

Where AeIR™™ BelR™ and C, XeIR™™ The above
equation represents the Sylvester equation, playing an
essential role m control theory and when B = -AT, it
reduces to the well known Lyapunov equation.

The matrix Eq. 1 possesses a unique solution if and
only if the matrices A and B have no common eigenvalues
(Gantmacher, 1966) and by means of the Kronecker
transformation, it can be equivalently written as a large
linear system of the following form

Gx =¢ (2)

with an mnxmn matrix G.
In the literature,
proposed for solving Eq. 1. A survey of solution methods,
properties and applications of the Sylvester equation in
control theory is presented by Datta (2004).
In the following section, the simple algorithm of
SOR-like method for solving Eq. 1 1s presented. The

several methods have been

results of numerical experiments with the solution of
Sylvester equations, obtained by two different separation
models of elliptic partial differential equations are
reported in Section 3 for the examples taken from Hu and
Reicher (1992). One of them, called the separation model
A, 18 that used in (Hu and Reicher, 1992; Kadry, 2003)
and the second, called as the separation model B, is a
new one.

MATERIALS AND METHODS

Assuming that the matrix A is defined by the
following decomposition:

A=KIL-U 3
Where K, L and U are nonsingular diagenal, strictly lower

triangular and strictly upper triangular parts of A; Eq. (1)
can be rewritten as

KX = LX+UX+XB+C (4
Or equivalently
X = K H{LX+UX+XB+C} (5)

We assume that the iterative scheme has the
following form

XO =KX+ U+ xR+ (6

Fort =1, 2... where the term X“'¥ means that for
computing the product XB, the entries of X*" and X" are
used in the current iteration t. For the acceleration of
convergence 1n the above iterative scheme, the over-
relaxation procedure can be used as follows

Corresponding Author: Seifedine Kadry, Beirut-Lebanon, Allenby Street, P.O.Box: 110-435, Lebanon



Intl. J. Soft Comput., 2 (2): 236-242, 2007

XY =wkHLXY + UX"Y 4 XUB 4

(7
—(w DX, t=12,..
Or written equivalently
L[ wye wrU ReY
X =[1-wK'L | =12,
+wK [ XUB+C
(8)

Since the exact solution X satisfies the above
equatior, then with the error solution matrix E® = X-X®,

we have
},t =1,2,..

When B would be the mull matrix, we have the explicit
form of the iteration matrix

[(1-w)I+ wK U]
ECV + wK'ECYB

©)

BY =[1-wrL] {

T :[I*WKAL]?I [(1*W)I+WK71U} (10)

and the iterative scheme (7), representing the classical
algorithm of the SOR method, is convergent for an
arbitrary starting matrix X® if and cnly if the spectral
radius of the iteration matrix Ty, 18 less than umty; and
the error solution matrix EY can be expressed explicitly in
dependence on E, that is,

(1)

5 _ =D _ot g
EY =1, B " =1,_E

In the case when B # 0, we see that a similar relation
for the error solution matrix cannot be derived from
Eq. 9. However, we can assume that there exists an
implicit iteration matrix Tp, which form can not be
expressed explicitly but we are able to compute its
spectral radius according to the following equation
derived from Eq. 7

1
I

—(w-1) YV =AY®, t=1,2,..

-1 1) ft—1) ft-1t)
wk LYY < Uy¢ D+ YR 12

Where A is an eigenvalue of the implicit iteration
matrix Ty, and the matrix Y play a role of an "eigenvector”.
When A 18 a real eigenvalue, the above equation
represents the algorithm of the power method providing
us the spectral radius p(ty) = |A|.

As 1s observed i numerical experiments, the value of
P(Te) 18 frequently mimimized for O<w<1.
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The detailed analysis of convergence properties of
the presented method and the estimation of the value of
W, are the subject of actual studies. In the analysis of
the reliability of iterative solutions, it 18 convement to
consider the (true) error matrix

E® _x _x® (13)
The inner (or pseudo-residual) error matrix

K = 5¢(b _3g0-h (14)
The relative inner error matrix computed entry-wise

(t) =0
5 = Rk (15)
Xy
And the residual matrix
R® = AX® - XB —C (16)

where X 13 assumed as the "exact" solution matrix.
Since the above quantities are matrices, the Frobenius

RO
1
2 z
Jal, { - }

is an important matrix norm for us and for needs of
comparison of obtained results with those given in
(Hu and Reicher, 1992), we shall use the maximum matric
norm defined as follows

i 3 (17

i=1 k=1

= max n (18)

1=k=n

a

Most recent iterative methods terminate when the
residual R is sufficiently small and the termination test

=]
F

19
" "

<g

|

Called usually as a relative residual norm, is most
commonly used criterion in Krylov subspace algorithms.
However, it seems that in the case of iterative methods
based on a matrix splitting, the termination test

< 20)
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can be practically considered as the most useful
stopping criterion mdependent on an used imtial guess

(Woznicki, 2001).
RESULTS AND DISCUSSION

We shall illustrate the numerical performance of the
iterative scheme presented in this paper in some examples
taken from Hu and Reicher (1992).

Let Q = {(x,y)elR*0<x<1, O<y<1} and let Idenotes
the boundary of €. We shall solve the following
boundary-value problem for the two-dimensional
separable model of convection-diffusion equation:

in £2
on 9€2

—Au+2pu, +2p,u, —2pu=F

A

The parameters p,, p, and p, are nonnegative in all
considered examples. The right hand-side function F(x, y)
15 chosen so that u(x,y) = xe™ sinnx smmy solves Eq. 21.
The Laplacian in Eq. 21 is discretized by the standard five-
point formula and the first-order derivatives by centered
finite differences. The mesh size in both the x- and y-
directions ish = (n+1)".

Define the mesh points x; = jh and xk = kh for O<J,
k<nwe seck to determine values of the solution u(x,y) at
interior mesh points {(x;, )" . This yields the linear
system of algebraic equations

2D

Hu=c¢ 22)
Where an n*xn’ matrix H has the following form
HD HU
HL HD HU
H= (23)
HL HD HU
HL HD

All nxn sub-matrices are nonsingular and defined as
follows

1

H, :Fmdiag{—l—plh,4—2p3h2,—1+plh} (24)

H, —hdeiag{l+p2h} and H, :hlzdiag{lfpzh} (25)

The above linear system can be written as a Sylvester
Eq. (1) with n*n matrices A and B dependent on the
assumed separation model, where the entry (j, k) of the
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solution matrix X = U of the Sylvester equation
approximates U(x, y,) and C = {¢,,}" ., is given by
¢ix = F(x.3) (26)

In the examples given in next subsections, we shall
examine the behavior of the spectral Radius of the
assoclated wmplicit iteration matrix Ty,, as function of the

relaxation parameter w as well as the behavior of the
following error norms versus the number of iterations

HR(t)

=]

F

B =gl =[R7], D[], maE=fev] | 2D

F
with using the stopping test

A= HSHM <g=10" (28)

and marked m figures by the comresponding letters. The
zero initial guess was used in all double precision
FORTRAN computations.

Separation model A: This separation model, used m (Hu
and Reicher, 1992), is represented by the following
matrices

| R
A:Fmdlag{—l—plhﬂ—pjhz,—1+plh} (29)
and
| R
B:h—ztnchag{—l—pzh,Z—pjhz,—l—pzh} (30)

where the matrix A differs from Hy, by the entries of the
main diagenal and B contains the entries on sub- and
supper-diagonals equal to those n H, and Hy respectively
but multiplied by -1. The diagonal entries of A + B are
equal to those on the diagonal of H,.

Example 3.1A: Tet p, = p; = p,=0andn =31. Then
Eq. 21 simplifies to the boundary-value problem for the
Poisson equation and the related Sylvester equation has
property B = -A and
A= A", which is equivalent to the Lyapunov equation.
Figure 1 shows the behavior of dominant eigenvalues
versus w, illustrating the behavior of the spectral radius
p(Tasy) marked in Fig. 1 by a. The dominant eigenvalue is
positive and a decreasing function of w for O<w<w, and
with w;=0.915 it achieves the mmimum value equal to
about 0.822. For w>w, the dommant eigenvalue becomes
complex and its modulus is an increasing function of w
and with w =1 is equal to unity. Thus in this example, the
iterative scheme (7) is convergent for O <w< 1.
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Fig. 1: (a) Example 3.1, (b) Example 3.2
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Fig. 2: Example 3.1, The behavior of error norms

The behavior of error norms 1s shown m Fig. 2 for the
results obtained after 195 iterations withw = 0.915 and the
stopping test (28). As can be seery, the residual norm C 1s
satisfied with about 10" but the remaining norms are

satisfied with the values equal to about 10

Example 3.2A: Letp, =25, p, =50, p, =50 and n = 31. Both
matrices A and B are non-symmetric. The behavior of the
spectral radius p(te,) is marked by b in Fig. 1. The
dominant eigenvalue 1s complex and its modulus 13 a
decreasing function of w for O<w<w, and with w,=0.44 1t
achieves the mimimum value equal to about 0.37. For w>w,
1ts modulus 1s an mereasing fimction of w and with w=0.6

10-logarithm

Fig. 3: Example 3.2, The behavior of error norms

15 equal to unity. Thus m tlus example, the iterative

scheme (7) is convergent for 0 <w<0.6.
The behavior of error norms is shown in Fig. 3 for the

results obtained after 34 iterations with w=0.44 and the
stopping test (28). As can be seen the residual norm C 15
satisfied with about 10" but the remaining norms are
again satisfied with the values equal to about 10™

Example 3.3A: Let p, = 50, p, = 100, p; = 50 and n = 63.
Both non-symmetric matrices A and B have a larger order
than those in previous examples. The behavior of the
spectral radius p(tzo) versus w, depicted in Fig. 4, is
similar to that for Example 3.2A marked by b in Fig. 1 and
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Fig. 4 Example 3.3

p(Tp) achieves its minimum value equal to about 0.4
with w,=0.45.

The behavior of error norms, shown in Fig. 5 for
the results obtained after 38 iterations with w = 0.45 and
the stopping test (28), 1s similar to that for Example 3.2
depicted in Fig. 3.

Separation model B: Tn this separation model, we use the
following matrices

1, ..
A:Ftndlag{flfplh,él72p3h2,71+p1h} (3D

and

1 ..
B:Ftndlag{fl+p2h,0,flfp2h} (32)

in the Sylvester Eq. (1), where now A 1is identical with Hy,
and B consists two nonzero diagonals of H, and Hy,.

We shall consider the previous examples for this
separation model, i.e.,

Example 3.1B: Forp, = p, = p; = 0 and n = 31, Eq. 21
simplifies to the boundary-value problem for the Poisson
equation and in the related Sylvester equation A = AT
but it is not equivalent to the Lyapunov equation
because B#A.

The behavior of dominant eigenvalues of p(tz)
versus w, depicted m Fig. 6, is marked by a’. It 1s
mteresting to note that this behavior of dominant
eigenvalues 13 identical with the behavior of dominant
eigenvalues of the iteration matrix &, in SOR method
applied for solving the Eq. 22 in which H is an 2-cyclic
consistently ordered matrix. Thus in this case, the
property of 2-cyclic consistent ordering moves to the
Sylvester equation based on the separation model B so
that the value of w,, can be easily determined by means
of the Sigma-SOR algorithm (Woznickie, 1994).

10-logarithm

r
20
Tteration No.

Fig. 5: Example 3.3 The behavior error norms

Example 3.2B: The values of p,, p,, p; and N are the same
as those in Example 3.2A and both matrices A and B are
non symmetric. The behavior of the spectral radius p(tg_)
versus w 18 marked by b® m Fig. 6 The dominant
eigenvalue is complex and its modulus is a decreasing
function of w for O<sw<w, and with w,=0.90 it achieves the
mimimum value equal to about 0.345. For w>w, its modulus
is an increasing function of w and with w=1.2 is equal to
unity. Thus in this example, the iterative method (7) is
convergent for 0 <w<1.2.

Example 3.3B: The values of p,, p,, p, and N are the same

as those m Example 3.3A and both non symmetric
matrices A and B have a larger order than those in two
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Fig. 7. Example 3.3.

previous examples. The behavior of the spectral radius
p(Tp) versus w, marked by a’ mn Fig. 7, 1s sumilar to that
for Example 3.2B marked by b’ in Fig. & and p(tz)
achieves its minimum value equal to about 0.40 with
w,=0.90,

As can be seen m these figures, the mimmum values
of the spectral radius are the same in both separation
models therefore, with using w,,, the SOR-like method has
the same convergence properties for both separation
models and the behavior of emror norms versus the
number of iterations for the separation model B is nearly
the same as that observed in Fig. 2, 3 and 5 for the
separation model A.

However, the separation model B mcreases the range
of convergence, where the SOR-like method is convergent
for 0<w<2 in Example 3.1B and in the case of Examples
3.2B and 3.3B for 0<w=<=1.2, where the values of w,,, are
mereased two times. This increasing the range of

convergence unplies that the SOR-like method with the
separation model B becomes less sensitive to the accurate
estimate of w,, (especially in Examples 3.2B and 3.3B),
which simplifies determining w,,, and its convergence
behavior 1s identical with that for the SOR method when
1s used for solving Eq. 22.

CONCLUSION

As 1s demonstrated in Hu and Reicher (1992), the
Galerkin method gives a little better result than minimal-
residual one in Examples 3.1 and 3.3 but in the case of
Example 3.2, an inverse behavior is observed. In
Example 3.1 the solution have been obtained after 20
iterations with the Krylov subspace dimension m = 6 and
the relative residual norm B equal to about 107, which
corresponds to the residual norm € = |[R™| in this
example. The solution of Example 3.2 have been obtamned
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with the relative residual norm B equal to about 107, which
carresponds to the residual norm C = |[R™|,~0.0003. The
best results are presented in Hu and Reicher (1992) for
Example 3.3 and its solution were obtamed with the
Kiylov subspace dimension m = 4 and the relative residual
norm B equal to about 10", corresponding to the residual
norm C = |[R™?|=2x10". However as is shown in Figure
4 giwven i1 Hu and Reicher (1992), both mimmal-
residual and Galerkin methods can provide the solutions
for Example 3.3 only with the true error norm E =
JEY) 1077,

From the results of numerical experiments presented
in Sections 3.1 and 3.2, it can be concluded that the
proposed SOR-like method, represented by the iterative
scheme (7), 18 a very efficient techmique for solving
Sylvester equations especially with the non symmetric
matrices A and B. For considered examples, the SOR-like
method provides much more accurate solutions, obtained
with a computational work less than a few orders in
magnitude in comparison to solutions obtained by means
of Krylov subspace algorithms discussed in Hu and
Reicher (1992). The computational worl in one iteration of
the scheme (7) 1s roughly equivalent to that required for
computing the residual matrix (16). Thus with using the
stopping test (28), the solutions were obtained with the
relative residual norm B, the true error norms D = |EY|;
and E = |EY|,,.. less than 10" and after 195, 33 and 38
iterations (equivalent to computations of the residual
matrix) for Examples 3.1, 3.2 and 3.3 respectively. From the
viewpoint of simplicity in determining w,,,, the SOR-like
method with the separation model B 15 a more useful
computational techmque for solving Sylvester equations.

In Example 3.1B, the Sylvester equation preserves
2-cyclic consistent ordering property and w,,,,=w,, can be
easily determmed by means of the Sigma-SOR algorithm
(Woznicki, 1994).

In the case of Examples 3.2 and 3.3, the value of
W, can be found experimentally by fitting a parabola
curve for both separation models. Assuming that the
right hand-side of a solved problem is put to zero, then
with all entries of starting matrix X equal to unity, the
solution of (7) converges to the null matrix when p(tg,,)<1
for a given w but its rate of convergence 1s dependent
on the used value of w. For three values of w chosen
around expected w,,, we obtain the corresponding
nmumbers of iterations satisfying, for instance, the
stopping test |XY),..<107° and the abscissa of the
minimum of a fitted parabola provides us a quite good
approximation for w,,.
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Finally, it should mention that similar behavior of the
SOR-like method was observed with solving other test
examples taken from the literature.
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