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Abstract: Control design goals can smartly be aclhieved using numerical optimisation methods such as Genetic
Algorithms (GAs). Using GAs, an efficient numerical method to obtain robust PI tuning formulae for first order
plus dead time processes is presented in this study. The design method is based on optimal load disturbance
rejection. In order to obtain a robust controller, a constraint on the maximum sensitivity is used. In addition, the

design method deals with setpomt response through setpoint weighting. The design procedure has 2 main
steps. Inthe first step, PI controller parameters are determined such that the IAE criterion to a load disturbance
step is minimized and the robustness constraint on maximum sensitivity is satisfied. In the second step, good
setpoint regulation is achieved by using a two-degree of freedom control scheme. Tn order to show the
performance and effectiveness of the proposed tuning formulae, they are applied to 2 simulation examples.
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INTRODUCTION

In spite of the continual advances in control theory,
PID control 1s still, by far, the most commonly used
algorithm in the process industry. According to a survey
of more than 11000 industrial controllers, 97% of them
were PID (Desbourough and Miller, 2002). The main
reason 18 that a well designed and adequately tumed PID
controller meets most control objectives (Fruehauf ef al.,
1994). Therefore, good methods of tuning PID controllers
are highly desirable due to their widespread.

Generally, good load disturbance rejection is the
primary objective. Also, the closed-loop system should be
robust against model errors. Optimizing load disturbance
rejection with sensitivity constraints was suggested by
Shinskey (1990). He used a constraint in terms of a
rectangle around the critical point. The idea to use a
constraint on the maximum sensitivity was proposed in
Persson and Astrom (1992). The use of both maximum
sensitivity and maximum complementary sensitivity as
design parameters was suggested in Schei (1983-1989).

In order to consider both performance requirements
and robustness issues, the design method 1s aimed at
optimizing load disturbance rejection with a constraint
on the maximum sensitivity. In addition, good setpoint
regulation is obtained using setpoint weighting. This has
no nfluence on the load disturbance response but plays
a significant role in improving the setpoint response.

PT control is sufficient for a large number of control
problems, particularly when process dominant dynamics
are of the first order and the design requirements are not
too rigorous (Astrom and Hagglund, 1995). Ttis a common
and well accepted practice to approximate high order
processes by low order plus dead time models. A large
number of ndustrial plants can be approximately modelled
by a First Order Plus Dead Time (FOPDT) transfer
function, as shown in Eq. 1.
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Although a FOPDT model does not capture all
the features
reasonably describes the process gain, dominant time

of a high order process, it often
constant and effective dead tune of such a process
(Dougherty and Cooper, 2003).

importance of this category of industrial plants, optimal PT

Considering the

tuning formulae for FOPDT processes are proposed in
this studsy.

CONTROL REQUIREMENTS

Load disturbance rejection: The most common
disturbances in process control are load disturbances.

These low frequency signals are added to the control
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signal at the process input and drive the system away
from its desired operating point (Astrom and Hagglund,
1995). Goodrejection of such signals is the first design
goal.

Robustness against model uncertainties: Typically, the
controller parameters are obtamed from the model
parameters. Due to model uncertainties, the controller
parameters should be chosen in such a way that the
closed-loop system is not too sensitive to variations in
process dynamics. Sensitivity to modelling errors can be
expressed as the largest value of the sensitivity function,
as shownin Eq. 2.
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M, is the inverse of the shortest distance from the
Nyquist curve of the loop transfer function to the critical
point. Smaller values of M, show lttle or no overshoot
while larger ones result in faster responses. A constraint
on the maximum sensitivity is employed to obtain a robust

controller.

Setpoint regulation: The primary design goal is to reject
the load disturbance signals. However, it is also important
to have good setpoint responses. Because responses to
load disturbance and setpomt signals are usually
conflicting, the first design goal may result in bad setpont
responses. As the secondary design goal, good setpoint
responses are obtained using setpoint weighting.

DESIGN PROCEDURE

Consider a two-degree of freedom structure, as
shown in Fig. 1.

Where r, d and y refer to the setpomnt, load
disturbance and output signals, respectively. G,(s) refers
to the process model whereas G, (3) and Gy (s) are PI and
feed forward controllers, shown in Eq. 3 and 4.
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G (s)=K.(1+ %)
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Fig. 1: Block diagram of two-degree of freedom control
system
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Equation 5 describes the closed-loop control system.
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The mput output relationship for the controller 1s
described by Eq. 6.

u(t) =K (br(t) - y(t) + %i(r(z) ~y(dr) (O

The design objective 1s to determime G, (3) and G; to
obtain good load disturbance and setpoint responses. A
constraint on maximum sensitivity is used to guarantee
robustness to model uncertainties. M, = 2 is considered as
the robustness constraimnt, mn this study.

Load disturbance response: The objective function is to
minimize the IAE criterion, shown in Eq. 7, subject to a
constraint on maximum sensitivity.

IAE = T |r(t)— y(t)|dt (7)

The design procedure has 2 main steps. In the first
step, the setpomt signal i1s comnsidered to be zero and
G.(s) is determined so that load disturbances are
attenuated and the robustness constraint is satisfied. For
the G, (3) determined in the first step and m absence of
load disturbances, Gy (3) 18 then tuned to aclieve good
setpoint responses, in the second step.

In order to obtain the optimal PI tuning formulae for
the FOPDT model in (1), the PT parameters can be defined
based on the model parameters, as shown in Eq. 8 and 9.

K, =f(K,7.T) (8)

T, =f,(K,.1,,T) ()

Functions f, and f, should be determined such that
the load disturbance response 1s mimmized and the
robustness constraint is satisfied. However, it is very
difficult to determine these functions because each
parameter of the controller s a function of three
parameters of the model. In order to overcome this
difficulty, the procedure for determining f, and f, is
simplified using dimensional analysis, see appendix.
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Congsidering the process model in Eq. 1, the unit of
both dead time (t,) and Time constant (T) 1s the second.
The umit of process gain (K,) depends on the ature of
the system. Because process gain along with either dead
time or time constant cover all the units in Eq. 8 and 9, m
1s equal to 2. Therefore, there 15 only one dimensionless
number in the model, namely td/T, which 13 named
dimensionless dead time. Considering the PI controller
in Eq. 4, the unit of integral time (T,) is the second.
The unit of controller gain 1s the mverse of the umt of
process gaim. As result, other dimensionless
mumbers for the combined model and controller are
dimensionless gain (K, K.} and dimensionless integral

a

time T/T or T,/T, Based on Buckingham’s pi theorem
(Zlokarmk, 1991) these dimensionless numbers are
functions of the dimensionless number in the plant
model. Therefore, the P 1 parameters can be obtained
through determining K, K, and T/t; (or T/T) from,
T/ Tas shown inEq. 10and11.

ot (10)
K K, gl(T)
L, 12
. g.() (12)

In order to determine g, and g, and generate PI tumung
formulae, the following procedure is proposed.

Step 1: The values of 1,/T are selected

Step 2: For each value of 1,/T, the optimal values of K,
and T; that minimise the desired objective
function are determined using GAs (Goldberg,
1989; Fleming and Purshouse, 2002).

Step 3: The optimal values of K, K_and T/t versus 1,/T
are drawr.

Step 4: g, and g, are determined using curve fitting
techniques.

Tn order to take FOPDT processes with small, medium
and fairly long dead time into account, the values of
dimensionless dead time are considered from 0.1 to 2. The
optimal values of K, K, and T,/T,, resulting from step 2 are
shown in Table 1.

Figure 2 and 3 show the optimal values of the
dimensionless gain and the dimensionless mtegral time
across the selected values of the dimensionless dead time,
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Table 1:Optimal PT parameters for a FOPDT model

T4T KK Ty b
0.1 61710 4.0917 0.5950
0.2 31724 3.1610 0.6170
0.3 2.1808 2.5977 0.6459
04 1.6665 21721 0.6672
0.5 1.3820 1.9119 0.7072
0.6 1.1976 1.7387 0.7223
0.7 1.0629 1.5905 0.7509
0.8 0.9666 1.4785 0.7793
0.9 0.8971 14119 0.7964
1.0 0.8339 1.3184 0.8188
1.1 0.7832 1.2476 0.8469
1.2 0.7494 1.2082 0.8697
1.3 0.7039 1.1264 0.8930
1.4 0.6764 1.0909 0.9176
1.5 0.6547 1.0527 0.9263
1.6 0.6298 1.0077 0.9425
1.7 0.6062 0.9767 0.9616
1.8 0.589 0.9428 0.9798
1.9 0.5844 0.9426 0.9837
2.0 0.5689 0.9238 1.0303
7-
6
g 5
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Fig. 2: Optimal values of the dimensionless gain,K, K,
and values of K, K, given by Eq. 12 versus the
dimensionless dead time, T/T

respectively. It can be seen from Fig. 2 that the
dimensionless gain is a function of the dimensional
the
values of T/t are determined from the values of t/T,
using Eq. 13.

dead time as shown in Eq. 12, Smnilarly,

B
KPK‘::A1+Z; (12)
T
T
A—L+B
T_*t (13)
W Lo
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Fig. 3: Optimal values of the dimensionless integral time,
and Ti/ty values of T/t given by Eq. 13 versus
the dimensionless dead time, T,/T.

Using the least squares method, A, B, A,, B, and C, are
determined for the best match with Table 1. The optimal
values of A, B, A,, B, and C, are, 3/11, 4/7, 9/20, 13/12
and 3/17, respectively.

Setpoint response: In this step, the load disturbance
signal is considered to be zero and G (8) is determined to
obtain a good setpoint response. First, for each value of
14/T the optimal values of K, and T; are determined
using Hg. 12 and 13. Next, the setpoint response is
improved using setpoint weight, b, which is a function of
the process parameters, as shown in Eq. 14.

b=1£(K,,7,.T) (14)

This equation can be simplified to Eqg. 15, using
dimensional analysis.

b=g,(:) (15)

Using a numerical optimization technique, the optimal
value of b is determined so that the objective function n
Eq. 7 18 mmimized. Table 1 and Fig. 4 show the optinal
values of b versus t,/T.

Using the least squares method, optimal value of b
can be calculated from Eq. 16.

b:9rd+7 (16)

07T 12

There is no need to employ setpoint weighting if the
setpoint response is good. The setpoint signal is not
weighted if the value of b is chosen equal to one. Hence,

1.05 7

9 o Optimal Table 1
0.95 - —— Equation 16
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Fig. 4: Optimal values of setpomnt weight, b and the
values of b given by Eq
dimensionless dead time, T,/T.

16 versus the

the setpomnt weight will not be far from one if the setpoimt
signal is fairly good. However, for small values of, 1,/T the
dimensionless gain, K, K given by Eq 12 is large to
reject load disturbance signals well. Therefore, the
setpoint response is expected to be too oscillatory leading
to a value of b which is far from one.

INTEGRATING PROCESSES
If the time constant, T, becomes very large, a FOPDT

process 1s converted to an integrating process with dead
time, as shown in Eq. 17.

Ke™ Ke@™
G.(s)= lim—ro = ~n° (17
i To Tg+ 1 8
Where K', is given by Eq. 18.
K = (18)
P
T

Therefore, PI tuning formulae for the integrating process
inEq. 17 are obtained by using Eq. 12, 13 and 16 for a very
large time constant, as shown in Eq. 19-21.

4
KK, :i (19)
13
T :%Tdﬁ—'l:d (20)
17
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be (21)
12
SIMULATION RESULTS

In this study, performance of the proposed method 1s
compared with that of the method presented in
(Astrom et al., 1998), which is one of the most prevalent
techniques in PT tuning. For simplicity, the latter method
15 abbreviated as APH. Both methods aim to reject load
disturbance signals and improve setpomt responses
through setpoint weighting whilst having a constraint
on maximum sensitivity of M, =2

Example 1:
1

Oy

(G, (s) 18 a third order model although the proposed PI
tuning formulae are optimal for FOPDT processes. In
order to obtain PI parameters suggested by the proposed
method, the transfer function should be approximated by
a FOPDT model A simple method based on analysis of
the open loop step response is given in Toscano (2005).
Parameters of the FOPDT model are obtained using
FEq. 22-24.

Kp =y, (22)
T, =2.8t, 1.8, (23)
T=55(t,t,) 24)

where y. 15 the final value of the step response of the
process and t, (t,) is the time when the output attains 28%
(40%) of its final value. Applying this model reduction
method to G, (s), its FOPDT approxunation is given by

-1.0395

Gig)=—>
= sl

The closed-loop step responses given by the
proposed and APH methods are shown m Fig. 5. The
comparison results are shown in Table 2, where M, 1s the
maximum complementary sensitivity. P, refers to the pealk
of the step disturbance response. T, is the time required
for the disturbance response to settle to within a tolerance
of £0.02.

Tuning is a trade off between conflicting design
objectives. Fast speed of response and good load

disturbance rejection are design goals in conflict with
good robustness (Skogestad, 2003). As shown in Table 2,
the proposed controller results in a faster response and a
better load disturbance rejection but at the cost of having
a larger maximum sensitivity.

An advantage of the proposed method is that the
controller parameters are directly given by Eq. 12, 13 and
16 for FOPDT processes. For a higher order process, the

Table 2: Comparison of the performance of the proposed and aph methods
to control Gy (5)

Method Proposed APH
K, 1.619 1.220
T; 2.203 1.780
b 0.679 0.500
M, 2.151 2.000
Mt 1.000 1.000
PO 12.77 11.94
T, 12.23 11.07
Pd 0.418 0.458
Td 11.93 13.14
1.5 4
—— Proposed
=== APH
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Fig. 5. Closed-loop step responses resulting from
applying the proposed and APH methods to G,(s)

Step response

c L) L] L] T T T T L} T 1
0 5§ 10 15 20 25 30 35 40 45 50
Time
Fig. 6: Closed-loop step respeonses resulting from

applying the proposed and APH methods to G,(s)
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Table 3: Comparison of the performance of the proposed and aph methods
to control Gy(s)

Method Proposed APH
K. 0.571 0.488
T; 6.140 3.725
b 0.583 0.460
M, 1.913 2.003
M, 1.444 1.821
PO 0.550 17.21
T, 10.20 10.66
Pd 0.455 0477
Td 1621 13.80

tuning formulae can be used after an appropriate model
reduction. However, parameters of the APH controller are
not explicitly given by a set of tuming formulae. They
should be computed through a procedure.

Example 2:

G,(s)="
3

G,(s) is an integrating process with dead time. The
proposed and APH methods result in closed-loop step
respenses shown m Fig. 6.

The proposed method performs better in setpoint
regulation and gives a smaller M,, however, a faster load
disturbance rejection is given by the APH controller. The
comparison results are shown m Table 3.

CONCLUSION

Using GAs, a new set of robust PI tuning formulae for
FOPDT processes 1s presented m this study. As an
integrating process with dead time is a special case of a
FOPDT process, tuning formulae for such processes are
also given. The design problem considers three essential
requirements of control problems. These requirements are
load disturbance rejection, setpoint regulation and
robustness of the closed-loop system against model
uncertainties. The primary design goal 1s to optimize load
disturbance rejection. Robustness 1s guaranteed by
requiring that the maximum sensitivity is less than or
equal to a specified value. In the first step, PT controller
parameters are determined such that the IAE criterion to
a load disturbance step 1s mimmized and the robustness
constraint on maximum sensitivity is satisfied. In the
second step, good setpoint regulation is achieved by
using a structure with two degrees of freedom, which
mtroduces an extra parameter, the setpoint weight. The
main advantage of the proposed method is its simplicity.
As soon as the equivalent FOPDT model is determined,
the PI parameters are explicitly given by a set of tuning

formulae. Simulation studies for two examples show that
the proposed PI controller can effectively deal with
conflicting design requirements.

As the FOPTD processes are not representative for
all processes encountered in process control, new
research will attempt to consider a larger test batch to
develop the tuning formulae.

APPENDIX

Dimensional analysis 1s often used to simplify a
problem by reducing the number of its variables to the
smallest number of essential ones (Zlokarnik, 1991). Using
this technique, relations between variables i a physical
system can be defined as relations between dimensionless
nmumbers in the system with no change in the system
behavior. A dimensionless number i3 a pure number
without any physical umt. Such a number 15 typically
defined as a product or ratio of quantities that do have
units, in such a way that all units can be cancelled.

Assume that a system is expressed by Eq. 25.

x, =1(x,,%,,...%,) (25)

Where x,, X....... , X, are non-zero variables. Based on
Buckingham’s p1 theorem (Zlokarmik, 1991), Eq. 25 canbe
replaced by Eq. 26.

mo=g(My, M, Ty ) (26)

Where m,,...., T, are independent dimensionless numbers
and m 1s the minimum number of x;, X,,....... , X, which
includes all the umts n x,, X,,....... L X,
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